11.10.2019

Как вычислить среднее квадратичное отклонение. Расчет среднего квадратичного отклонения в Microsoft Excel


Занятие №4

Тема: «Описательная статистика. Показатели разнообразия признака в совокупности»

Основными критериями разнообразия признака в статистической совокупности являются: лимит, амплитуда, среднее квадратическое отклонение, коэффициент осцилляции и коэффициент вариации. На предыдущем занятии обсуждалось, что средние величины дают лишь обобщающую характеристику изучаемого признака в совокупности и не учитывают значения отдельных его вариант: минимальное и максимальное значения, выше среднего, ниже среднего и т.д.

Пример. Средние величины двух разных числовых последовательностей: -100; -20; 100; 20 и 0,1; -0,2; 0,1 абсолютно одинаковы и равны О. Однако, диапазоны разброса данных этих последовательностей относительного среднего значения сильно различны.

Определение перечисленных критериев разнообразия признака прежде всего осуществляется с учетом его значения у отдельных элементов статистической совокупности.

Показатели измерения вариации признака бывают абсолютные и относительные . К абсолютным показателям вариации относят: размах вариации, лимит, среднее квадратическое отклонение, дисперсию. Коэффициент вариации и коэффициент осцилляции относятся к относительным показателям вариации.

Лимит (lim)– это критерий, который определяется крайними значениями вариант в вариационном ряду. Другими словами, данный критерий ограничивается минимальной и максимальной величинами признака:

Амплитуда (Am) или размах вариации – это разность крайних вариант. Расчет данного критерия осуществляется путем вычитания из максимального значения признака его минимального значения, что позволяет оценить степень разброса вариант:

Недостатком лимита и амплитуды как критериев вариабельности является то, что они полностью зависят от крайних значений признака в вариационном ряду. При этом не учитываются колебания значений признака внутри ряда.

Наиболее полную характеристику разнообразия признака в статистической совокупности дает среднее квадратическое отклонение (сигма), которое является общей мерой отклонения вариант от своей средней величины. Среднее квадратическое отклонение часто называют также стандартным отклонением .

В основе среднего квадратического отклонения лежит сопоставление каждой варианты со средней арифметической данной совокупности. Так как в совокупности всегда будут варианты как меньше, так и больше, чем она, то сумма отклонений , имеющих знак "", будет погашаться суммой отклонений, имеющих знак "", т.е. сумма всех отклонений равна нулю. Для того, чтобы избежать влияния знаков разностей берут отклонения вариант от среднего арифметического в квадрате, т.е. . Сумма квадратов отклонений не равняется нулю. Чтобы получить коэффициент, способный измерить изменчивость, берут среднее от суммы квадратов – это величина носит название дисперсии:

По смыслу, дисперсия – это средний квадрат отклонений индивидуальных значений признака от его средней величины. Дисперсия квадрат среднего квадратического отклонения .

Дисперсия является размерной величиной (именованной). Так, если варианты числового ряда выражены в метрах, то дисперсия дает квадратные метры; если варианты выражены в килограммах, то дисперсия дает квадрат этой меры (кг 2), и т.д.

Среднее квадратическое отклонение – квадратный корень из дисперсии:

, то при расчете дисперсии и среднего квадратического отклонения в знаменателе дроби вместо необходимо ставить .

Расчет среднего квадратического отклонения можно разбить на шесть этапов, которые необходимо осуществить в определенной последовательности:

Применение среднеквадратического отклонения:

а) для суждения о колеблемости вариационных рядов и сравнительной оценки типичности (представительности) средних арифметических величин. Это необходимо в дифференциальной диагностике при определении устойчивости признаков.

б) для реконструкции вариационного ряда, т.е. восстановления его частотной характеристики на основе правила «трех сигм» . В интервале (М±3σ) находится 99,7% всех вариант ряда, в интервале (М±2σ) - 95,5% и в интервале (М±1σ) - 68,3% вариант ряда (рис.1).

в) для выявления «выскакивающих» вариант

г) для определения параметров нормы и патологии с помощью сигмальных оценок

д) для расчета коэффициента вариации

е) для расчета средней ошибки средней арифметической величины.

Для характеристики любой генеральной совокупности, имеющей нормальный тип распределения , достаточно знать два параметра: среднюю арифметическую и среднее квадратическое отклонение.

Рисунок 1. Правило «трех сигм»

Пример.

В педиатрии среднеквадратическое отклонение используется для оценки физического развития детей путем сравнения данных конкретного ребенка с соответствующими стандартными показателями. За стандарт принимаются средние арифметические показатели физического развития здоровых детей. Сравнение показателей со стандартами проводят по специальным таблицам, в которых стандарты приводятся вместе с соответствующими им сигмальными шкалами. Считается, что если показатель физического развития ребенка находится в пределах стандарт (среднее арифметическое) ±σ, то физическое развитие ребенка (по этому показателю) соответствует норме. Если показатель находится в пределах стандарт ±2σ, то имеется незначительное отклонение от нормы. Если показатель выходит за эти границы, то физическое развитие ребенка резко отличается от нормы (возможна патология).

Кроме показателей вариации, выраженных в абсолютных величинах, в статистическом исследовании используются показатели вариации, выраженные в относительных величинах. Коэффициент осцилляции - это отношение размаха вариации к средней величине признака. Коэффициент вариации - это отношение среднего квадратического отклонения к средней величине признака. Как правило, эти величины выражаются в процентах.

Формулы расчета относительных показателей вариации:

Из приведенных формул видно, что чем больше коэффициент V приближен к нулю, тем меньше вариация значений признака. Чем больше V , тем более изменчив признак.

