20.10.2019

Высшая степень окисления. Степень окисления. Определение степени окисления в соединении


В химии термины «окисление» и «восстановление» означает реакции, при которых атом или группа атомов теряют или, соответственно, приобретают электроны. Степень окисления - это приписываемая одному либо нескольким атомам численная величина, характеризующая количество перераспределяемых электронов и показывающая, каким образом эти электроны распределяются между атомами при реакции. Определение этой величины может быть как простой, так и довольно сложной процедурой, в зависимости от атомов и состоящих из них молекул. Более того, атомы некоторых элементов могут обладать несколькими степенями окисления. К счастью, для определения степени окисления существуют несложные однозначные правила, для уверенного пользования которыми достаточно знания основ химии и алгебры.

Шаги

Часть 1

Определение степени окисления по законам химии

    Определите, является ли рассматриваемое вещество элементарным. Степень окисления атомов вне химического соединения равна нулю. Это правило справедливо как для веществ, образованных из отдельных свободных атомов, так и для таких, которые состоят из двух, либо многоатомных молекул одного элемента.

    • Например, Al (s) и Cl 2 имеют степень окисления 0, поскольку оба находятся в химически несвязанном элементарном состоянии.
    • Обратите внимание, что аллотропная форма серы S 8 , или октасера, несмотря на свое нетипичное строение, также характеризуется нулевой степенью окисления.
  1. Определите, состоит ли рассматриваемое вещество из ионов. Степень окисления ионов равняется их заряду. Это справедливо как для свободных ионов, так и для тех, которые входят в состав химических соединений.

    • Например, степень окисления иона Cl - равняется -1.
    • Степень окисления иона Cl в составе химического соединения NaCl также равна -1. Поскольку ион Na, по определению, имеет заряд +1, мы заключаем, что заряд иона Cl -1, и таким образом степень его окисления равна -1.
  2. Учтите, что ионы металлов могут иметь несколько степеней окисления. Атомы многих металлических элементов могут ионизироваться на разные величины. Например, заряд ионов такого металла как железо (Fe) равняется +2, либо +3. Заряд ионов металла (и их степень окисления) можно определить по зарядам ионов других элементов, с которыми данный металл входит в состав химического соединения; в тексте этот заряд обозначается римскими цифрами: так, железо (III) имеет степень окисления +3.

    • В качестве примера рассмотрим соединение, содержащее ион алюминия. Общий заряд соединения AlCl 3 равен нулю. Поскольку нам известно, что ионы Cl - имеют заряд -1, и в соединении содержится 3 таких иона, для общей нейтральности рассматриваемого вещества ион Al должен иметь заряд +3. Таким образом, в данном случае степень окисления алюминия равна +3.
  3. Степень окисления кислорода равна -2 (за некоторыми исключениями). Почти во всех случаях атомы кислорода имеют степень окисления -2. Есть несколько исключений из этого правила:

    • Если кислород находится в элементарном состоянии (O 2), его степень окисления равна 0, как и в случае других элементарных веществ.
    • Если кислород входит в состав перекиси , его степень окисления равна -1. Перекиси - это группа соединений, содержащих простую кислород-кислородную связь (то есть анион перекиси O 2 -2). К примеру, в составе молекулы H 2 O 2 (перекись водорода) кислород имеет заряд и степень окисления -1.
    • В соединении с фтором кислород обладает степенью окисления +2, читайте правило для фтора ниже.
  4. Водород характеризуется степенью окисления +1, за некоторыми исключениями. Как и для кислорода, здесь также существуют исключения. Как правило, степень окисления водорода равна +1 (если он не находится в элементарном состоянии H 2). Однако в соединениях, называемых гидридами, степень окисления водорода составляет -1.

    • Например, в H 2 O степень окисления водорода равна +1, поскольку атом кислорода имеет заряд -2, и для общей нейтральности необходимы два заряда +1. Тем не менее, в составе гидрида натрия степень окисления водорода уже -1, так как ион Na несет заряд +1, и для общей электронейтральности заряд атома водорода (а тем самым и его степень окисления) должен равняться -1.
  5. Фтор всегда имеет степень окисления -1. Как уже было отмечено, степень окисления некоторых элементов (ионы металлов, атомы кислорода в перекисях и так далее) может меняться в зависимости от ряда факторов. Степень окисления фтора, однако, неизменно составляет -1. Это объясняется тем, что данный элемент имеет наибольшую электроотрицательность - иначе говоря, атомы фтора наименее охотно расстаются с собственными электронами и наиболее активно притягивают чужие электроны. Таким образом, их заряд остается неизменным.

