07.06.2024

Молекулярную теорию строения вещества создал кто. Теория строения органических соединений. Изомерия и гомология


Крупнейшим событием в развитии органической химии было создание в 1961 г. великим русским ученым А.М. Бутлеровым теории химического строения органических соединений.

До А.М. Бутлерова считалось невозможным познать строение молекулы, т. е. порядок химической связи между атомами. Многие ученые даже отрицали реальность атомов и молекул.

А.М. Бутлеров опроверг это мнение. Он исходил из правильных материалистических и философских представлений о реальности существования атомов и молекул, о возможности познания химической связи атомов в молекуле. Он показал, что строение молекулы можно установить опытным путем, изучая химические превращения вещества. И наоборот, зная строение молекулы, можно вывести химические свойства соединения.

Теория химического строения объясняет многообразие органических соединений. Оно обусловлено способностью четырехвалентного углерода образовывать углеродные цепи и кольца, соединяться с атомами других элементов и наличием изомерии химического строения органических соединений. Эта теория заложила научные основы органической химии и объяснила ее важнейшие закономерности. Основные принципы своей теории А.М. Бутлеров изложил в докладе «О теории химического строения».

Основные положения теории строения сводятся к следующему:

1) в молекулах атомы соединены друг с другом в определенной последовательности в соответствии с их валентностью. Порядок связи атомов называется химическим строением;

2) свойства вещества зависят не только от того, какие атомы и в каком количестве входят в состав его молекулы, но и от того, в каком порядке они соединены между собой, т. е. от химического строения молекулы;

3) атомы или группы атомов, образовавшие молекулу, взаимно влияют друг на друга.

В теории химического строения большое внимание уделяется взаимному влиянию атомов и групп атомов в молекуле.

Химические формулы, в которых изображен порядок соединения атомов в молекулах, называются структурными формулами или формулами строения.

Значение теории химического строения А.М. Бутлерова:

1) является важнейшей частью теоретического фундамента органической химии;

2) по значимости ее можно сопоставить с Периодической системой элементов Д.И. Менделеева;

3) она дала возможность систематизировать огромный практический материал;

4) дала возможность заранее предсказать существование новых веществ, а также указать пути их получения.

Теория химического строения служит руководящей основой во всех исследованиях по органической химии.

5. Изомерия. Электронное строение атомов элементов малых периодов.Химическая связь

Свойства органических веществ зависят не только от их состава, но и от порядка соединения атомов в молекуле.

Изомеры – это вещества, которые имеют одинаковый состав и одинаковую молярную массу, но различное строение молекул, а потому обладающие разными свойствами.

Научное значение теории химического строения:

1) углубляет представления о веществе;

2) указывает путь к познанию внутреннего строения молекул;

3) дает возможность понять накопленные в химии факты; предсказать существование новых веществ и найти пути их синтеза.

Всем этим теория в огромной степени способствовала дальнейшему развитию органической химии и химической промышленности.

Немецкий ученый А. Кекуле высказывал мысль о соединении атомов углерода друг с другом в цепи.

Учение об электронном строении атомов.

Особенности учения об электронном строении атомов: 1) позволило понять природу химической связи атомов; 2) выяснить сущность взаимного влияния атомов.

Состояние электронов в атомах и строение электронных оболочек.

Электронные облака – это области наибольшей вероятности пребывания электрона, которые различаются по своей форме, размерам, направленности в пространстве.

В атоме водорода единственный электрон при своем движении образует отрицательно заряженное облако сферической (шаровидной) формы.

S-электроны – это электроны, образующие сферическое облако.

В атоме водорода имеется один s-электрон.

В атоме гелия – два s-электрона.

Особенности атома гелия: 1) облака одинаковой сферической формы; 2) наибольшая плотность одинаково удалена от ядра; 3) электронные облака совмещаются; 4) образуют общее двухэлектронное облако.

