23.09.2019

Постоянная больцмана численно равна. Постоянная Больцмана: значение и физический смысл


Среди фундаментальных постоянных постоянная Больцмана k занимает особое место. Ещё в 1899 г. М. Планк предлагал следующие четыре числовых константы в качестве фундаментальных для построения единой физики: скорость света c , квант действия h , гравитационную постоянную G и постоянную Больцмана k . Среди этих констант k занимает особое место. Она не определяет элементарных физических процессов и не входит в основные принципы динамики, но устанавливает связь между микроскопическими динамическими явлениями и макроскопическими характеристиками состояния частиц. Она же входит в фундаментальный закон природы, связывающий энтропию системы S с термодинамической вероятностью её состояния W :

S=klnW (формула Больцмана)

и определяющий направленность физических процессов в природе. Особое внимание следует обратить на то, что появление постоянной Больцмана в той или иной формуле классической физики всякий раз совершенно отчётливо указывает на статистический характер описываемого ею явления. Понимание физической сущности постоянной Больцмана требует вскрытия громадных пластов физики - статистики и термодинамики, теории эволюции и космогонии.

Исследования Л. Больцмана

Начиная с 1866 г. Одна за другой выходят в свет работы австрийского теоретика Л. Больцмана. В них статистическая теория получает столь солидное обоснование, что превращается в подлинную науку о физических свойствах коллективов частиц.

Распределение было получено Максвеллом для простейшего случая одноатомного идеального газа. В 1868 г. Больцман показывает, что и многоатомные газы в состоянии равновесия будут также описываться распределением Максвелла.

Больцман развивает в трудах Клаузиуса представление о том, что газовые молекулы нельзя рассматривать как отдельные материальные точки. У многоатомных молекул имеются ещё вращение молекулы как целого и колебания составляющих её атомов. Он вводит в рассмотрение число степеней свободы молекул как число «переменных, требующихся для определения положения всех составных частей молекулы в пространстве и их положения друг относительно друга» и показывает, что из данных эксперимента по теплоёмкости газов следует равномерное распределение энергии между различными степенями свободы. На каждую степень свободы приходится одна и та же энергия

Больцмана напрямую связал характеристики микромира с характеристиками макромира. Вот ключевая формула, устанавливающая это соотношение:

1/2 mv2 = kT

где m и v - соответственно масса и средняя скорость движения молекул газа, Т - температура газа (по абсолютной шкале Кельвина), а k - постоянная Больцмана. Это уравнение прокладывает мостик между двумя мирами, связывая характеристики атомного уровня (в левой части) с объемными свойствами (в правой части), которые можно измерить при помощи человеческих приборов, в данном случае термометров. Эту связь обеспечивает постоянная Больцмана k, равная 1,38 x 10-23 Дж/К.

Заканчивая разговор о постоянной Больцмана, хочется ещё раз подчеркнуть её фундаментальное значение в науке. Она содержит в себе громадные пласты физики - атомистика и молекулярно-кинетическая теория строения вещества, статистическая теория и сущность тепловых процессов. Изучение необратимости тепловых процессов раскрыло природу физической эволюции, сконцентрировавшейся в формуле Больцмана S=klnW. Следует подчеркнуть, что положение, согласно которому замкнутая система рано или поздно придёт в состояние термодинамического равновесия, справедливо лишь для изолированных систем и систем, находящихся в стационарных внешних условиях. В нашей Вселенной непрерывно происходят процессы, результатом которых является изменение её пространственных свойств. Нестационарность Вселенной неизбежно приводит к отсутствию в ней статистического равновесия.

Постоянная Больцмана (k или k b ) - физическая постоянная, определяющая связь между и . Названа в честь австрийского физика , сделавшего большой вклад в , в которой эта постоянная играет ключевую роль. Её экспериментальное значение в системе равно

k = 1,380\;6505(24) \times 10^{-23} / .

Числа в круглых скобках указывают стандартную погрешность в последних цифрах значения величины. В принципе, постоянная Больцмана может быть получена из определения абсолютной температуры и других физических постоянных. Однако, вычисление постоянной Больцмана с помощью основных принципов слишком сложно и невыполнимо при современном уровне знаний. В естественной системе единиц Планка естественная единица температуры задается так, что постоянная Больцмана равна единице.

