25.03.2024

Методы наблюдения и регистрации элементарных частиц. Способы наблюдения и регистрации заряженных частиц Какими способами можно регистрировать нейтральные частицы


МЕТОДЫ НАБЛЮДЕНИЯ И РЕГИСТРАЦИИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ


Счетчик Гейгера

Служит для подсчета количества радиоактивных частиц ( в основном электронов ).

Это стеклянная трубка, заполненная газом (аргоном), с двумя электродами внутри (катод и анод).
При пролете частицы возникает ударная ионизация газа и возникает импульс электрического тока.

Достоинства:
- компактность
- эффективность
- быстродействие
- высокая точность (10ООО частиц/с).

Где используется:
- регистрация радиоактивных загрязнений на местности, в помещениях, одежды, продуктов и т.д.
- на объектах хранения радиоактивных материалов или с работающими ядерными реакторами
- при поиске залежей радиоактивной руды (U, Th)


Камера Вильсона

Служит для наблюдения и фотографирования следов от пролета частиц (треков).

Внутренний объем камеры заполнен парами спирта или воды в перенасыщенном состоянии:
при опускании поршня уменьшается давление внутри камеры и понижается температура, в результате адиабатного процесса образуется перенасыщенный пар .
По следу пролета частицы конденсируются капельки влаги и образуется трек – видимый след.
При помещении камеры в магнитное поле по треку можно определить энергию, скорость, массу и заряд частицы.

По длине и толщине трека, по его искривлению в магнитном поле определяют характеристики пролетевшей радиоактивной частицы.
Например, альфа-частица дает сплошной толстый трек,
протон - тонкий трек,
электрон - пунктирный трек.


Пузырьковая камера

Вариант камеры Вильсона

При резком понижении поршня жидкость, находящаяся под высоким давление, переходит в перегретое состояние . При быстром движении частицы по следу образуются пузырьки пара, т.е. жидкость закипает, виден трек .

Преимущества перед камерой Вильсона:
- большая плотность среды, следовательно короткие треки
- частицы застревают в камере и можно проводить дальнейшее наблюдение частиц
- большее быстродействие.

Метод толстослойных фотоэмульсий

Служит для регистрации частиц
- позволяет регистрировать редкие явления из-за большого время экспозиции.

Фотоэмульсия содержит большое количество микрокристаллов бромида серебра.
Влетающие частицы ионизируют поверхность фотоэмульсий. Кристаллики AgВr распадаются под действием заряженных частиц и при проявлении выявляется след от пролета частицы - трек.
По длине и толщине трека можно определить энергию и массу частиц.

Вспомни тему "Атомная физика" за 9 класс:

Радиоактивность.
Радиоактивные превращения.
Состав атомного ядра. Ядерные силы.
Энергия связи. Дефект масс.
Деление ядер урана.
Ядерная цепная реакция.
Ядерный реактор.
Термоядерная реакция.

Другие страницы по теме "Атомная физика" за 10-11 класс:

ЧТО МЫ ЗНАЕМ О ФИЗИКАХ?

Нильс Бор в 1961 году говорил: "На каждом этапе А.Эйнштейн бросал вызов науке , и не будь этих вызовов, развитие квантовой физики затянулось бы надолго".
___

В 1943 году Нильс Бор , спасаясь от оккупантов, вынужден был покинуть Копенгаген. Не рискуя взять с собой одну очень ценную для него вещь, он растворил ее в "царской водке" и колбу оставил в лаборатории. После освобождения Дании, вернувшись, он выделил из раствора то, что растворил, и по его заказу создали новую Нобелевскую медаль .
__

В 1933 году в лаборатории, которую возглавлял Эрнест Резерфорд , был сооружен мощный по тем временам ускоритель . Ученый очень гордился этой установкой и как-то раз, показывая ее одному из посетителей, заметил: «Эта штука обошлась нам очень дорого. На эти деньги можно целый год содержать одного аспиранта! Но разве какой-нибудь аспирант может сделать за год столько открытий