  6. Сумма степеней окисления в соединении равна его заряду. Степени окисления всех атомов, входящих в химическое соединение, в сумме должны давать заряд этого соединения. Например, если соединение нейтрально, сумма степеней окисления всех его атомов должна равняться нулю; если соединение является многоатомным ионом с зарядом -1, сумма степеней окисления равна -1, и так далее.

    • Это хороший метод проверки - если сумма степеней окисления не равна общему заряду соединения, значит вы где-то ошиблись.

    Часть 2

    Определение степени окисления без использования законов химии
    1. Найдите атомы, не имеющие строгих правил относительно степени окисления. По отношению к некоторым элементам нет твердо установленных правил нахождения степени окисления. Если атом не подпадает ни под одно правило из перечисленных выше, и вы не знаете его заряда (например, атом входит в состав комплекса, и его заряд не указан), вы можете установить степень окисления такого атома методом исключения. Вначале определите заряд всех остальных атомов соединения, а затем из известного общего заряда соединения вычислите степень окисления данного атома.

      • Например, в соединении Na 2 SO 4 неизвестен заряд атома серы (S) - мы лишь знаем, что он не нулевой, поскольку сера находится не в элементарном состоянии. Это соединение служит хорошим примером для иллюстрации алгебраического метода определения степени окисления.
    2. Найдите степени окисления остальных элементов, входящих в соединение. С помощью описанных выше правил определите степени окисления остальных атомов соединения. Не забывайте об исключениях из правил в случае атомов O, H и так далее.

      • Для Na 2 SO 4 , пользуясь нашими правилами, мы находим, что заряд (а значит и степень окисления) иона Na равен +1, а для каждого из атомов кислорода он составляет -2.
    3. Найдите неизвестную степень окисления из заряда соединения. Теперь у вас есть все данные для простого расчета искомой степени окисления. Запишите уравнение, в левой части которого будет сумма числа, полученного на предыдущем шаге вычислений, и неизвестной степени окисления, а в правой - общий заряд соединения. Иными словами, (Сумма известных степеней окисления) + (искомая степень окисления) = (заряд соединения).

      • В нашем случае Na 2 SO 4 решение выглядит следующим образом:
        • (Сумма известных степеней окисления) + (искомая степень окисления) = (заряд соединения)
        • -6 + S = 0
        • S = 0 + 6
        • S = 6. В Na 2 SO 4 сера имеет степень окисления 6 .
    • В соединениях сумма всех степеней окисления должна равняться заряду. Например, если соединение представляет собой двухатомный ион, сумма степеней окисления атомов должна быть равна общему ионному заряду.
    • Очень полезно уметь пользоваться периодической таблицей Менделеева и знать, где в ней располагаются металлические и неметаллические элементы.
    • Степень окисления атомов в элементарном виде всегда равна нулю. Степень окисления единичного иона равна его заряду. Элементы группы 1A таблицы Менделеева, такие как водород, литий, натрий, в элементарном виде имеют степень окисления +1; степень окисления металлов группы 2A, таких как магний и кальций, в элементарном виде равна +2. Кислород и водород, в зависимости от вида химической связи, могут иметь 2 различных значения степени окисления.

Степень окисления - условная величина, использующаяся для записи окислительно-восстановительных реакций. Для определения степени окисления используется таблица окисления химических элементов.

Значение

Степень окисления основных химических элементов основана на их электроотрицательности. Значение равно числу смещённых в соединениях электронов.

Степень окисления считается положительной, если электроны смещаются от атома, т.е. элемент отдаёт электроны в соединении и является восстановителем. К таким элементам относятся металлы, их степень окисления всегда положительная.

При смещении электрона к атому значение считается отрицательным, а элемент - окислителем. Атом принимает электроны до завершения внешнего энергетического уровня. Окислителями является большинство неметаллов.

Простые вещества, не вступающие в реакцию, всегда имеют нулевую степень окисления.

Рис. 1. Таблица степеней окисления.

В соединении положительную степень окисления имеет атом неметалла с меньшей электроотрицательностью.

Определение

Определить максимальную и минимальную степень окисления (сколько электронов может отдавать и принимать атом) можно по периодической таблице Менделеева.