В статистической практике наиболее часто применяется коэффициент вариации. Он используется не только для сравнительной оценки вариации, но и для характеристики однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33% (для распределений, близких к нормальному). Арифметически отношение σ и средней арифметической нивелирует влияние абсолютной величины этих характеристик, а процентное соотношение делает коэффициент вариации величиной безразмерной (неименованной).

Полученное значение коэффициента вариации оценивается в соответствии с ориентировочными градациями степени разнообразия признака:

Слабое - до 10 %

Среднее - 10 - 20 %

Сильное - более 20 %

Использование коэффициента вариации целесообразно в случаях, когда приходится сравнивать признаки разные по своей величине и размерности.

Отличие коэффициента вариации от других критериев разброса наглядно демонстрирует пример .

Таблица 1

Состав работников промышленного предприятия

На основании приведенных в примере статистических характеристик можно сделать вывод об относительной однородности возрастного состава и образовательного уровня работников предприятия при низкой профессиональной устойчивости обследованного контингента. Нетрудно заметить, что попытка судить об этих социальных тенденциях по среднему квадратическому отклонению привела бы к ошибочному заключению, а попытка сравнения учетных признаков «стаж работы» и «возраст» с учетным признаком «образование» вообще была бы некорректной из-за разнородности этих признаков.

Медиана и перцентили

Для порядковых (ранговых) распределений, где критерием середины ряда является медиана, среднеквадратическое отклонение и дисперсия не могут служить характеристиками рассеяния вариант.

То же свойственно и для открытых вариационных рядов. Указанное обстоятельство связано с тем, что отклонения, по которым вычисляются дисперсия и σ, отсчитываются от среднего арифметического, которое не вычисляется в открытых вариационных рядах и в рядах распределений качественных признаков. Поэтому для сжатого описания распределений используется другой параметр разброса – квантиль (синоним - «nерцентиль»), пригодный для описания качественных и количественных признаков при любой форме их распределения. Этот параметр может использоваться и для перевода количественных признаков в качественные. В этом случае такие оценки присваиваются в зависимости от того, какому по порядку квантилю соответствует та или иная конкретная варианта.

В практике медико-биологических исследований наиболее часто используются следующие квантили:

– медиана;

, – квартили (четверти), где – нижний квартиль, верхний квартиль.

Квантили делят область возможных изменений вариант в вариационном ряду на определенные интервалы. Медиана (квантиль) – это варианта, которая находится в середине вариационного ряда и делит этот ряд пополам, на две равные части (0,5 и 0,5 ). Квартиль делит ряд на четыре части: первая часть (нижний квартиль) – это варианта, отделяющая варианты, числовые значения которых не превышают 25% максимально возможного в данном ряду, квартиль отделяет варианты с числовым значением до 50% от максимально возможного. Верхний квартиль () отделяет варианты величиной до 75% от максимально возможных значений.

В случае асимметричности распределения переменной относительно среднего арифметического для его характеристики используются медиана и квартили. В этом случае используется следующая форма отображения средней величины – Ме (;). Например , исследуемый признак – «срок, в котором ребенок начал самостоятельно ходить» - в исследуемой группе имеет ассиметричное распределение. При этом, нижнему квартилю () соответствует срок начала ходьбы – 9,5 месяцев, медиане – 11 месяцев, верхнему квартилю () – 12 месяцев. Соответственно, характеристика средней тенденции указанного признака будет представлена, как 11 (9,5; 12) месяцев.

Оценка статистической значимости результатов исследования

Под статистической значимостью данных понимают степень их соответствия отображаемой действительности, т.е. статистически значимыми данными считаются те, которые не искажают и правильно отражают объективную реальность.

Оценить статистическую значимость результатов исследования – означает определить, с какой вероятностью возможно перенести результаты, полученные на выборочной совокупности, на всю генеральную совокупность. Оценка статистической значимости необходима для понимания того, насколько по части явления можно судить о явлении в целом и его закономерностях.

Оценка статистической значимости результатов исследования складывается из:

1. ошибок репрезентативности (ошибок средних и относительных величин) - m ;

2. доверительных границ средних или относительных величин;

3. достоверности разности средних или относительных величин по критерию t .

Стандартная ошибка средней арифметической или ошибка репрезентативности характеризует колебания средней. При этом необходимо отметить, что чем больше объем выборки, тем меньше разброс средних величин. Стандартная ошибка среднего вычисляется по формуле:

В современной научной литературе средняя арифметическая записывается вместе с ошибкой репрезентативности:

или вместе со среднеквадратическим отклонением:

В качестве примера рассмотрим данные по 1500 городских поликлиник страны (генеральная совокупность). Среднее число пациентов, обслуживающихся в поликлинике равно 18150 человек. Случайный отбор 10 % объектов (150 поликлиник) дает среднее число пациентов, равное 20051 человек. Ошибка выборки, очевидно связанная с тем, что не все 1500 поликлиник попали в выборку, равна разности между этими средними – генеральным средним (M ген) и выборочным средним (М выб). Если сформировать другую выборку того же объема из нашей генеральной совокупности, она даст другую величину ошибки. Все эти выборочные средние при достаточно больших выборках распределены нормально вокруг генеральной средней при достаточно большом числе повторений выборки одного и того же числа объектов из генеральной совокупности. Стандартная ошибка среднего m - это неизбежный разброс выборочных средних вокруг генеральной средней.

В случае, когда результаты исследования представлены относительными величинами (например, процентными долями) – рассчитывается стандартная ошибка доли:

где P – показатель в %, n – количество наблюдений.

Результат отображается в виде (P ± m)%. Например, процент выздоровления среди больных составил (95,2±2,5)%.