Связь между температурой и энергией.

Определение энтропии.

Термодинамической системы определяется как натуральный логарифм от числа различных микросостояний Z, соответствующих данному макроскопическому состоянию (например, состоянию с заданной полной энергией).

S = k \, \ln Z

Коэффициент пропорциональности k и есть постоянная Больцмана. Это выражение, определяющее связь между микроскопическими (Z) и макроскопическими состояниями (S), выражает центральную идею статистической механики.

(k или k B) – физическая постоянная, определяющая связь между температурой и энергией. Названа в честь австрийского физика Людвига Больцмана, сделавшего большой вклад в статистическую физику, в которой эта стала занимает ключевую позицию. Ее экспериментальное значение в системе СИ равен

Числа в круглых скобках указывают стандартную погрешность в последних цифрах значения величины. В принципе, постоянную Больцмана можно получить из определения абсолютной температуры и других физических констант (для этого нужно уметь рассчитать из первых принципов температуру тройной точки воды). Но определение постоянной Больцмана с помощью основных принципов слишком сложное и нереальное при современном развитии знаний в этой области.
Постоянная Больцмана – излишняя физическая постоянная, если измерять температуру в единицах энергии, что очень часто делается в физике. Она, собственно, связью между хорошо определенной величиной – энергией и градусом, значение которого сложилось исторически.
Определение энтропии
Энтропия термодинамической системы определяется как натуральный логарифм от числа различных микросостояния Z, соответствующих данному макроскопическому состоянию (например, состояния с заданной полной энергией).

Коэффициент пропорциональности k и является постоянной Больцмана. Это выражение, определяющее связь между микроскопическими (Z) и макроскопическими (S) характеристиками, выражает главную (центральную) идею статистической механики.

Постоя́нная Бо́льцмана ( k {\displaystyle k} или k B {\displaystyle k_{\rm {B}}} ) - физическая постоянная , определяющая связь между температурой и энергией . Названа в честь австрийского физика Людвига Больцмана , сделавшего большой вклад в статистическую физику , в которой эта постоянная играет ключевую роль. Её значение в Международной системе единиц СИ согласно изменения определений основных единиц СИ (2018) точно равно

k = 1,380 649 × 10 − 23 {\displaystyle k=1{,}380\,649\times 10^{-23}} Дж / .

Связь между температурой и энергией

В однородном идеальном газе , находящемся при абсолютной температуре T {\displaystyle T} , энергия, приходящаяся на каждую поступательную степень свободы , равна, как следует из распределения Максвелла , k T / 2 {\displaystyle kT/2} . При комнатной температуре (300 ) эта энергия составляет 2 , 07 × 10 − 21 {\displaystyle 2{,}07\times 10^{-21}} Дж , или 0,013 эВ . В одноатомном идеальном газе каждый атом обладает тремя степенями свободы, соответствующими трём пространственным осям, что означает, что на каждый атом приходится энергия в 3 2 k T {\displaystyle {\frac {3}{2}}kT} .

Зная тепловую энергию, можно вычислить среднеквадратичную скорость атомов, которая обратно пропорциональна квадратному корню атомной массы. Среднеквадратичная скорость при комнатной температуре изменяется от 1370 м/с для гелия до 240 м/с для ксенона . В случае молекулярного газа ситуация усложняется, например, двухатомный газ имеет 5 степеней свободы - 3 поступательных и 2 вращательных (при низких температурах, когда не возбуждены колебания атомов в молекуле и не добавляются дополнительные степени свободы).

Определение энтропии

Энтропия термодинамической системы определяется как натуральный логарифм от числа различных микросостояний Z {\displaystyle Z} , соответствующих данному макроскопическому состоянию (например, состоянию с заданной полной энергией).

S = k ln ⁡ Z . {\displaystyle S=k\ln Z.}

Коэффициент пропорциональности k {\displaystyle k} и есть постоянная Больцмана. Это выражение, определяющее связь между микроскопическими ( Z {\displaystyle Z} ) и макроскопическими состояниями ( S {\displaystyle S} ), выражает центральную идею статистической механики.