Особенности атома лития: 1) имеет два электронных слоя; 2) имеет облако сферической формы, но по размерам значительно превосходит внутреннее двухэлектронное облако; 3) электрон второго слоя слабее притягивается к ядру, чем первые два; 4) легко захватывается другими атомами в окислительно-восстановительных реакциях; 5) имеет s-электрон.

Особенности атома бериллия: 1) четвертый электрон – s-электрон; 2) сферическое облако совмещается с облаком третьего электрона; 3) имеются два спаренных s-электрона во внутреннем слое и два спаренных s-электрона в наружном.

Чем больше перекрываются электронные облака при соединении атомов, тем больше выделяется энергии и тем прочнее химическая связь.

Поведение частиц в соединениях зависит от множества факторов. Теория строений органических соединений как раз изучает поведение молекулы в соединениях, природу атомов, валентность, порядок и характер химических связей. В данной статье сформулированы кратко основные положения этой теории.

Строение органических соединений

Многообразие органических соединений объясняются особенностью их химического строения. Атомы в молекуле расположены в определенном порядке в соответствии с их валентностью. Эта последовательность и является химическим строением.

Вещества, имеющие один и тот же качественный и количественный состав (молекулярную формулу), но разное строение, называются изомерами, а само их существование – изомерией. Известный русский химик А. М. Бутлеров доказал, что с помощью управляемых реакций можно получить новые вещества.

Рис. 1. Изомерия определение.

Также важным является положение о том, что атомы и группы атомов в молекуле взаимно влияют друг на друга.

Теория строений органических веществ

Теория строения органических соединений была сформулирована русским химиком А. М. Бутлеровым в 1861 году. Главным выводом этой научной работы стало утверждение, что каждом веществу соответствует только одна формула. Этот труд показывает поведение атомов внутри молекул.

Рис. 2. А. М. Бутлеров.

Основные положения и следствия теории строения Бутлерова могут быть сформулированы следующим образом:

  • В молекулах атомы расположены не хаотично, а имеют определенную структуру.

Схематическое изображение строения молекулы называется структурной формулой

Рис. 3. Структурная формула молекулы.

Основываясь на положении о валентности атома углерода, равной четырем, и его способности образовывать цепи и циклы, строят структурные формулы органических веществ.

  • Химические свойства вещества зависят от состава и порядка расположения атомов и молекул.
  • Различное строение при одном и том же составе и молекулярной массе вещества обуславливает явление изомерии. Абсолютные разные химические элементы могут иметь одинаковый состав и молекулярную массу, все зависит от расположения мельчайших частиц и связей между ними.
  • По свойствам вещества можно определить строение молекулы, а по ее строению можно предсказать свойства
  • Так как при отдельных реакциях изменяются не все, а только некоторые части молекул, то, изучая продукты химических превращений соединения, можно установить его строение.
  • Реакционная способность атомов, входящих в молекулу, меняется в зависимости от того, с какими атомами они связаны в данной молекуле. Связанные между собой атомы влияют друг на друга с большей силой, чем несвязанные.

Что мы узнали?

Значение теории химических строений органических соединений Бутлерова велико. Его теория не только объясняет строение молекул всех известных органических веществ и их свойства, но и дает возможность теоретически предвидеть существование неизвестных и новых веществ, а также найти способ их получения и синтеза.

Тема: Основные положения теории строения органических соединений А. М. Бутлерова.

Теория химического строения органических соединений, выдвинутая А. М. Бутлеровым во второй половине прошлого века (1861 г.), была подтверждена работами многих ученых, в том числе учениками Бутлерова и им самим. Оказалось возможным на ее основе объяснить многие явления, до той поры не имевшие толкования: , гомологию, проявление атомами углерода четырехвалентности в органических веществах. Теория выполнила и свою прогностическую функцию: на ее основе ученые предсказывали существование неизвестных еще соединений, описывали свойства и открывали их. Так, в 1862–1864 гг. А. М. Бутлеров рассмотрел пропиловых, бутиловых и амиловых спиртов, определил число возможных изомеров и вывел формулы этих веществ. Существование их позднее было экспериментально доказано, причем некоторые из изомеров синтезировал сам Бутлеров.