В том случае, если число элементов совокупности , то при расчете стандартных ошибок среднего и доли в знаменателе дроби вместо необходимо ставить .

Для нормального распределения (распределение выборочных средних является нормальным) известно, какая часть совокупности попадает в любой интервал вокруг среднего значения. В частности:

На практике проблема заключается в том, что характеристики генеральной совокупности нам неизвестны, а выборка делается именно с целью их оценки. Это означает, что если мы будем делать выборки одного и того же объема n из генеральной совокупности, то в 68,3% случаев на интервале будет находиться значение M (оно же в 95,5% случаев будет находиться на интервале и в 99,7% случаев – на интервале).

Поскольку реально делается только одна выборка, то формулируется это утверждение в терминах вероятности: с вероятностью 68,3% среднее значение признака в генеральной совокупности заключено в интервале, с вероятностью 95,5% - в интервале и т.д.

На практике вокруг выборочного значения строится такой интервал, который бы с заданной (достаточно высокой) вероятностью – доверительной вероятностью – «накрывал» бы истинное значение этого параметра в генеральной совокупности. Этот интервал называется доверительным интервалом .

Доверительная вероятность P это степень уверенности в том, что доверительный интервал действительно будет содержать истинное (неизвестное) значение параметра в генеральной совокупности.

Например, если доверительная вероятность Р равна 90%, то это означает, что 90 выборок из 100 дадут правильную оценку параметра в генеральной совокупности. Соответственно, вероятность ошибки, т.е. неверной оценки генерального среднего по выборке, равна в процентах: . Для данного примера это значит, что 10 выборок из 100 дадут неверную оценку.

Очевидно, что степень уверенности (доверительная вероятность) зависит от величины интервала: чем шире интервал, тем выше уверенность, что в него попадет неизвестное значение для генеральной совокупности . На практике для построения доверительного интервала берется, как минимум, удвоенная ошибка выборки, чтобы обеспечить уверенность не менее 95,5%.

Определение доверительных границ средних и относительных величин позволяет найти два их крайних значения – минимально возможное и максимально возможное, в пределах которых изучаемый показатель может встречаться во всей генеральной совокупности. Исходя из этого, доверительные границы (или доверительный интервал) - это границы средних или относительных величин, выход за пределы которых вследствие случайных колебаний имеет незначительную вероятность.

Доверительный интервал может быть переписан в виде: , где t – доверительный критерий.

Доверительные границы средней арифметической величины в генеральной совокупности определяют по формуле:

М ген = М выб + t m M

для относительной величины:

Р ген = Р выб + t m Р

где М ген и Р ген - значения средней и относительной величины для генеральной совокупности; М выб и Р выб - значения средней и относительной величины, полученные на выборочной совокупности; m M и m P - ошибки средней и относительной величин; t - доверительный критерий (критерий точности, который устанавливается при планировании исследования и может быть равен 2 или 3); t m - это доверительный интервал или Δ – предельная ошибка показателя, полученного при выборочном исследовании.

Следует отметить, что величина критерия t в определенной мере связана с вероятностью безошибочного прогноза (р), выраженной в %. Ее избирает сам исследователь, руководствуясь необходимостью получить результат с нужной степенью точности. Так, для вероятности безошибочного прогноза 95,5% величина критерия t составляет 2, для 99,7% - 3.

Приведенные оценки доверительного интервала приемлемы лишь для статистических совокупностей с количеством наблюдений более 30. При меньшем объеме совокупности (малых выборках) для определения критерия t пользуются специальными таблицами. В данных таблицах искомое значение находится на пересечении строки, соответствующей численности совокупности (n-1) , и столбца, соответствующего уровню вероятности безошибочного прогноза (95,5%; 99,7%), выбранному исследователем. В медицинских исследованиях при установлении доверительных границ любого показателя принята вероятность безошибочного прогноза 95,5% и более. Это означает, что величина показателя, полученная на выборочной совокупности должна встречаться в генеральной совокупности как минимум в 95,5% случаев.

    Вопросы по теме занятия:

    Актуальность показателей разнообразия признака в статистической совокупности.

    Общая характеристика абсолютных показателей вариации.

    Среднее квадратическое отклонение, расчет, применение.

    Относительные показатели вариации.

    Медиана, квартильная оценка.

    Оценка статистической значимости результатов исследования.

    Стандартная ошибка средней арифметической, формула расчета, пример использования.

    Расчет доли и ее стандартной ошибки.

    Понятие доверительной вероятности, пример использования.

10. Понятие доверительного интервала, его применение.

    Тестовые задания по теме с эталонами ответов:

1. К АБСОЛЮТНЫМ ПОКАЗАТЕЛЯМ ВАРИАЦИИ ОТНОСИТСЯ

1) коэффициент вариации

2) коэффициент осцилляции

4) медиана

2. К ОТНОСИТЕЛЬНЫМ ПОКАЗАТЕЛЯМ ВАРИАЦИИ ОТНОСИТСЯ

1) дисперсия

4) коэффициент вариации

3. КРИТЕРИЙ, КОТОРЫЙ ОПРЕДЕЛЯЕТСЯ КРАЙНИМИ ЗНАЧЕНИЯМИ ВАРИАНТ В ВАРИАЦИОННОМ РЯДУ

2) амплитуда

3) дисперсия

4) коэффициент вариации

4. РАЗНОСТЬ КРАЙНИХ ВАРИАНТ – ЭТО

2) амплитуда

3) среднее квадратичное отклонение

4) коэффициент вариации

5. СРЕДНИЙ КВАДРАТ ОТКЛОНЕНИЙ ИНДИВИДУАЛЬНЫХ ЗНАЧЕ­НИЙ ПРИЗНАКА ОТ ЕГО СРЕДНЕЙ ВЕЛИЧИНЫ – ЭТО

1) коэффициент осцилляции

2) медиана

3) дисперсия

6. ОТНОШЕНИЕ РАЗМАХА ВАРИАЦИИ К СРЕДНЕЙ ВЕЛИЧИНЕ ПРИЗ­НАКА – ЭТО

1) коэффициент вариации

2) среднее квадратичное отклонение

4) коэффициент осцилляции

7. ОТНОШЕНИЕ СРЕДНЕГО КВАДРАТИЧНОГО ОТКЛОНЕНИЯ К СРЕД­НЕЙ ВЕЛИЧИНЕ ПРИЗНАКА – ЭТО

1) дисперсия

2) коэффициент вариации

3) коэффициент осцилляции

4) амплитуда

8. ВАРИАНТА, КОТОРАЯ НАХОДИТСЯ В СЕРЕДИНЕ ВАРИАЦИОН­НОГО РЯДА И ДЕЛИТ ЕГО НА ДВЕ РАВНЫЕ ЧАСТИ – ЭТО

1) медиана

3) амплитуда

9. В МЕДИЦИНСКИХ ИССЛЕДОВАНИЯХ ПРИ УСТАНОВЛЕНИИ ДОВЕ­РИТЕЛЬНЫХ ГРАНИЦ ЛЮБОГО ПОКАЗАТЕЛЯ ПРИНЯТА ВЕРОЯТ­НОСТЬ БЕЗОШИБОЧНОГО ПРОГНОЗА

10. ЕСЛИ 90 ВЫБОРОК ИЗ 100 ДАЮТ ПРАВИЛЬНУЮ ОЦЕНКУ ПАРА­МЕТРА В ГЕНЕРАЛЬНОЙ СОВОКУПНОСТИ, ТО ЭТО ОЗНАЧАЕТ, ЧТО ДОВЕРИТЕЛЬНАЯ ВЕРОЯТНОСТЬ P РАВНА

11. В СЛУЧАЕ, ЕСЛИ 10 ВЫБОРОК ИЗ 100 ДАЮТ НЕВЕРНУЮ ОЦЕНКУ, ВЕРОЯТНОСТЬ ОШИБКИ РАВНА

12. ГРАНИЦЫ СРЕДНИХ ИЛИ ОТНОСИТЕЛЬНЫХ ВЕЛИЧИН, ВЫХОД ЗА ПРЕДЕЛЫ КОТОРЫХ ВСЛЕДСТВИЕ СЛУЧАЙНЫХ КОЛЕБАНИЙ ИМЕЕТ НЕЗНАЧИТЕЛЬНУЮ ВЕРОЯТНОСТЬ – ЭТО

1) доверительный интервал

2) амплитуда

4) коэффициент вариации

13. МАЛОЙ ВЫБОРКОЙ СЧИТАЕТСЯ ТА СОВОКУПНОСТЬ, В КОТОРОЙ

1) n меньше или равно 100

2) n меньше или равно 30

3) n меньше или равно 40

4) n близко к 0

14. ДЛЯ ВЕРОЯТНОСТИ БЕЗОШИБОЧНОГО ПРОГНОЗА 95% ВЕЛИ­ЧИНА КРИТЕРИЯ t СОСТАВЛЯЕТ

15. ДЛЯ ВЕРОЯТНОСТИ БЕЗОШИБОЧНОГО ПРОГНОЗА 99% ВЕЛИ­ЧИНА КРИТЕРИЯ t СОСТАВЛЯЕТ

16. ДЛЯ РАСПРЕДЕЛЕНИЙ, БЛИЗКИХ К НОРМАЛЬНОМУ, СОВОКУП­НОСТЬ СЧИТАЕТСЯ ОДНОРОДНОЙ, ЕСЛИ КОЭФФИЦИЕНТ ВАРИА­ЦИИ НЕ ПРЕВЫШАЕТ

17. ВАРИАНТА, ОТДЕЛЯЮЩАЯ ВАРИАНТЫ, ЧИСЛОВЫЕ ЗНАЧЕНИЯ КОТОРЫХ НЕ ПРЕВЫШАЮТ 25% МАКСИМАЛЬНО ВОЗМОЖНОГО В ДАННОМ РЯДУ – ЭТО

2) нижний квартиль

3) верхний квартиль

4) квартиль

18. ДАННЫЕ, КОТОРЫЕ НЕ ИСКАЖАЮТ И ПРАВИЛЬНО ОТРАЖАЮТ ОБЪЕКТИВНУЮ РЕАЛЬНОСТЬ, НАЗЫВАЮТСЯ

1) невозможные

2) равновозможные

3) достоверные

4) случайные

19. СОГЛАСНО ПРАВИЛУ "ТРЕХ СИГМ", ПРИ НОРМАЛЬНОМ РАСПРЕ­ДЕЛЕНИИ ПРИЗНАКА В ПРЕДЕЛАХ
БУДЕТ НАХОДИТЬСЯ

1) 68,3% вариант

Стоит отметить, что у такого расчета дисперсии есть недостаток – она получается смещенной, т.е. ее математическое ожидание не равно истинному значению дисперсии. Подробней об этом . В то же время не все так плохо. При увеличении объема выборки она все-таки приближается к своему теоретическому аналогу, т.е. является асимптотически не смещенной. Поэтому при работе с большими размерами выборок можно использовать формулу выше.