  • 12 класс.
Цель урока:
  • Объяснить учащимся устройство и принцип действия установок для регистрации и изучения элементарных частиц.
«Ничего не надо бояться – Надо лишь понять неизвестное». Мария Кюри. Актуализация опорных знаний:
  • Что такое «атом» ?
  • Каковы его размеры?
  • Какую модель атома предложил Томсон?
  • Какую модель атома предложил Резерфорд?
  • Почему модель Резерфорда назвали «Планетарной моделью строения атома»?
  • Каково строение атомного ядра?
Тема урока:
  • Методы наблюдения и регистрации элементарных частиц.
  • Атом – «неделимый» (Демокрит).
  • Молекула
  • вещество
  • микромир
  • макромир
  • мегамир
  • Классическая физика
  • Квантовая физика
Как изучать и наблюдать микромир?
  • Проблема!
  • Проблема!
Проблема:
  • Мы начинаем с вами изучать физику атомного ядра, рассмотрим их различные превращения и ядерных (радиоактивных) излучений. Эта область знаний имеет большое научное и практическое значение.
  • Многообразные применения в науке, медицине, технике, сельском хозяйстве получили радиоактивные разновидности атомных ядер.
  • Сегодня мы рассмотрим устройства и методы регистрации, которые позволяют обнаружить микрочастицы, изучить их столкновения и превращения, т е. дают всю информацию о микромире, а на основе этого и о мерах защиты от облучения.
  • Они дают нам информацию о поведении и характеристиках частиц: знак и величину электрического заряда, массу этих частиц, её скорость, энергию и т.д. С помощью регистрирующих приборов учёные смогли получить знания о «микромире».
Регистрирующий прибор – это сложная макроскопическая система, которая может находиться в неустойчивом состоянии. При небольшом возмущении, вызванном пролетевшей частицей, начинается процесс перехода системы в новое, более устойчивое состояние. Этот процесс и позволяет регистрировать частицу.
  • Регистрирующий прибор – это сложная макроскопическая система, которая может находиться в неустойчивом состоянии. При небольшом возмущении, вызванном пролетевшей частицей, начинается процесс перехода системы в новое, более устойчивое состояние. Этот процесс и позволяет регистрировать частицу.
  • В настоящее время используется много разнообразных методов регистрации частиц.
  • Счётчик Гейгера
  • Камера Вильсона
  • Пузырьковая камера
  • Фотографические
  • эмульсии
  • Сцинтилляционный
  • метод
  • Методы наблюдения и регистрации элементарных частиц
  • Искровая камера
  • В зависимости от целей эксперимента и условий, в которых он проводиться, применяются те или иные регистрирующие устройства, отличающиеся друг от друга по основным характеристикам.
В ходе изучения материала вы заполните таблицу.
  • Название метода
  • Принцип действия
  • Достоинства,
  • Недостатки
  • Назначение данного прибора
  • Используйте Ф – 12 класс, § 33, А.Е.Марон, Г.Я. Мякишев, Э Г Дубицкая
Счётчик Гейгера:
  • служит для подсчета количества радиоактивных частиц (в основном электронов).
  • Это стеклянная трубка, заполненная газом (аргоном), с двумя электродами внутри (катод и анод). При пролете частицы возникает ударная ионизация газа и возникает импульс электрического тока.
  • Устройство:
  • Назначение:
  • Достоинства: -1. компактность -2. эффективность -3. быстродействие -4. высокая точность (10ООО частиц/с).
  • Катод.
  • Стеклянная трубка
  • Где используется: - регистрация радиоактивных загрязнений на местности, в помещениях, одежды, продуктов и т.д. - на объектах хранения радиоактивных материалов или с работающими ядерными реакторами - при поиске залежей радиоактивной руды (U - уран, Th - торий).
  • Счётчик Гейгера.
1882г. нем физик Вильгельм Гейгер.
  • 1882г. нем физик Вильгельм Гейгер.
  • Различные виды счётчиков Гейгера.
Камера Вильсона:
  • служит для наблюдения и фотографирования следов от пролета частиц (треков).
  • Назначение:
  • Внутренний объем камеры заполнен парами спирта или воды в перенасыщенном состоянии: при опускании поршня уменьшается давление внутри камеры и понижается температура, в результате адиабатного процесса образуется перенасыщенный пар. По следу пролета частицы конденсируются капельки влаги и образуется трек – видимый след.
