23.09.2019

Гравитационная постоянная в физике. Физики уточнили значение гравитационной постоянной в четыре раза


Являясь одной из фундаментальных величин в физике, гравитационная постоянная впервые была упомянута в 18-м веке. Тогда же были предприняты первые попытки измерить ее значение, однако в силу несовершенства приборов и недостаточных знаний в данной области, сделать это удалось лишь в середине 19-го столетия. Позже полученный результат неоднократно корректировался (в последний раз это было сделано в 2013 году). Однако же следует отметить, что принципиального различия между первым (G = 6,67428(67)·10 −11 м³·с −2 ·кг −1 или Н·м²·кг −2) и последним (G = 6,67384(80)·10 −11 м³·с −2 ·кг −1 или Н·м²·кг −2) значениями не существует.

Применяя данный коэффициент для практических расчетов, следует понимать, что константа является таковой в глобальных вселенских понятиях (если не делать оговорок на физику элементарных частиц и прочие малоизученные науки). А это значит, что гравитационная постоянная Земли, Луны или Марса не будут отличаться друг от друга.

Эта величина является базовой константой в классической механике. Поэтому гравитационная постоянная участвует в самых различных расчетах. В частности, не обладая сведениями о более-менее точном значении данного параметра, ученые не смогли бы вычислять столь важный в космической отрасли коэффициент, как ускорение свободного падения (который для каждой планеты или прочего космического тела будет своим).

Однако же Ньютону, озвучившему в общем виде, гравитационная постоянная была известна лишь в теории. То есть он смог сформулировать один из важнейших физических постулатов, не обладая сведениями о величине, на которой он, по сути, основывается.

В отличие от прочих фундаментальных констант, о том, чему равна гравитационная постоянная, физика может сказать лишь с определенной долей точности. Ее значение периодически получают заново, причем каждый раз оно отличается от предыдущего. Большинство ученых полагает, что данный факт связан не с ее изменениями, а с более банальными причинами. Во-первых, это методы измерения (для вычисления этой константы проводят различные эксперименты), а во-вторых, точность приборов, которая постепенно возрастает, данные уточняются, и получается новый результат.

С учетом того, что гравитационная постоянная является величиной, измеряемой 10 в -11 степени (что для классической механики сверхмалое значение), в постоянном уточнении коэффициента нет ничего удивительного. Тем более что коррекции подвергается символ, начиная с 14 после запятой.

Однако же есть в современной волновой физике иная теория, которую выдвинули Фред Хойл и Дж. Нарликар еще в 70-е годы прошлого века. Согласно их предположениям, гравитационная постоянная уменьшается со временем, что влияет на многие иные показатели, считающиеся константами. Так, американским астрономом ван Фландерном был отмечен феномен незначительного ускорения Луны и прочих небесных тел. Руководствуясь данной теорией, следует предположить, что никаких глобальных погрешностей в ранних вычислениях не было, а разница в полученных результатах объясняется изменениями самого значения константы. Эта же теория говорит о непостоянстве некоторых других величин, таких как

Когда Ньютон открыл закон всемирного тяготения, он не знал ни одного числового значения масс небесных тел, в том числе и Земли. Неизвестно ему было и значение постоянной G.

Между тем гравитационная постоянная G имеет для всех тел Вселенной одно и то же значение и является одной из фундаментальных физических констант. Каким же образом можно найти ее значение?

Из закона всемирного тяготения следует, что G = Fr 2 /(m 1 m 2). Значит, для того чтобы найти G, нужно измерить силу притяжения F между телами известных масс m 1 и m 2 и расстояние r между ними.

Первые измерения гравитационной постоянной были осуществлены в середине XVIII в. Оценить, правда весьма грубо, значение G в то время удалось в результате рассмотрения притяжения маятника к горе, масса которой была определена геологическими методами.