Язык знаков полезно перевести на язык слов. Получится, что дисперсия — это средний квадрат отклонений. То есть вначале рассчитывается среднее значение, затем берется разница между каждым исходным и средним значением, возводится в квадрат, складывается и затем делится на количество значений в данной совокупности. Разница между отдельным значением и средней отражает меру отклонения. В квадрат возводится для того, чтобы все отклонения стали исключительно положительными числами и чтобы избежать взаимоуничтожения положительных и отрицательных отклонений при их суммировании. Затем, имея квадраты отклонений, мы просто рассчитываем среднюю арифметическую. Средний – квадрат – отклонений. Отклонения возводятся в квадрат, и считается средняя. Разгадка заключается всего в трех словах.

Однако в чистом виде, как, например, средняя арифметическая, или индекс, дисперсия не используется. Это скорее вспомогательный и промежуточный показатель, который необходим для других видов статистического анализа. У нее даже единицы измерения нормальной нет. Судя по формуле, это квадрат единицы измерения исходных данных. Без бутылки, как говорится, не разберешься.

{module 111}

Дабы вернуть дисперсию в реальность, то есть использовать в более приземленных целей, из нее извлекают квадратный корень. Получается так называемое среднеквадратичное отклонение (СКО) . Встречаются названия «стандартное отклонение» или «сигма» (от названия греческой буквы). Формула стандартного отклонения имеет вид:

Для получения этого показателя по выборке используют формулу:

Как и с дисперсией, есть и немного другой вариант расчета . Но с ростом выборки разница исчезает.

Среднеквадратичное отклонение, очевидно, также характеризует меру рассеяния данных, но теперь (в отличие от дисперсии) его можно сравнивать с исходными данными, так как единицы измерения у них одинаковые (это явствует из формулы расчета). Но и этот показатель в чистом виде не очень информативен, так как в нем заложено слишком много промежуточных расчетов, которые сбивают с толку (отклонение, в квадрат, сумма, среднее, корень). Тем не менее, со среднеквадратичным отклонением уже можно работать непосредственно, потому что свойства данного показателя хорошо изучены и известны. К примеру, есть такое правило трех сигм , которое гласит, что у данных 997 значений из 1000 находятся в пределах ±3 сигмы от средней арифметической. Среднеквадратичное отклонение, как мера неопределенности, также участвует во многих статистических расчетах. С ее помощью устанавливают степень точности различных оценок и прогнозов. Если вариация очень большая, то стандартное отклонение тоже получится большим, следовательно, и прогноз будет неточным, что выразится, к примеру, в очень широких доверительных интервалах.

Коэффициент вариации

Среднее квадратическое отклонение дает абсолютную оценку меры разброса. Поэтому чтобы понять, насколько разброс велик относительно самих значений (т.е. независимо от их масштаба), требуется относительный показатель. Такой показатель называется коэффициентом вариации и рассчитывается по следующей формуле:

Коэффициент вариации измеряется в процентах (если умножить на 100%). По этому показателю можно сравнивать самых разных явлений независимо от их масштаба и единиц измерения. Данный факт и делает коэффициент вариации столь популярным.

В статистике принято, что, если значение коэффициента вариации менее 33%, то совокупность считается однородной, если больше 33%, то – неоднородной. Мне здесь трудно что-то прокомментировать. Не знаю, кто и почему так определил, но это считается аксиомой.

Чувствую, что я увлекся сухой теорией и нужно привести что-то наглядное и образное. С другой стороны все показатели вариации описывают примерно одно и то же, только рассчитываются по-разному. Поэтому разнообразием примеров блеснуть трудно, Отличаться могут лишь значения показателей, но не их суть. Вот и сравним, как отличаются значения различных показателей вариации для одной и той же совокупности данных. Возьмем пример с расчетом среднего линейного отклонения (из ). Вот исходные данные:

И график для напоминания.

По этим данным рассчитаем различные показатели вариации.

Среднее значение – это обычная средняя арифметическая.

Размах вариации – разница между максимумом и минимумом:

Среднее линейное отклонение считается по формуле:

Стандартное отклонение:

Расчет сведем в табличку.

Как видно, среднее линейное и среднеквадратичное отклонение дают похожие значения степени вариации данных. Дисперсия – это сигма в квадрате, поэтому она всегда будет относительно большим числом, что, собственно, ни о чем не говорит. Размах вариации – это разница между крайними значениями и может говорить о многом.

Подведем некоторые итоги.

Вариация показателя отражает изменчивость процесса или явления. Ее степень может измеряться с помощью нескольких показателей.

1. Размах вариации – разница между максимумом и минимумом. Отражает диапазон возможных значений.
2. Среднее линейное отклонение – отражает среднее из абсолютных (по модулю) отклонений всех значений анализируемой совокупности от их средней величины.
3. Дисперсия – средний квадрат отклонений.
4. Среднеквадратичное отклонение – корень из дисперсии (среднего квадрата отклонений).
5. Коэффициент вариации – наиболее универсальный показатель, отражающий степень разброса значений независимо от их масштаба и единиц измерения. Коэффициент вариации измеряется в процентах и может быть использован для сравнения вариации различных процессов и явлений.

Таким образом, в статистическом анализе существует система показателей, отражающих однородность явлений и устойчивость процессов. Часто показатели вариации не имеют самостоятельного смысла и используются для дальнейшего анализа данных (расчет доверительных интервалов

В данной статье я расскажу о том, как найти среднеквадратическое отклонение . Этот материал крайне важен для полноценного понимания математики, поэтому репетитор по математике должен посвятить его изучению отдельный урок или даже несколько. В этой статье вы найдёте ссылку на подробный и понятный видеоурок, в котором рассказано о том, что такое среднеквадратическое отклонение и как его найти.