В течение XX в. положения теории химического строения химических соединений были развиты на основе новых воззрений, распространившихся в науке: теории строения атома, теории химической связи, представлений о механизмах химических реакций. В настоящее время эта теория имеет универсальный характер, то есть справедлива не только для органических веществ, но и для неорганических.

Первое положение. Атомы в молекулах соединяются в определенном порядке в соответствии с их валентностью. Углерод во всех органических и в большинстве неорганических соединений четырехвалентен.

Очевидно, что последнюю часть первого положения теории легко объяснить тем, что в соединениях атомы углерода находятся в возбужденном состоянии:

атомы четырехвалентного углерода могут соединяться друг с другом, образуя различные цепи:

Порядок соединения атомов углерода в молекулах может быть различным и зависит от вида ковалентной химической связи между атомами углерода - одинарной или кратной (двойной и тройной):

Второе положение. Свойства веществ зависят не только от их качественного и количественного состава, но и от строения их молекул.

Это положение объясняет явление .

Вещества, имеющие одинаковый состав, но разное химическое или пространственное строение, а следовательно, и разные свойства, называют изомерами.

Основные виды :

Структурная изомерия, при которой вещества различаются порядком связи атомов в молекулах: углеродного скелета

положения кратных связей:

заместителей

положения функциональных групп

Третье положение. Свойства веществ зависят от взаимного влияния атомов в молекулах.

Например, в уксусной кислоте в реакцию со щелочью вступает только один из четырех атомов водорода. На основании этого можно предположить, что только один атом водорода связан с кислородом:

С другой стороны, из структурной формулы уксусной кислоты можно сделать вывод о наличии в ней одного подвижного атома водорода, то есть о ее одноосновности.

Основные направления развития теории строения химических соединений и ее значение.

Во времена А. М. Бутлерова в органической химии широко использовали

эмпирические (молекулярные) и структурные формулы. Последние отражают порядок соединения атомов в молекуле согласно их валентности, которая обозначается черточками.

Для простоты записи часто используют сокращенные структурные формулы, в которых черточками обозначают только связи между атомами углерода или углерода и кислорода.

И волокна, изделия из которых используют в технике, быту, медицине, сельском хозяйстве. Значение теории химического строения А. М. Бутлерова для органической химии можно сравнить со значением Периодического закона и Периодической системы химических элементов Д. И. Менделеева для неорганической химии. Недаром в обеих теориях так много общего в путях их становления, направлениях развития и общенаучном значении.

Основные положения теории химического строения органических веществ А. М. Бутлерова. Химическое строение как порядок соединения и взаимного влияния атомов в молекулах

Органическими веществами называют углеродсодержащие вещества (за исключением тех из них, которые по свойствам относят к неорганическим веществам - оксидов углерода, угольной кислоты и ее солей и ряда дру¬гих), независимо от того, образовались эти вещества в живых организмах или получены синтетически.

Число известных органических веществ составляет более 13 миллионов наименований, и очень быстро продолжает расти, в то время, как число известных неорганических веществ не достигло и миллиона.

Такое большое количество органических веществ, а также отличие их свойств от свойств неорганических веществ, тоже вынуждает рассматривать органическую химию как отдельный раздел химии.

Органическая химия - это химия соединений углерода и их превращениЙ. Подобное определение нельзя считать абсолютно точным, но оно указывает на наличие во составе всех органических соединений элемента углерода.

Б настоящее время синтезировано огромное число органических соеди¬нений, встречающихся в природе, а также веществ, которых в природе нет.

Объяснить огромное многообразие органических веществ, образованных небольшим числом элементов углеродом, водородом, кислородом, реже - азотом, серой и галогенами, в 1861 году смог А. М. Бутлеров, создавший теорию строения органических соединений. Он показал, что:

1. атомы углерода обладают свойством соединяться между собой, образуя цепи

2. атомы в молекулах соединены в определенной последовательности в соответствии с валентностью атомов (валентность углерода - IV, валент¬ность водорода - 1, валентность кислорода - II и т. д.)