Точные измерения гравитационной постоянной впервые были проведены в 1798 г. замечательным ученым Генри Кавендишем - богатым английским лордом, прослывшим чудаковатым и нелюдимым человеком. С помощью так называемых крутильных весов (рис. 101) Кавендиш по углу закручивания нити А сумел измерить ничтожно малую силу притяжения между маленькими и большими металлическими шарами. Для этого ему пришлось использовать столь чувствительную аппаратуру, что даже слабые воздушные потоки могли исказить измерения. Поэтому, чтобы исключить посторонние влияния, Кавендиш разместил свою аппаратуру в ящике, который оставил в комнате, а сам проводил наблюдения за аппаратурой с помощью телескопа из другого помещения.

Опыты показали, что

G ≈ 6,67 · 10 –11 Н · м 2 /кг 2 .

Физический смысл гравитационной постоянной заключается в том, что она численно равна силе, с которой притягиваются две частицы с массой по 1 кг каждая, находящиеся на расстоянии 1 м друг от друга. Эта сила, таким образом, оказывается чрезвычайно малой - всего лишь 6,67 · 10 –11 Н. Хорошо это или плохо? Расчеты показывают, что если бы гравитационная постоянная в нашей Вселенной имела значение, скажем, в 100 раз большее, чем приведенное выше, то это привело бы к тому, что время существования звезд, в том числе Солнца, резко уменьшилось бы и разумная жизнь на Земле появиться бы не успела. Другими словами, нас бы с вами сейчас не было!

Малое значение G приводит к тому, что гравитационное взаимодействие между обычными телами, не говоря уже об атомах и молекулах, является очень слабым. Два человека массой по 60 кг на расстоянии 1 м друг от друга притягиваются с силой, равной всего лишь 0,24 мкН.

Однако по мере увеличения масс тел роль гравитационного взаимодействия возрастает. Так, например, сила взаимного притяжения Земли и Луны достигает 10 20 Н, а притяжение Земли Солнцем еще в 150 раз сильнее. Поэтому движение планет и звезд уже полностью определяется гравитационными силами.

В ходе своих опытов Кавендиш также впервые доказал, что не только планеты, но и обычные, окружающие нас в повседневной жизни тела притягиваются по тому же закону тяготения, который был открыт Ньютоном в результате анализа астрономических данных. Этот закон действительно является законом всемирного тяготения.

«Закон тяготения универсален. Он простирается на огромные расстояния. И Ньютон, которого интересовала Солнечная система, вполне мог бы предсказать, что получится из опыта Кавендиша, ибо весы Кавендиша, два притягивающихся шара, - это маленькая модель Солнечной системы. Если увеличить ее в десять миллионов миллионов раз, то мы получим Солнечную систему. Увеличим еще в десять миллионов миллионов раз - и вот вам галактики, которые притягиваются друг к другу по тому же самому закону. Вышивая свой узор, Природа пользуется лишь самыми длинными нитями, и всякий, даже самый маленький, образчик его может открыть нам глаза на строение целого» (Р. Фейнман).

1. В чем заключается физический смысл гравитационной постоянной? 2. Кем впервые были проделаны точные измерения этой постоянной? 3. К чему приводит малость значения гравитационной постоянной? 4. Почему, сидя рядом с товарищем за партой, вы не ощущаете притяжение к нему?

История измерения

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения , однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века. Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809), по крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено. В 1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов , изобретённых Джоном Мичеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли. Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли. Точность измеренного значения G со времён Кавендиша увеличилась, но и его результат был уже достаточно близок к современному.

См. также

Примечания

Ссылки

  • Гравитационная постоянная - статья из Большой советской энциклопедии

Wikimedia Foundation . 2010 .