Максимальная степень равна номеру группы, в которой находится элемент, или количеству валентных электронов. Минимальное значение определяется по формуле:

№ (группы) – 8.

Рис. 2. Таблица Менделеева.

Углерод находится в четвёртой группе, следовательно, его высшая степень окисления +4, а низшая - -4. Максимальная степень окисления серы +6, минимальная - -2. Большинство неметаллов всегда имеет переменную - положительную и отрицательную - степень окисления. Исключением является фтор. Его степень окисления всегда равна -1.

Следует помнить, что к щелочным и щелочноземельным металлам I и II групп соответственно, это правило не применимо. Эти металлы имеют постоянную положительную степень окисления - литий Li +1 , натрий Na +1 , калий K +1 , бериллий Be +2 , магний Mg +2 , кальций Ca +2 , стронций Sr +2 , барий Ba +2 . Остальные металлы могут проявлять разную степень окисления. Исключением является алюминий. Несмотря на нахождение в III группе, его степень окисления всегда +3.

Рис. 3. Щелочные и щелочноземельные металлы.

Из VIII группы высшую степень окисления +8 могут проявлять только рутений и осмий. Находящиеся в I группе золото и медь проявляют степень окисления +3 и +2 соответственно.

Запись

Чтобы правильно записывать степень окисления, следует помнить о нескольких правилах:

  • инертные газы не вступают в реакции, поэтому их степень окисления всегда равна нулю;
  • в соединениях переменная степень окисления зависит от переменной валентности и взаимодействия с другими элементами;
  • водород в соединениях с металлами проявляет отрицательную степень окисления - Ca +2 H 2 −1 , Na +1 H −1 ;
  • кислород всегда имеет степень окисления -2, кроме фторида кислорода и пероксида - O +2 F 2 −1 , H 2 +1 O 2 −1 .

Что мы узнали?

Степень окисления - условная величина, показывающая, сколько электронов принял или отдал атом элемента в соединении. Величина зависит от количества валентных электронов. Металлы в соединениях всегда имеют положительную степень окисления, т.е. являются восстановителями. Для щелочных и щелочноземельных металлов степень окисления всегда одинаковая. Неметаллы, кроме фтора, могут принимать положительную и отрицательную степень окисления.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Степень окисления – это условный заряд атома в молекуле, он получает атом в результате полного принятия электронов, его вычисляют из предположения, что все связи представляют собой ионный характер. Как определить степень окисления?

Определение степени окисления

Существуют заряженные частицы ионы, положительный заряд которых равняется количеству электронов, получаемых от одного атома. Отрицательный заряд иона равняется числу электронов, принимаемых одним атомом химического элемента. К примеру, запись такого элемента как Ca2+ значит, что атомы элементов потеряли одного, двух или же трех элементов. Чтобы найти состав ионных соединений и соединений молекул нам необходимо знать, как определить степень окисления элементов. Степени окислений бывают отрицательными, положительными и нулевыми. Если учитывать числа атомов, то алгебраическая степень окисления в молекуле равна нулю.

Чтобы определить степень окисления элемента нужно руководствоваться определёнными знаниями. Например, в соединениях металлов степень окисления положительная. А высшая степень окисления соответствует номеру группы периодической системы, где и находится элемент. У металлов степени окисления могут быть положительными и отрицательными. Это будет зависеть от того фактора, каким именно атомом соединен металл. Например, если соединен с атомом металла, то тогда степень будет отрицательной, если же соединен с неметаллом, то степень будет положительная.

Отрицательную же высшую степень окисления металла определить можно вычитанием из цифры восемь номер группы, где находится необходимый элемент. Как правило, она бывает равна числу электронов, находящихся на внешнем слое. Число этих электронов тоже соответствует номеру группы.

Как рассчитать степень окисления

В большинстве случаев степень окисления атома конкретного элемента не совпадает с числом связей, которые он образует, то есть она не равна валентности этого элемента. Наглядно это можно увидеть на примере органических соединений.

Напомню, валентность углерода в органических соединениях равняется 4 (т.е образует 4 связи), но степень окисления углерода, например, в метаноле CH 3 OH равна -2, в CO 2 +4, в CH4 -4, в муравьиной кислоте HCOOH +2. Валентность измеряется числом ковалентных химических связей, включая те, которые возникли по донорно-акцепторному механизму.