3. свойства веществ зависят от последовательности соединения атомов в

Молекулах (химического строения)

4. существуют вещества одинакового молекулярного состава, но разного химического строения и с различными свойствами (изомеры).

Открытие такого явления, как изомерия, стало огромным шагом в раз¬витии органической химии; удалось объяснить те экспериментальные про¬тиворечия, которые химики наблюдали в то время. Например, оказалось, что химической формуле C4HIO соответствуют два вещества с разными тем¬пературами кипения - бутан и изобутан.

СНз - СН2 - СН2 - СНз

СНз - СН - СНз

I
СНз

Выяснилось, что изомерами могут быть вещества, относящиеся к разным классам органических соединений, например, изомерами являются диметиловый эфир и этиловый спирт.

СНз - О - СНз СНз - СН2 - ОН

А. М. Бутлеров показал, что между атомами и группами атомов в молекулах органических веществ существует взаимное влияние, причем это влияние могут оказывать друг на друга атомы, непосредственно не связанные между собой. Например, можно объяснить, почему уксусная кислота СНз - СООН является слабой кислотой, а если заместить один атом водорода на атом хлора, образуется сильная хлор уксусная кислота С! - СН2 - СООН.

Теория химического строения является важнейшей основой теоретического фундамента органической химии, она позволила систематизировать огромный практический материал, заранее предсказать свойства и сущест¬вование новых веществ, а также указать пути их получения.

Еще со времени открытия огня человек разделил вещества на горючие и негорючие. К первой группе относились в основном продукты растительного и животного происхождения, а ко второй – преимущественно минерального происхождения. Таким образом, между способностью вещества к горению и принадлежностью его к живому и неживому миру существовала определенная связь.

В 1867 г. Й. Берцелиус предложил называть соединения первой группы органическими, а вещества, подобные воде и солям, которые характерны для неживой природы, определил, как неорганические.

Некоторые органические вещества в более или менее чистом виде известны человеку с незапамятных времен (уксус, многие органические красители). Ряд органических соединений, как, например, мочевина, этиловый спирт, «серный эфир» были получены еще алхимиками. Очень многие вещества, особенно органические кислоты (щавелевая, лимонная, молочная и др.) и органические основания (алкалоиды), были выделены из растений и животных во второй половине XVIII века и первых годах XIX века. Это время и следует считать началом научной органической химии.

v Теория витализма . В XVIII веке и первой четверти XIX века господствовало убеждение, что химия живой природы принципиально отлична от химии мертвой природы (минеральной химии), и что организмы строят свои вещества с участием особой жизненной силы, без которой искусственно, в колбе, их создать нельзя. То время было временем господства витализма – учения, рассматривающего жизнь как особое явление, подчиняющееся не законам мироздания, а влиянию особых жизненных сил.

Защитником витализма веком раньше был Г. Шталь, основатель теории флогистона. По его мнению, химики, имевшие дело с самыми обычными веществами, осуществить их превращения, требовавшие участия жизненных сил, естественно, не могли.

Первые сомнения в состоятельности виталистической теории заронил ученик Й. Берцелиуса немецкий химик Ф. Велер, который синтезировал из цианата аммония, безоговорочно причисленного к неорганическим веществам, мочевину:

Не надо переоценивать значения этой работы, т.к. мочевина фактически является перестроенной молекулой цианата аммония, но, тем не менее, нельзя и отрицать значение открытия Ф. Велера, т.к. оно способствовало низвержению витализма и вдохновило химиков на синтез органических веществ.

В 1845 г. А. Кольбе, ученик Ф. Велера, осуществил синтез из элементов, т.е. полный синтез, уксусной кислоты. Французский химик П. Бертло получил метиловый и этиловый спирты, метан. Тем не менее, существовало мнение, что синтез столь сложного вещества, как сахар, никогда не будет осуществлен. Однако уже в 1861 г. А. Бутлеров синтезировал сахароподобное вещество – метиленитан.