  • Стеклянная пластина
Изобрёл прибор в 1912 году английский физик Вильсон для наблюдения и фотографирования следов заряженных частиц. Ему в 1927 году присуждена Нобелевская премия.
  • Изобрёл прибор в 1912 году английский физик Вильсон для наблюдения и фотографирования следов заряженных частиц. Ему в 1927 году присуждена Нобелевская премия.
  • Советские физики П.Л.Капица и Д.В.Скобельцин предложили помещать камеру Вильсона в однородное магнитное поле.
Назначение:
  • При помещении камеры в магнитное поле по треку можно определить: энергию, скорость, массу и заряд частицы. По длине и толщине трека, по его искривлению в магнитном поле определяют характеристики пролетевшей радиоактивной частицы . Например, 1. альфа-частица дает сплошной толстый трек, 2. протон - тонкий трек, 3. электрон - пунктирный трек.
  • Различные виды камер Вильсона и фотографии треков частиц.
Пузырьковая камера:
  • Вариант камеры Вильсона.
  • При резком понижении поршня жидкость, находящаяся под высоким давлением, переходит в перегретое состояние. При быстром движении частицы по следу образуются пузырьки пара, т. е. жидкость закипает, виден трек.
  • Преимущества перед камерой Вильсона: - 1. большая плотность среды, следовательно короткие треки - 2. частицы застревают в камере и можно проводить дальнейшее наблюдение частиц -3. большее быстродействие.
  • 1952 год. Д.Глейзер.
  • Различные виды пузырьковой камеры и фотографии треков частиц.
Метод толстослойных фотоэмульсий:
  • 20-е г.г. Л.В.Мысовский, А.П.Жданов.
  • - служит для регистрации частиц - позволяет регистрировать редкие явления из-за большого время экспозиции . Фотоэмульсия содержит большое количество микрокристаллов бромида серебра. Влетающие частицы ионизируют поверхность фотоэмульсий. Кристаллики AgВr (бромида серебра) распадаются под действием заряженных частиц и при проявлении выявляется след от пролета частицы - трек. По длине и толщине трека можно определить энергию и массу частиц.
метод имеет такие преимущества:
  • метод имеет такие преимущества:
  • 1. Им можно регистрировать траектории всех частиц, пролетевших сквозь фотопластинку за время наблюдения.
  • 2. Фотопластинка всегда готова для применения, (эмульсия не требует процедур, которые приводили бы ее в рабочее состояние).
  • 3. Эмульсия обладает большой тормозящей способностью, обусловленной большой плотностью.
  • 4. Он дает неисчезающий след частицы, которую потом можно, тщательно изучать.
Недостатки метода: 1. длительность и 2. сложность химической обработки фотопластинок и 3. главное - много времени требуется для рассмотрения каждой пластинки в сильном микроскопе.
  • Недостатки метода: 1. длительность и 2. сложность химической обработки фотопластинок и 3. главное - много времени требуется для рассмотрения каждой пластинки в сильном микроскопе.
Сцинтилляционный метод
  • В этом методе (Резерфорда) для регистрации используются кристаллы. Прибор состоит из сцинтиллятора, фотоэлектронного умножителя и электронной системы.
«Методы регистрации заряженных частиц». (видеоролик). Методы регистрации частиц:
  • Метод сцинтилляций
  • Метод ударной ионизации
  • Конденсация пара на ионах
  • Метод толстослойных фотоэмульсий
  • Частицы, попадающие на экран, покрытый специальным слоем, вызывают вспышки, которые можно наблюдать с помощью микроскопа.
  • Газоразрядный счётчик Гейгера
  • Камера Вильсона и пузырьковая камера
  • Ионизирует поверхность фотоэмульсий
  • Повторим:
Рефлексия:
  • 1. Какую тему урока мы сегодня изучали?
  • 2 Какую цели мы поставили перед изучением темы?
  • 3. Мы с вами достигли поставленной цели?
  • 4. В чём смысл девиза, который мы взяли к уроку нашему?
  • 5. Вам тема урока понятна, для чего мы с ней знакомились?
Итог урока:
  • 1. Проверяем вместе вашу работу по таблице, оцениваем вместе, ставим оценку, учитывая вашу работу на уроке.
Используемая литература:
  • 1. интернет – ресурсы.
  • 2. Ф -12 кл,А.Е.Мякишев, Г.Я.Мякишев, Э.Г.Дубицкая.