При определении степени окисления атомов в молекулах, электроотрицательный атом, при смещении в свою сторону одной электронной пары, приобретает заряд -1, если же две электронные пары то -2 будет заряд. На степень окисления не влияет связь между одинаковыми атомами. Например:

  • Связь атомов C-C равняется их нулевой степени окисления.
  • Связь C-H – здесь, углероду как наиболее электроотрицательному атому будет соответствовать заряд -1.
  • Связь C-O заряд углерода, как менее электроотрицательный, будет равняться +1.

Примеры определения степени окисления

  1. В такой молекуле как CH 3Cl три связи C-HC). Таким образом, степень окисления атома углерода в данном соединении будет равна:-3+1=-2.
  2. Найдем степень окисления атомов углерода в молекуле уксусного альдегида Cˉ³H3-C¹O-H. В данном соединении три связи C-H будут давать общий заряд на атоме C, который равен (Cº+3e→Cˉ³)-3. Двойная же связь C=O (здесь кислород будет забирать электроны у атома углерода, т.к кислород более электроотрицательный) дает заряд на атоме C, он равен +2 (Cº-2e→C²), связь же C-H заряд -1, значит общий заряд на атоме C равняется: (2-1=1)+1.
  3. Теперь найдем степень окисления в молекуле этанола: Cˉ³H-Cˉ¹H2-OH. Здесь три связи C-H дадут общий заряд на атоме C, он равен (Cº+3e→Cˉ³)-3. Две связи C-H дадут заряд на атоме C, который будет равен -2, связь же C→O даст заряд +1, значит общий заряд на атоме C: (-2+1=-1)-1.

Теперь Вы знаете, как определить степень окисления элемента. Если Вы имеете хотя бы базовые знания по химии, то для Вас данная задача будет не проблемой.

Формальный заряд атома в соединениях — вспомогательная величина, обычно ее используют в описаниях свойств элементов в химии. Этот условный электрический заряд и есть степень окисления. Его значение изменяется в результате многих химических процессов. Хотя заряд является формальным, он ярко характеризует свойства и поведение атомов в окислительно-восстановительных реакциях (ОВР).

Окисление и восстановление

В прошлом химики использовали термин «окисление», чтобы описать взаимодействие кислорода с другими элементами. Название реакций произошло от латинского наименования кислорода - Oxygenium. Позже выяснилось, что другие элементы тоже окисляют. В этом случае они восстанавливаются — присоединяют электроны. Каждый атом при образовании молекулы изменяет строение своей валентной электронной оболочки. В этом случае появляется формальный заряд, величина которого зависит от количества условно отданных или принятых электронов. Для характеристики этой величины ранее применяли английский химический термин "oxidation number", который в переводе означает «окислительное число». При его использовании исходят из допущения, что связывающие электроны в молекулах или ионах принадлежат атому, обладающему более высоким значением электроотрицательности (ЭО). Способность удерживать свои электроны и притягивать их от других атомов хорошо выражена у сильных неметаллов (галогенов, кислорода). Противоположными свойствами обладают сильные металлы (натрий, калий, литий, кальций, другие щелочные и щелочноземельные элементы).

Определение степени окисления

Степенью окисления называют заряд, который атом приобрел бы в том случае, если бы принимающие участие в образовании связи электроны полностью сместились к более электроотрицательному элементу. Есть вещества, не имеющие молекулярного строения (галогениды щелочных металлов и другие соединения). В этих случаях степень окисления совпадает с зарядом иона. Условный или реальный заряд показывает, какой процесс произошел до того, как атомы приобрели свое нынешнее состояние. Положительное значение степени окисления — это общее количество электронов, которые были удалены из атомов. Отрицательное значение степени окисления равно числу приобретенных электронов. По изменению состояния окисления химического элемента судят о том, что происходит с его атомами в ходе реакции (и наоборот). По цвету вещества определяют, какие произошли перемены в состоянии окисления. Соединения хрома, железа и ряда других элементов, в которых они проявляют разную валентность, окрашены неодинаково.

Отрицательное, нулевое и положительное значения степени окисления

Простые вещества образованы химическими элементами с одинаковым значением ЭО. В этом случае связывающие электроны принадлежат всем структурным частицам в равной степени. Следовательно, в простых веществах элементам несвойственно состояние окисления (Н 0 2 , О 0 2 , С 0). Когда атомы принимают электроны или общее облако смещается в их сторону, заряды принято писать со знаком "минус". Например, F -1 ,О -2 , С -4 . Отдавая электроны, атомы приобретают реальный или формальный положительный заряд. В оксиде OF 2 атом кислорода отдает по одному электрону двум атомам фтора и находится в состоянии окисления О +2 . Считают, что в молекуле или многоатомном ионе более электроотрицательные атомы получают все связывающие электроны.