Одновременно с этими этапными для органической химии синтезами быстро росло общее число синтезированных углеродосодержащих соединений, не встречающихся в природе. Так, в 1825 г. М. Фарадей получил бензол, еще ранее стали известны этилен, бромистый этилен и ряд производных бензола. В 1842 г. Н. Зинин из нитробензола получил анилин, а в 50-х годах того же столетия из анилина были синтезированы первые «анилиновые красители» – мовеин У. Перкина и фуксин. К середине 50-х годов ХIХ в. виталистическая теория потерпела крах окончательно.

v Дуалистическая теория Й. Берцелиуса . Основы структурной химии органических веществ заложил Й. Берцелиус, который вслед за А. Лавуазье распространил на органические объекты количественный анализ и создал для объяснения их природы дуалистическую (электрохимическую ) теорию – первую научную теорию в химии. По Й. Берцелиусу, атом элемента соединяется с кислородом вследствие того, что он электроположителен, а кислород электроотрицателен; при соединении заряды нейтрализуются. Й. Берцелиус считал, что его теория применима и к органической химии, с той разницей, что в органических соединениях радикалы в оксидах более сложные, например, углеводородные. Иначе эту теорию еще называют «теорией сложных радикалов ».

По А. Лавуазье радикалы органических соединений состоят из углерода, водорода и кислорода, к которым в случае веществ животного происхождения добавляется еще азот и фосфор.

v Теория радикалов . Развитием теории Берцелиуса стала теория радикалов. В 1810 г. Ж. Гей-Люссак заметил, что группа СN (цианидная группа) может переходить из соединения в соединение, не разделяясь на отдельные атомы углерода и азота. Такие группы стали называть радикалами .

Постепенно радикалы стали рассматривать, как неизменные составные части органических веществ (подобные элементам в неорганических соединениях), которые переходят в реакциях из одного соединения в другое. Некоторые исследователи, особенно немецкой школы (Ф. Велер, Ю. Либих), вдохновленные открытием серии новых элементов, руководствовались идеей поиска новых радикалов. В частности, они нашли радикалы бензоил С 6 Н 5 СО и ацетил СН 3 СО. К этому времени стало известно также, что вещества, называющиеся сейчас этиловым спиртом, диэтиловым эфиром, хлористым этилом и этилнитритом, содержат радикал этил –С 2 Н 5 . Подобным же способом были идентифицированы и другие радикалы , т.е. группы атомов, остающиеся неизменными при различных химических превращениях.

Множественные попытки выделить радикалы в свободном состоянии оказались неудачными или проводили к ошибочным результатам. Так, до установления закона Авогадро этан, выделенный по реакции Вюрца:

считался сначала радикалом метилом –СН 3 , и лишь последующее определение молекулярной массы показало ее удвоенную величину.

Общее признание принципа неизменности радикалов, было поколеблено, когда французский химик Ж. Дюма и его ученик О. Лоран открыли реакцию металепсии . При действии хлора на органические соединения хлор вступает в вещество так, что на каждый вступивший эквивалент хлора из вещества удаляется один эквивалент водорода в виде хлороводорода. При этом химический характер соединения не меняется. Противоречие с теорией Й. Берцелиуса было разительным: хлор, «отрицательно заряженный элемент», входил на место «положительного заряженного водорода», и молекула не только сохранялась, но и не изменялся ее химический характер. Оказалось возможным заменять водород на другие электроотрицательные элементы – галогены, кислород, серу и т. д., и электрохимическая дуалистическая теория Й. Берцелиуса рухнула. Все очевиднее становилось, что неизменных радикалов не существует, и что в одних реакциях радикалы переходят во вновь образующиеся молекулы целиком, а в других подвергаются изменениям.

v Теория типов . Попытки найти что-то общее в природе органических молекул заставили отказаться от безуспешных поисков неизменяемой части молекулы и перейти к наблюдениям за ее наиболее изменяемой частью, которую мы теперь называем функциональной группой . Эти наблюдения привели к теории типов Ш. Жерара.