Источники элементарных частиц

Для изучения элементарных частиц требуются их источники. До создания ускорителей в качестве таких источников использовались природные радиоактивные элементы и космические лучи. В космических лучах присутствуют элементарные частицы самых разных энергий вплоть до таких, которые нельзя получить сегодня искусственным путем. Недостаток космических лучей как источника частиц с высокими энергиями в том, что таких частиц очень немного. Появление частицы с высокой энергией в поле зрения прибора носит случайный характер.

Ускорители элементарных частиц дают потоки элементарных частиц, обладающих одинаково высокой энергией. Ускорители существуют различных типов: бетатрон, циклотрон, линейный ускоритель.

Расположенная недалеко от Женевы Европейская организация по ядерным исследованиям (ЦЕРН *) является обладателем самого большого на сегодняшний день ускорителя элементарных частиц, построенного в кольцевом туннеле под землей на глубине 100 м. Общая длина туннеля составляет 27 км. (кольцо примерно 8.6 км в диаметре). Супер коллайдер должен был быть запущен в соответствии с программой в 2007 г. Около 4000 т металла будет охлаждено до температуры всего на 2° выше абсолютного нуля. В результате ток в 1,8 миллиона ампер будет проходить по сверхпроводящим кабелям почти без потерь.

Ускорители элементарных частиц являются настолько грандиозными сооружениями, что их называют пирамидами XX века.

* Аббревиатура CERN произошла от фр. Conseil Européen pour la Recherche Nucléaire (Европейский Совет по Ядерным Исследованиям). В русском языке обычно используется аббревиатура ЦЕРН.

Методы регистрации элементарных частиц

1. Сцинтилляционные счетчики

Первоначально для регистрации элементарных частиц использовались люминесцентные экраны – экраны, покрытые специальным веществом, люминофором, способным преобразовывать поглощаемую ими энергию в световое излучение (люминесцировать). Элементарная частица при попадании в такой экран дает слабую вспышку, настолько слабую, что наблюдать ее можно только в полной темноте. Необходимо было иметь изрядные терпение и внимание, чтобы, сидя в полной темноте, часами подсчитывать количество замеченных вспышек.

В современном сцинтилляционном счетчике подсчет вспышек производится автоматически. Счетчик состоит из сцинтиллятора, фотоумножителя и электронных устройств для усиления и подсчета импульсов.

Сцинтиллятор преобразует энергию частицы в кванты видимого света.

Кванты света попадают в фотоумножитель, который преобразует их в импульсы тока.

Импульсы усиливаются электрической схемой и автоматически сосчитываются.

2. Химические методы

Химические методы основаны на том, что ядерные излучения являются катализаторами некоторых химических реакций, то есть ускоряют или создают возможность их протекания.

3. Калориметрические методы

В калориметрических методах регистрируют количество теплоты, которая выделяется при поглощении излучения веществом. Один грамм радия, например, выделяет в час примерно 585 дж. тепла.

4. Методы, основанные на применении эффекта Черенкова

Ничто в природе не может двигаться быстрее света. Но когда мы так говорим, мы имеем в виду движение света в вакууме. В веществе свет распространяется со скоростью , где с – скорость света в вакууме, а n – показатель преломления вещества. Следовательно, в веществе свет движется медленнее, чем в вакууме. Элементарная частица, двигаясь в веществе, может превысить скорость света в этом веществе, не превосходя при этом скорость света в вакууме. В этом случае возникает излучение, которое открыл в свое время Черенков. Излучение Черенкова регистрируется фотоумножителями так же, как и в сцинтилляционном методе. Метод позволяет регистрировать только быстрые, то есть обладающие высокими энергиями, элементарные частицы.