Сера — элемент, проявляющий разные валентность и степени окисления

Химические элементы главных подгрупп зачастую проявляют низшую валентность равную VIII. Например, валентность серы в сероводороде и сульфидах металлов — II. Для элемента характерны промежуточные и высшая валентность в возбужденном состоянии, когда атом отдает один, два, четыре или все шесть электронов и проявляет соответственно валентности I, II, IV, VI. Такие же значения, только со знаком "минус" или "плюс", имеют степени окисления серы:

  • в сульфиде фтора отдает один электрон: -1;
  • в сероводороде низшее значение: -2;
  • в диоксиде промежуточное состояние: +4;
  • в триоксиде, серной кислоте и сульфатах: +6.

В своем высшем состоянии окисления сера только принимает электроны, в низшей степени — проявляет сильные восстановительные свойства. Атомы S +4 могут проявлять в соединениях функции восстановителей или окислителей в зависимости от условий.

Переход электронов в химических реакциях

При образовании кристалла поваренной соли натрий отдает электроны более электроотрицательному хлору. Степени окисления элементов совпадают с зарядами ионов: Na +1 Cl -1 . Для молекул, созданных путем обобществления и смещения электронных пар к более электроотрицательному атому, применимы только представления о формальном заряде. Но можно предположить, что все соединения состоят из ионов. Тогда атомы, притягивая электроны, приобретают условный отрицательный заряд, а отдавая, — положительный. В реакциях указывают, какое число электронов смещается. Например, в молекуле диоксида углерода С +4 О - 2 2 указанный в верхнем правом углу индекс при химическом символе углерода отображает количество электронов, удаленных из атома. Для кислорода в этом веществе характерно состояние окисления -2. Соответствующий индекс при химическом знаке О — количество добавленных электронов в атоме.

Как подсчитать степени окисления

Подсчет количества отданных и присоединенных атомами электронов может отнять много времени. Облегчают эту задачу следующие правила:

  1. В простых веществах степени окисления равны нулю.
  2. Сумма окисления всех атомов или ионов в нейтральном веществе равна нулю.
  3. В сложном ионе сумма степеней окисления всех элементов должна соответствовать заряду всей частицы.
  4. Более электроотрицательный атом приобретает отрицательное состояние окисления, которое записывают со знаком "минус".
  5. Менее электроотрицательные элементы получают положительные степени окисления, их записывают со знаком "плюс".
  6. Кислород в основном проявляет степень окисления, равную -2.
  7. Для водорода характерное значение: +1, в гидридах металлов встречается: Н-1.
  8. Фтор — наиболее электроотрицательный из всех элементов, его состояние окисления всегда равно -4.
  9. Для большинства металлов окислительные числа и валентности совпадают.

Степень окисления и валентность

Большинство соединений образуются в результате окислительно-восстановительных процессов. Переход или смещение электронов от одних элементов к другим приводит к изменению их состояния окисления и валентности. Зачастую эти величины совпадают. В качестве синонима к термину «степень окисления» можно использовать словосочетание «электрохимическая валентность». Но есть исключения, например, в ионе аммония азот четырехвалентен. Одновременно атом этого элемента находится в состоянии окисления -3. В органических веществах углерод всегда четырехвалентен, но состояния окисления атома С в метане СН 4 , муравьином спирте СН 3 ОН и кислоте НСООН имеют другие значения: -4, -2 и +2.

Окислительно-восстановительные реакции

К окислительно-восстановительным относятся многие важнейшие процессы в промышленности, технике, живой и неживой природе: горение, коррозия, брожение, внутриклеточное дыхание, фотосинтез и другие явления.

При составлении уравнений ОВР подбирают коэффициенты, используя метод электронного баланса, в котором оперируют следующими категориями:

  • степени окисления;
  • восстановитель отдает электроны и окисляется;
  • окислитель принимает электроны и восстанавливается;
  • число отданных электронов должно быть равно числу присоединенных.

Приобретение электронов атомом приводит к понижению его степени окисления (восстановлению). Утрата атомом одного или нескольких электронов сопровождается повышением окислительного числа элемента в результате реакций. Для ОВР, протекающих между ионами сильных электролитов в водных растворах, чаще используют не электронный баланс, а метод полуреакций.