Смотреть что такое "Гравитационная постоянная" в других словарях:

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - (тяготения постоянная) (γ, G) универсальная физ. постоянная, входящая в формулу (см.) … Большая политехническая энциклопедия

    - (обозначается G) коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259.0,00085).10 11 Н.м²/кг² … Большой Энциклопедический словарь

    - (обозначение G), коэффициент закона ГРАВИТАЦИИ Ньютона. Равен 6,67259.10 11 Н.м2.кг 2 … Научно-технический энциклопедический словарь

    Фундаментальная физ. константа G, входящая в закон тяготения Ньютона F=GmM/r2, где m и М массы притягивающихся тел (матер. точек), r расстояние между ними, F сила притяжения, G= 6,6720(41)X10 11 Н м2 кг 2(на 1980). Наиболее точно значение Г. п.… … Физическая энциклопедия

    гравитационная постоянная - — Тематики нефтегазовая промышленность EN gravitational constant … Справочник технического переводчика

    гравитационная постоянная - gravitacijos konstanta statusas T sritis fizika atitikmenys: angl. gravitation constant; gravity constant vok. Gravitationskonstante, f rus. гравитационная постоянная, f; постоянная всемирного тяготения, f pranc. constante de la gravitation, f … Fizikos terminų žodynas

    - (обозначается G), коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259 + 0,00085)·10 11 Н·м2/кг2. * * * ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ (обозначается G), коэффициент… … Энциклопедический словарь

    Тяготения постоянная, универс. физ. постоянная G, входящая в ф лу, выражающую ньютоновский закон тяготения: G = (6,672 59 ± 0,000 85)*10 11Н*м2/кг2 … Большой энциклопедический политехнический словарь

    Коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r2 , где F сила притяжения, М и m массы притягивающихся тел, r расстояние между телами. Другие обозначения Г. п.: γ или f (реже k2). Числовое… … Большая советская энциклопедия

    - (обозначается G), коэф. пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259±0,00085) х 10 11 Н х м2/кг2 … Естествознание. Энциклопедический словарь

Книги

  • Вселенная и физика без "темной энергии" (открытия, идеи, гипотезы). В 2 томах. Том 1 , О. Г. Смирнов. Книги посвящены проблемам физики и астрономии, существующим в науке десятки и сотни лет от Г. Галилея, И. Ньютона, А. Эйнштейна до наших дней. Мельчайшие частицы материи и планеты, звезды и…

Гравитационная постоянная или иначе – постоянная Ньютона – одна из основных констант, используемых в астрофизике. Фундаментальная физическая постоянная определяет силу гравитационного взаимодействия. Как известно, силу, с которой каждое из двух тел, взаимодействующих посредством , притягивается можно высчитать из современной формы записи закона всемирного тяготения Ньютона:

  • m 1 и m 2 — тела, взаимодействующие посредством гравитации
  • F 1 и F 2 – векторы силы гравитационного притяжения, направленные к противоположному телу
  • r – расстояние между телами
  • G – гравитационная постоянная

Данный коэффициент пропорциональности равен модулю силы тяготения первого тела, которая действует на точечное второе тело единичной массы, при единичном расстоянии между этими телами.

G = 6,67408(31)·10 −11 м 3 ·с −2 ·кг −1 , или Н·м²·кг −2 .

Очевидно, что данная формула широко применима в области астрофизики и позволяет рассчитать гравитационное возмущение двух массивных космических тел, для определения дальнейшего их поведения.

Работы Ньютона

Примечательно, что в трудах Ньютона (1684-1686) гравитационная постоянная в явном виде отсутствовала, как и в записях других ученых аж до конца XVIII-го века.

Исаак Ньютон (1643 — 1727)

Ранее использовался так называемый гравитационный параметр, который равнялся произведению гравитационной постоянной на массу тела. Нахождение такого параметра в то время было более доступно, поэтому на сегодняшний день значение гравитационного параметра различных космических тел (в основном Солнечной системы) более точно известно, нежели порознь значение гравитационной постоянной и массы тела.

µ = GM

Здесь: µ — гравитационный параметр, G – гравитационная постоянная, а M — масса объекта.

Размерность гравитационного параметра — м 3 с −2 .

Следует отметить тот факт, что значение гравитационной постоянной несколько варьируется даже до сегодняшнего дня, а чистое значение масс космических тел в то время было определить довольно сложно, поэтому гравитационный параметр нашел более широкое применение.