Следующие методы не только позволяют зарегистрировать элементарную частицу, но и увидеть ее след.

5. Камера Вильсона

Изобретена Чарльзом Вильсоном в 1912 г., а в 1927 г. он получил за нее Нобелевскую премию. Камера Вильсона – это очень сложное инженерное сооружение. Мы приводим только упрощенную схему.

Рабочий объем камеры Вильсона заполнен газом и содержит в себе пар воды или спирта. При быстром перемещении поршня вниз газ резко охлаждается и пар становится перенасыщенным. Когда в этом пространстве пролетает частица, создающая на своем пути ионы, то на этих ионах образуются капелькисконденсировавшегося пара. В камере возникает след траектории частицы (трек) в виде узкой полоски капелек тумана. При сильном боковом освещении трек можно видеть и сфотографировать.

6. Пузырьковая камера (изобретена Глезером в 1952 г.)

Пузырьковая камера действует аналогично камере Вильсона. Только в качестве рабочего тела используется не переохлажденный пар, а перегретая жидкость (пропан, жидкий водород, азот, эфир, ксенон, фреон...). Перегретая жидкость, так же как и переохлажденный пар, находится в неустойчивом состоянии. Пролетающая через такую жидкость частица образует ионы, на которых сразу же образуются пузырьки. Жидкостная пузырьковая камера эффективнее газовой камеры Вильсона. Физикам ведь важно не только наблюдать трек пролетевшей частицы. Важно, чтобы в пределах области наблюдения частица столкнулась с другой частицей. Картина взаимодействия частиц гораздо более информативна. Пролетая через более плотную жидкость, в которой высокая концентрация протонов и электронов, частица имеет гораздо больше шансов испытать столкновение.

7. Эмульсионная камера

Впервые использовалась советскими физиками Мысовским и Ждановым. Фотографическая эмульсия изготавливается на основе желатины. Продвигаясь в плотной желатине, элементарная частица подвергается частым столкновениям. За счет этого путь частицы в эмульсии часто очень короткий и его после проявления фотоэмульсии изучают под микроскопом.

8. Искровая камера (изобретатель Краншау)

В камере А расположена система сетчатых электродов. На эти электроды подается высокое напряжение с блока питания Б . Когда через камеру пролетает элементарная частица В , она создает ионизированный след. По этому следу проскакивает искра, которая и делает видимым трек частицы.

9. Стриммерная камера

Стриммерная камера аналогична искровой, только расстояние между электродами больше (до полуметра). Напряжение на электроды подается на очень короткое время с таким расчетом, чтобы настоящая искра не успела бы развиться. Возникнуть успевают только зачатки искры – стриммеры.

10. Счетчик Гейгера

Счётчик Гейгера представляет собой, как правило, цилиндрический катод, вдоль оси, которого натянута проволока – анод. Система заполнена газовой смесью.

При прохождении через счётчик заряженная частица ионизирует газ. Образующиеся электроны, двигаясь к положительному электроду - нити, попадая в область сильного электрического поля, ускоряются и в свою очередь ионизуют молекулы газа, что приводит к коронному разряду. Амплитуда сигнала достигает нескольких вольт и легко регистрируется.

Счётчик Гейгера регистрирует факт прохождения частицы через счётчик, но не позволяет измерить энергию частицы.




Счетчик состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой металлической нити, идущей вдоль оси трубки (анод). Трубка заполняется газом, обычно аргоном. Заряженная частица (электрон, а-частица и т.д.), пролетая в газе, отрывает от атомов электроны и создает положительные ионы и свободные электроны. Электрическое поле между анодом и катодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Принцип действия Возникает лавина ионов, и ток через счетчик резко возрастает. При этом на нагрузочном резисторе R образуется импульс напряжения, который подается в регистрирующее устройство.