Среднеквадратическое отклонение дает возможность оценить разброс значений, полученных в результате измерения какого-то параметра. Обозначается символом (греческая буква «сигма»).

Формула для расчета довольно проста. Чтобы найти среднеквадратическое отклонение, нужно взять квадратный корень из дисперсии. Так что теперь вы должны спросить: “А что же такое дисперсия?”

Что такое дисперсия

Определение дисперсии звучит так. Дисперсия — это среднее арифметическое от квадратов отклонений значений от среднего.

Чтобы найти дисперсию последовательно проведите следующие вычисления:

  • Определите среднее (простое среднее арифметическое ряда значений).
  • Затем от каждого из значений отнимите среднее и возведите полученную разность в квадрат (получили квадрат разности ).
  • Следующим шагом будет вычисление среднего арифметического полученных квадратов разностей (Почему именно квадратов вы сможете узнать ниже).

Рассмотрим на примере. Допустим, вы с друзьями решили измерить рост ваших собак (в миллиметрах). В результате измерений вы получили следующие данные измерений роста (в холке): 600 мм, 470 мм, 170 мм, 430 мм и 300 мм.

Вычислим среднее значение, дисперсию и среднеквадратическое отклонение.

Сперва найдём среднее значение . Как вы уже знаете, для этого нужно сложить все измеренные значения и поделить на количество измерений. Ход вычислений:

Среднее мм.

Итак, среднее (среднеарифметическое) составляет 394 мм.

Теперь нужно определить отклонение роста каждой из собак от среднего :

Наконец, чтобы вычислить дисперсию , каждую из полученных разностей возводим в квадрат, а затем находим среднее арифметическое от полученных результатов:

Дисперсия мм 2 .

Таким образом, дисперсия составляет 21704 мм 2 .

Как найти среднеквадратическое отклонение

Так как же теперь вычислить среднеквадратическое отклонение, зная дисперсию? Как мы помним, взять из нее квадратный корень. То есть среднеквадратическое отклонение равно:

Мм (округлено до ближайшего целого значения в мм).

Применив данный метод, мы выяснили, что некоторые собаки (например, ротвейлеры) – очень большие собаки. Но есть и очень маленькие собаки (например, таксы, только говорить им этого не стоит).

Самое интересное, что среднеквадратическое отклонение несет в себе полезную информацию. Теперь мы можем показать, какие из полученных результатов измерения роста находятся в пределах интервала, который мы получим, если отложим от среднего (в обе стороны от него) среднеквадратическое отклонение.

То есть с помощью среднеквадратического отклонения мы получаем “стандартный” метод, который позволяет узнать, какое из значений является нормальным (среднестатистическим), а какое экстраординарно большим или, наоборот, малым.

Что такое стандартное отклонение

Но… все будет немного иначе, если мы будем анализировать выборку данных. В нашем примере мы рассматривали генеральную совокупность. То есть наши 5 собак были единственными в мире собаками, которые нас интересовали.

Но если данные являются выборкой (значениями, которые выбрали из большой генеральной совокупности), тогда вычисления нужно вести иначе.

Если есть значений, то:

Все остальные расчеты производятся аналогично, в том числе и определение среднего.

Например, если наших пять собак – только выборка из генеральной совокупности собак (всех собак на планете), мы должны делить на 4, а не на 5, а именно:

Дисперсия выборки = мм 2 .

При этом стандартное отклонение по выборке равно мм (округлено до ближайшего целого значения).

Можно сказать, что мы произвели некоторую “коррекцию” в случае, когда наши значения являются всего лишь небольшой выборкой.

Примечание. Почему именно квадраты разностей?

Но почему при вычислении дисперсии мы берём именно квадраты разностей? Допустим при измерении какого-то параметра, вы получили следующий набор значений: 4; 4; -4; -4. Если мы просто сложим абсолютные отклонения от среднего (разности) между собой … отрицательные значения взаимно уничтожатся с положительными:

.

Получается, этот вариант бесполезен. Тогда, может, стоит попробовать абсолютные значения отклонений (то есть модули этих значений)?

На первый взгляд получается неплохо (полученная величина, кстати, называется средним абсолютным отклонением), но не во всех случаях. Попробуем другой пример. Пусть в результате измерения получился следующий набор значений: 7; 1; -6; -2. Тогда среднее абсолютное отклонение равно:

Вот это да! Снова получили результат 4, хотя разности имеют гораздо больший разброс.

А теперь посмотрим, что получится, если возвести разности в квадрат (и взять потом квадратный корень из их суммы).

Для первого примера получится:

.

Для второго примера получится:

Теперь – совсем другое дело! Среднеквадратическое отклонение получается тем большим, чем больший разброс имеют разности … к чему мы и стремились.

Фактически в данном методе использована та же идея, что и при вычислении расстояния между точками, только примененная иным способом.

И с математической точки зрения использование квадратов и квадратных корней дает больше пользы, чем мы могли бы получить на основании абсолютных значений отклонений, благодаря чему среднеквадратическое отклонение применимо и для других математических задач.

О том, как найти среднеквадратическое отклонение, вам рассказал , Сергей Валерьевич

Среднеквадрати́ческое отклоне́ние (синонимы: среднее квадрати́ческое отклоне́ние , среднеквадрати́чное отклоне́ние , квадрати́чное отклоне́ние ; близкие термины: станда́ртное отклоне́ние , станда́ртный разбро́с ) - в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания . При ограниченных массивах выборок значений вместо математического ожидания используется среднее арифметическое совокупности выборок.