Эксперимент Кавендиша

Эксперимент по определению точного значения гравитационной постоянной впервые предложил английский естествоиспытатель Джон Мичелл, который сконструировал крутильные весы. Однако, не успев провести эксперимент, в 1793-м году Джон Мичелл умер, а его установка перешла в руки Генри Кавендишу – британскому физику. Генри Кавендиш улучшил полученное устройство и провел опыты, результаты которых были опубликованы в 1798-м году в научном журнале под названием «Философские труды Королевского общества».

Генри Кавендиш (1731 — 1810)

Установка для проведения эксперимента состояла из нескольких элементов. Прежде всего она включала 1,8-метровое коромысло, к концам которого крепились свинцовые шарики с массой 775 г и диаметром 5 см. Коромысло было подвешено на медной 1-метровой нити. Несколько выше крепления нити, ровно над ее осью вращения устанавливалась еще одна поворотная штанга, к концам которой жестко крепились два шара массой 49,5 кг и диаметром 20 см. Центры всех четырех шаров должны были лежать в одной плоскости. В результате гравитационного взаимодействия притяжение малых шаров к большим должно быть заметно. При таком притяжении нить коромысла закручивается до некоторого момента, и ее сила упругости должна равняться силе тяготения шаров. Генри Кавендиш измерял силу тяготения посредством измерения угла отклонения плеча коромысла.

Более наглядное описание эксперимента доступно в видео ниже:

Для получения точного значения константы Кавендишу пришлось прибегнуть к ряду мер, снижающих влияние сторонних физических факторов на точность эксперимента. В действительности Генри Кавендиша проводил эксперимент не для того, чтобы выяснить значение гравитационной постоянной, а для расчета средней плотности Земли. Для этого он сравнивал колебания тела, вызванные гравитационным возмущением шара известной массы, и колебания, вызванные тяготением Земли. Он достаточно точно вычислил значение плотности Земли – 5,47 г/см 3 (сегодня более точные расчеты дают 5,52 г/см 3). Согласно различным источникам, значение гравитационной постоянной, высчитанное из гравитационного параметра с учетом плотности Земли, полученной Кавердишем, составило G=6,754·10 −11 м³/(кг·с²), G = 6,71·10 −11 м³/(кг·с²) или G = (6,6 ± 0,04)·10 −11 м³/(кг·с²). До сих пор неизвестно, кто впервые получил численное значение постоянной Ньютона из работ Генри Кавердиша.

Измерение гравитационной постоянной

Наиболее раннее упоминание гравитационной постоянной, как отдельной константы, определяющей гравитационное взаимодействие, найдено в «Трактате по механике», написанном в 1811-м году французским физиком и математиком — Симеоном Дени Пуассоном.

Измерение гравитационной постоянной проводится различными группами ученых и по сей день. При этом, несмотря на обилие доступных исследователям технологий, результаты экспериментов дают различные значения данной константы. Из этого можно было бы сделать вывод, что, возможно, гравитационная постоянная на самом деле непостоянная, а способна менять свое значение, с течением времени или от места к месту. Однако, если значения константы по результатам экспериментов разнятся, то неизменность этих значений в рамках этих экспериментов уже проверена с точностью до 10 -17 . Кроме того, согласно астрономическим данным постоянная G не изменилась в значительной степени за несколько последних сотен миллионов лет. Если постоянная Ньютона и способна меняться, то ее изменение не превысило б отклонение на число 10 -11 – 10 -12 в год.

Примечательно, что летом 2014-го года совместно группа итальянских и нидерландских физиков провели эксперимент по измерению гравитационной постоянной совсем иного вида. В эксперименте использовались атомные интерферометры, которые позволяют отследить влияние земной гравитации на атомы. Значение константы, полученное таким образом, имеет погрешность 0,015% и равняется G = 6.67191(99) × 10 −11 м 3 ·с −2 ·кг −1 .

ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - коэффициент пропорциональности G в ф-ле, описывающей всемирного тяготения закон .