Особенности Для того чтобы счетчик мог регистрировать следующую попавшую в него частицу, лавинный разряд необходимо погасить. Это происходит автоматически. Счетчик регистрирует почти все попадающие в него электроны; что же касается γ-квантов, то он регистрирует приблизительно только один γ - квант из ста. Регистрация тяжелых частиц (например, α-частиц) затруднена, так как сложно сделать в счетчике достаточно тонкое «окошко», прозрачное для этих частиц.


Камера Вильсона В камере же Вильсона, созданной в 1912 г., быстрая заряженная частица оставляет след, который можно наблюдать непосредственно или сфотографировать. Этот прибор можно назвать «окном» в микромир, т. е. мир элементарных частиц и состоящих из них систем.


Принцип действия Камера Вильсона представляет собой герметически закрытый сосуд, заполненный парами воды или спирта, близкими к насыщению. При резком опускании поршня, вызванном уменьшением давления под поршнем, пар в камере расширяется. Вследствие этого происходит охлаждение, и пар становится пересыщенным. Это неустойчивое состояние пара: пар легко конденсируется. Центрами конденсации становятся ионы, которые образует в рабочем пространстве камеры пролетевшая частица. Если частица проникает в камеру непосредственно перед расширением или сразу после него, то на ее пути возникают капельки воды. Эти капельки образуют видимый след пролетевшей частицы трек. Затем камера возвращается в исходное состояние и ионы удаляются электрическим полем. В зависимости от размеров камеры время восстановления рабочего режима колеблется от нескольких секунд до десятков минут.


Особенности По длине трека можно определить энергию частицы, а по числу капелек на единицу длины трека оценивается ее скорость. Чем длиннее трек частицы, тем больше ее энергия. А чем больше капелек воды образуется на единицу длины трека, тем меньше ее скорость. Частицы с большим зарядом оставляют трек большей толщены Камеру Вильсона можно поместить в однородное магнитное поле. Магнитное поле действует на движущуюся заряженную частицу с определенной силой. Эта сила искривляет траекторию частицы. Трек имеет тем большую кривизну, чем больше заряд частицы и чем меньше ее масса. По кривизне трека можно определить отношение заряда частицы ее массе.


Принцип действия В исходном состоянии жидкость в камере находится под высоким давлением, предохраняющим ее от закипания, несмотря на то что температура жидкости выше температуры кипения при атмосферном давлении. При резком понижении давления жидкость оказывается перегретой и в течение небольшого времени она будет находиться в неустойчивом состоянии. Заряженные частицы, пролетающие именно в это время, вызывают появление треков, состоящих из пузырьков пара. В качестве жидкостей используются главным образом жидкий водород и пропан.


Особенности Длительность рабочего цикла пузырьковой камеры невели­ка около 0,1 с. Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества. Пробеги частиц вследствие этого оказываются достаточно короткими, и частицы даже больших энергий застревают в камере. Это позволяет наблюдать серию последовательных превращений частицы и вызываемые ею реакции.


Метод толстослойных фотоэмульсий Ионизирующее действие быстрых заряженных частиц на эмульсию фотопластинки позволило французскому физику А. Беккерелю открыть в 1896 г. радиоактивность. Метод был развит советскими физиками Л. В. Мысовским, А. П. Ждановым и др.


Принцип действия Фотоэмульсия содержит большое количество микроскопических кристалликов бромида серебра. Быстрая заряженная частица, пронизывая кристаллик, отрывает электроны от отдельных атомов брома. Цепочка таких кристалликов образует скрытое изображение. При проявлении в этих кристалликах восстанавливается металлическое серебро и цепочка зерен серебра образует трек частицы. По длине и толщине трека можно оценить энергию и массу частицы.


Особенности Из-за большой плотности фотоэмульсии треки получаются очень короткими (порядка см для α -частиц, испускаемых радиоактив­ными элементами), но при фотографировании их можно увеличить. Преимущество фотоэмульсий состоит в том, что время экспозиции может быть сколь угодно большим. Это позволяет регистрировать редкие явления. Важно и то, что благо­даря большой тормозящей способности фотоэмульсий увеличивается число наблюдаемых интересных реакций между частицами и ядрами.

План урока по физике в 11 классе.

Тема: Методы наблюдения и регистрации элементарных частиц.