Энциклопедичный YouTube

  • 1 / 5

    Среднеквадратическое отклонение измеряется в единицах измерения самой случайной величины и используется при расчёте стандартной ошибки среднего арифметического , при построении доверительных интервалов , при статистической проверке гипотез , при измерении линейной взаимосвязи между случайными величинами. Определяется как квадратный корень из дисперсии случайной величины .

    Среднеквадратическое отклонение:

    s = n n − 1 σ 2 = 1 n − 1 ∑ i = 1 n (x i − x ¯) 2 ; {\displaystyle s={\sqrt {{\frac {n}{n-1}}\sigma ^{2}}}={\sqrt {{\frac {1}{n-1}}\sum _{i=1}^{n}\left(x_{i}-{\bar {x}}\right)^{2}}};}
    • Примечание: Очень часто встречаются разночтения в названиях СКО (Среднеквадратического отклонения) и СТО (Стандартного отклонения) с их формулами. Например, в модуле numPy языка программирования Python функция std() описывается как "standart deviation", в то время как формула отражает СКО (деление на корень из выборки). В Excel же функция СТАНДОТКЛОН() другая (деление на корень из n-1).

    Стандартное отклонение (оценка среднеквадратического отклонения случайной величины x относительно её математического ожидания на основе несмещённой оценки её дисперсии) s {\displaystyle s} :

    σ = 1 n ∑ i = 1 n (x i − x ¯) 2 . {\displaystyle \sigma ={\sqrt {{\frac {1}{n}}\sum _{i=1}^{n}\left(x_{i}-{\bar {x}}\right)^{2}}}.}

    где σ 2 {\displaystyle \sigma ^{2}} - дисперсия ; x i {\displaystyle x_{i}} - i -й элемент выборки; n {\displaystyle n} - объём выборки; - среднее арифметическое выборки:

    x ¯ = 1 n ∑ i = 1 n x i = 1 n (x 1 + … + x n) . {\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}={\frac {1}{n}}(x_{1}+\ldots +x_{n}).}

    Следует отметить, что обе оценки являются смещёнными. В общем случае несмещённую оценку построить невозможно. Однако оценка на основе оценки несмещённой дисперсии является состоятельной .

    В соответствии с ГОСТ Р 8.736-2011 среднеквадратическое отклонение считается по второй формуле данного раздела. Пожалуйста, сверьте результаты.

    Правило трёх сигм

    Правило трёх сигм ( 3 σ {\displaystyle 3\sigma } ) - практически все значения нормально распределённой случайной величины лежат в интервале (x ¯ − 3 σ ; x ¯ + 3 σ) {\displaystyle \left({\bar {x}}-3\sigma ;{\bar {x}}+3\sigma \right)} . Более строго - приблизительно с вероятностью 0,9973 значение нормально распределённой случайной величины лежит в указанном интервале (при условии, что величина x ¯ {\displaystyle {\bar {x}}} истинная, а не полученная в результате обработки выборки).

    Если же истинная величина x ¯ {\displaystyle {\bar {x}}} неизвестна, то следует пользоваться не σ {\displaystyle \sigma } , а s . Таким образом, правило трёх сигм преобразуется в правило трёх s .

    Интерпретация величины среднеквадратического отклонения

    Большее значение среднеквадратического отклонения показывает больший разброс значений в представленном множестве со средней величиной множества; меньшее значение, соответственно, показывает, что значения в множестве сгруппированы вокруг среднего значения.

    Например, у нас есть три числовых множества: {0, 0, 14, 14}, {0, 6, 8, 14} и {6, 6, 8, 8}. У всех трёх множеств средние значения равны 7, а среднеквадратические отклонения, соответственно, равны 7, 5 и 1. У последнего множества среднеквадратическое отклонение маленькое, так как значения в множестве сгруппированы вокруг среднего значения; у первого множества самое большое значение среднеквадратического отклонения - значения внутри множества сильно расходятся со средним значением.

    В общем смысле среднеквадратическое отклонение можно считать мерой неопределённости. К примеру, в физике среднеквадратическое отклонение используется для определения погрешности серии последовательных измерений какой-либо величины. Это значение очень важно для определения правдоподобности изучаемого явления в сравнении с предсказанным теорией значением: если среднее значение измерений сильно отличается от предсказанных теорией значений (большое значение среднеквадратического отклонения), то полученные значения или метод их получения следует перепроверить. отождествляется с риском портфеля.

    Климат

    Предположим, существуют два города с одинаковой средней максимальной дневной температурой, но один расположен на побережье, а другой на равнине. Известно, что в городах, расположенных на побережье, множество различных максимальных дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднеквадратическое отклонение максимальных дневных температур у прибрежного города будет меньше, чем у второго города, несмотря на то, что среднее значение этой величины у них одинаковое, что на практике означает, что вероятность того, что максимальная температура воздуха каждого конкретного дня в году будет сильнее отличаться от среднего значения, выше у города, расположенного внутри континента.

    Спорт

    Предположим, что есть несколько футбольных команд, которые оцениваются по некоторому набору параметров, например, количеству забитых и пропущенных голов, голевых моментов и т. п. Наиболее вероятно, что лучшая в этой группе команда будет иметь лучшие значения по большему количеству параметров. Чем меньше у команды среднеквадратическое отклонение по каждому из представленных параметров, тем предсказуемее является результат команды, такие команды являются сбалансированными. С другой стороны, у команды с большим значением среднеквадратического отклонения сложно предсказать результат, что в свою очередь объясняется дисбалансом, например, сильной защитой, но слабым нападением.

    Использование среднеквадратического отклонения параметров команды позволяет в той или иной мере предсказать результат матча двух команд, оценивая сильные и слабые стороны команд, а значит, и выбираемых способов борьбы.