Числовое значение и размерность Г. п. зависят от выбора системы единиц измерения массы, длины и времени. Г. п. G, имеющую размерность L 3 M -1 T -2 , где длина L , масса M и время T выражены в единицах СИ, принято называть кавендишевой Г. п. Она определяется в лабораторном эксперименте. Все эксперименты можно условно разделить на две группы.

В первой группе экспериментов сила гравитац. взаимодействия сравнивается с упругой силой нити горизонтальных крутильных весов. Они представляют собой лёгкое коромысло, на концах к-рого укреплены равные пробные массы. На тонкой упругой нити коромысло подвешено в гравитац. поле эталонных масс. Величина гравитац. взаимодействия пробных и эталонных масс (а следовательно, и величина Г. п.) определяется либо по углу закручивания нити (статич. метод), либо по изменению частоты крутильных весов при перемещении эталонных масс (динамич. метод). Впервые Г. п. с помощью крутильных весов определил в 1798 Г. Кавендиш (H. Cavendish).

Во второй группе экспериментов сила гравитац. взаимодействия сравнивается с , для чего используются рычажные весы. Этим способом Г. п. была впервые определена Ф. Йолли (Ph. Jolly) в 1878.

Значение кавендишевой Г. п., включённое Междунар. астр. союзом в Систему астр. постоянных (САП) 1976, к-рым пользуются до настоящего времени, получено в 1942 П. Хейлом (P. Heyl) и П. Хржановским (P. Chrzanowski) в Национальном бюро мер и стандартов США. В СССР Г. п. впервые была определена в Государственном астр. ин-те им. П. К. Штернберга (ГАИШ) при МГУ.

Во всех совр. определениях кавендишевой Г. п. (табл.) были использованы крутильные весы. Помимо названных выше, применялись и др. режимы работы крутильных весов. Если эталонные массы вращаются вокруг оси крутильной нити с частотой, равной частоте собственных колебаний весов, то по резонансному изменению амплитуды крутильных колебаний можно судить о величине Г. п. (резонансный метод). Модификацией динамич. метода является ротационный метод, в к-ром платформа вместе с установленными на ней крутильными весами и эталонными массами вращается с пост. угл. скоростью.

Величина гравитационной постоянной 10 -11 м 3 /кг*с 2

Хейл, Хржановский (США), 1942

динамический

Роуз, Паркер, Бимс и др. (США), 1969

ротационный

Реннер (ВНР), 1970

ротационный

Фаси, Понтикис, Лукас (Франция), 1972

резонанс-

6,6714b0,0006

Сагитов, Милюков, Монахов и др. (СССР), 1978

динамический

6,6745b0,0008

Лютер, Таулер(США), 1982

динамический

6,6726b0,0005

Приведённые в табл. среднеквадратич. ошибки указывают на внутр. сходимость каждого результата. Нек-рое расхождение значений Г. п., полученных в разных экспериментах, связано с тем, что определение Г. п. требует абсолютных измерений и поэтому возможны систематич. ошибки в отд. результатах. Очевидно, достоверное значение Г. п. может быть получено только при учёте разл. определений.

Как в теории тяготения Ньютона, так и в общей теории относительности (ОТО) Эйнштейна Г. п. рассматривается как универсальная константа природы, не меняющаяся в пространстве и времени и независящая от физ. и хим. свойств среды и гравитирующих масс. Существуют варианты теории гравитации, предсказывающие переменность Г. п. (напр., теория Дирака, скалярно-тензорные теории гравитации). Нек-рые модели расширенной супергравитации (квантового обобщения ОТО) также предсказывают зависимость Г. п. от расстояния между взаимодействующими массами. Однако имеющиеся в настоящее время наблюдательные данные, а также специально поставленные лабораторные эксперименты пока не позволяют обнаружить изменения Г. п.

Лит.: Сагитов M. У., Постоянная тяготения и , M., 1969; Сагитов M. У. и др., Новое определение кавендишевой гравитационной постоянной, "ДАН СССР", 1979, т. 245, с. 567; Милюков В. К., Изменяется ли гравитационная постоянная ?, "Природа", 1986, № 6, с. 96.