Цель урока: ознакомить учащихся с устройствами, с помощью которых развивалась физика атомных ядер и элементарных частиц; необходимую информацию о процессах в микромире получили именно благодаря этим приборам.

Ход урока

    Проверка домашнего задания методом фронтального опроса

    В чем заключалось противоречие модели атома Резерфорда с классической физикой.

    Квантовые постулаты Бора.

9) Задача. Насколько изменилась энергия электрона в атоме водорода при излучении атомом фотона с длиной волны 4,86 ∙10-7м?

Решение. ∆Е = h ν; ν = c/λ; ∆Е = h c /λ; ∆E=4,1 ∙10-19 Дж.

2. Изучение нового материала

Регистрирующий прибор – это макроскопическая система, находящаяся в неустойчивом положении. При любом возмущении, которое вызывает пролетевшая частица, система переходит в более устойчивое положение. Процесс перехода позволяет регистрировать частицу. В настоящее время имеется много устройств, для регистрации элементарных частиц. Рассмотрим некоторые из них.

А) Газоразрядный счетчик Гейгера.

Этот прибор служит для автоматического подсчета частиц.

Устройство счетчика объяснить, используя плакат. Действие счетчика основано на ударной ионизации.

Применяется счетчик Гейгера для регистрации γ – квантов и электронов, счетчик хорошо замечает и считает почти все электроны и только один из ста γ – квант.

Тяжелые частицы счетчиком не подсчитываются. Имеются счетчики, которые работают на других принципах.

Б) Камера Вильсона.

Счетчик только подсчитывает число пролетевших частиц. Камера Вильсона, сконструированная в 1912 году, располагает оставшимся, после пролета частицы треком (след), который можно наблюдать, фотографировать, изучать.

Ученые называли камеру Вильсона окном в микромир.

Устройство и принцип действия камеры объяснить по плакату. Действие камеры Вильсона основано на конденсации перенасыщенного пара, который образует на ионах треки из капелек воды. По длине трека можно определить энергию частицы; по числу капелек на единицу длины трека вычисляют ее скорость; по толщине трека определяют заряд пролетевшей частицы. Поместив камеру в магнитное поле, заметили кривизну трека, которая тем больше, чем больше заряд и чем меньше масса частицы. Определив, заряд частицы и зная кривизну трека, вычисляют ее массу.

В) Пузырьковая камера.

Американский ученый Глейзер, в 1952 году, для изучения элементарных частиц создал новый тип камеры. Она была похожа на камеру Вильсона, но в ней было заменено рабочее тело; перенасыщенные пары были заменены на перегретую жидкость. Быстродвижущаяся частица, при движении по жидкости, образовывала пузырьки на ионах (так как жидкость закипала) – камеру назвали пузырьковой.

Большая плотность рабочего вещества дает преимущество пузырьковой камеры перед камерой Вильсона.

Пробеги частиц в пузырьковой камере короткие, а взаимодействия более сильными и часть частиц застревает в рабочем веществе. В результате появляется возможность наблюдать превращения частиц. Треки – главный источник информации о свойствах частиц.

Г) Метод толстослойных фотоэмульсий.

Ионизирующее действие заряженных частиц на эмульсию фотопластинки, используется для изучения свойств элементарных частиц наряду с пузырьковой камерой и камерой Вильсона. Заряженная частица с большой скоростью пронизывает фотоэмульсию, которая содержит кристаллы бромида серебра. Отрывая электроны, от некоторых атомов брома в фотоэмульсии появляется, скрытое изображение. Трек частицы появляется после проявления фотопластинки. По длине и толщине трека вычисляют энергию и массу частиц.

Существует много других устройств и приборов, которые регистрируют и исследуют элементарные частицы.

3. Закрепление изученного материала.

1) Что такое регистрирующий прибор?

2) Принцип действия счетчика Гейгера; камеры Вильсона; пузырьковой камеры, метода толстослойных фотоэмульсий.

3) Какие преимущества имеет пузырьковая камера перед камерой Вильсона?

Подведем итоги урока.

Домашнее задание: §98, повт, §97