    Стандартное отклонение является одним из тех статистических терминов в корпоративном мире, которое позволяет поднять авторитет людей, сумевших удачно ввернуть его в ходе беседы или презентации, и оставляет смутное недопонимание тех, кто не знает, что это такое, но стесняется спросить. На самом деле большинство менеджеров не понимают концепцию стандартного отклонения и, если вы один из них, вам пора перестать жить во лжи. В сегодняшней статье я расскажу вам, как эта недооцененная статистическая мера позволит лучше понять данные, с которыми вы работаете.

    Что измеряет стандартное отклонение?

    Представьте, что вы владелец двух магазинов. И чтобы избежать потерь, важно, чтобы был четкий контроль остатков на складе. В попытке выяснить, кто из менеджеров лучше управляет запасами, вы решили проанализировать стоки последних шести недель. Средняя недельная стоимость стока обоих магазинов примерно одинакова и составляет около 32 условных единиц. На первый взгляд среднее значение стока показывает, что оба менеджера работают одинаково.

    Но если внимательнее изучить деятельность второго магазина, можно убедится, что хотя среднее значение корректно, вариабельность стока очень высокая (от 10 до 58 у.е.). Таким образом, можно сделать вывод, что среднее значение не всегда правильно оценивает данные. Вот где на выручку приходит стандартное отклонение.

    Стандартное отклонение показывает, как распределены значения относительно среднего в нашей . Другими словами, можно понять на сколько велик разброс величины стока от недели к неделе.

    В нашем примере, мы воспользовались функцией Excel СТАНДОТКЛОН, чтобы рассчитать показатель стандартного отклонения вместе со средним.

    В случае с первым менеджером, стандартное отклонение составило 2. Это говорит нам о том, что каждое значение в выборке в среднем откланяется на 2 от среднего значения. Хорошо ли это? Давайте рассмотрим вопрос под другим углом – стандартное отклонение равное 0, говорит нам о том, что каждое значение в выборке равно его среднему значению (в нашем случае, 32,2). Так, стандартное отклонение 2 ненамного отличается от 0, и указывает на то, что большинство значений находятся рядом со средним значением. Чем ближе стандартное отклонение к 0, тем надежнее среднее. Более того, стандартное отклонение близкое к 0, говорит о маленькой вариабельности данных. То есть, величина стока со стандартным отклонением 2, указывает на невероятную последовательность первого менеджера.

    В случае со вторым магазином, стандартное отклонение составило 18,9. То есть стоимость стока в среднем отклоняется на величину 18,9 от среднего значения от недели к неделе. Сумасшедший разброс! Чем дальше стандартное отклонение от 0, тем менее точно среднее значение. В нашем случае, цифра 18,9 указывает на то, что среднему значению (32,8 у.е. в неделю) просто нельзя доверять. Оно также говорит нам о том, что еженедельная величина стока обладает большой вариабельностью.

    Такова концепция стандартного отклонения в двух словах. Хотя оно не дает представление о других важных статистических измерениях (Мода, Медиана…), фактически стандартное отклонение играет решающую роль в большинстве статистических расчетов. Понимание принципов стандартного отклонения прольет свет на суть многих процессов вашей деятельности.

    Как рассчитать стандартное отклонение?

    Итак, теперь мы знаем, о чем говорит цифра стандартного отклонения. Давайте разберемся, как она считается.

    Рассмотрим набор данных от 10 до 70 с шагом 10. Как видите, я уже рассчитал для них значение стандартного отклонения с помощью функции СТАНДОТКЛОН в ячейке H2 (оранжевым).

    Ниже описаны шаги, которые предпринимает Excel, чтобы прийти к цифре 21,6.

    Обратите внимание, что все расчеты визуализированы, для лучшего понимания. На самом деле в Excel расчет происходит мгновенно, оставляя все шаги за кулисами.

    Для начала Excel находит среднее значение выборки. В нашем случае, среднее получилось равным 40, которое на следующем шаге отнимают от каждого значения выборки. Каждую полученную разницу возводят в квадрат и суммируют. У нас получилась сумма равная 2800, которую необходимо разделить на количество элементов выборки минус 1. Так как у нас 7 элементов, получается необходимо 2800 разделить на 6. Из полученного результата находим квадратный корень, это цифра будет стандартным отклонением.

    Для тех, кому не совсем ясен принцип расчета стандартного отклонения с помощью визуализации, привожу математическую интерпретацию нахождения данного значения.

    Функции расчета стандартного отклонения в Excel

    В Excel присутствует несколько разновидностей формул стандартного отклонения. Вам достаточно набрать =СТАНДОТКЛОН и вы сами в этом убедитесь.

    Стоит отметить, что функции СТАНДОТКЛОН.В и СТАНДОТКЛОН.Г (первая и вторая функция в списке) дублируют функции СТАНДОТКЛОН и СТАНДОТКЛОНП (пятая и шестая функция в списке), соответственно, которые были оставлены для совместимости с более ранними версиями Excel.

    Вообще разница в окончаниях.В и.Г функций указывают на принцип расчета стандартного отклонения выборки или генеральной совокупности. Разницу между двумя этими массивами я уже объяснял в предыдущей .

    Особенностью функций СТАНДОТКЛОНА и СТАНДОТКЛОНПА (третья и четвертая функция в списке), является то, что при расчете стандартного отклонения массива в расчет принимаются логические и текстовые значения. Текстовые и истинные логические значения равняются 1, а ложные логические значения равняются 0. Мне трудно представить ситуацию, когда бы мне могли понадобится эти две функции, поэтому, думаю, что их можно игнорировать.