В спиртах и кислотах Ш. Жерар увидел аналоги воды, в хлорпроизводных углеводородов – аналоги хлористого водорода, в алканах – водорода, во вновь открытых аминах – аммиака.

Большинство сторонников теории типов (Ш. Жерар, А. Кольбе, А. Кекуле) исходили из того, что невозможно определить строение веществ экспериментальным путем. Их можно только классифицировать. В зависимости от того, в какие реакции вещество вступает, одно и то же органическое соединение можно относить к разным типам. Теория с большой натяжкой классифицировала огромный опытный материал, а о возможности целенаправленного синтеза не могло быть и речи. Органическая химия в те годы представлялась, по словам Ф. Велера, «…дремучим лесом, полным чудесных вещей, огромной чащей без выхода, без конца, куда не осмеливаешься проникнуть». Дальнейшее развитие химии требовало создания новой, более прогрессивной теории.

Одним из недостатков теории типов является стремление уложить все органические соединения в более или менее формальные схемы. Заслуга этой теории состоит в уточнении понятий о гомологических рядах и химических функциях, окончательно освоенных органической химией. Ее роль в развитии науки несомненна, т.к. она привела к понятию валентности и открыла путь к теории строения органических соединений.

v Теория строения органических соединений . Ряд исследований предшествовал появлению основополагающей теории строения органических соединений. Так, А. Вильямсон в 1851 г. ввел понятие о так называемых многоатомных радикалах, т. е. о радикалах, способных заместить два и более атомов водорода. Тем самым стало возможным относить вещества сразу к двум и более типам, например, аминоуксусная кислота может быть отнесена к типам воды и аммиака:

Такие вещества мы сейчас называем гетерофункциональными соединениями.

Чтобы соблюсти постоянство валентности углерода и кислорода, оказалось необходимым также принять существование двойной связи в этилене (С=С), в альдегидах и кетонах (С=О).

Шотландский химик Л. Купер предложил современное изображение формул, в которых знак элемента снабжался числом черточек, равным его валентности:

Однако и А. Кекуле и Л. Куперу еще чужда была идея неразрывной связи химических и физических свойств молекул с ее строением, выраженным формулой, идея единственности этого строения. А. Кекуле допускал описание одного и того же соединения посредством нескольких разных формул, в зависимости от того, какую совокупность реакций данного вещества хотели выразить формулой. По существу, это были так называемые реакционные формулы.

Основные положения теории строения органических соединений были обнародованы А. Бутлеровым в 1861 г. Ему же принадлежит и сам термин строение или структура . Теория Бутлерова базировалась на материалистических представлениях, основанных на атомистическом учении М. Ломоносова и Д. Дальтона. Сущность этой теории сводится к следующим основным положениям:

1. Химическая природа каждой сложной молекулы определяется природой составляющих ее атомов, их количеством и химическим строением.

2. Химическое строение – это определенный порядок чередования атомов в молекуле, взаимное влияние атомов друг на друга.

3. Химическое строение веществ определяет их физические и химические свойства.

4. Изучение свойств веществ позволяет определить их химическое строение.

Химическим строением А. Бутлеров назвал последовательность атомов в молекуле. Он указал, каким путем на основании изучения химических реакций данного вещества можно установить его структуру, которая для каждого химического индивидуума является адекватной. В соответствии с этой формулой можно и синтезировать данные соединения. Свойства определенного атома в соединении, прежде всего, зависят от того, с каким атомом связан интересующий нас атом. Пример – поведение различных атомов водорода в спиртах.

Теория строения включила и растворила в себе теорию радикалов, поскольку любая часть молекулы, переходящая в реакции из одной молекулы в другую является радикалом, но уже не обладает прерогативой неизменности. Она вобрала в себя и теорию типов, ибо присутствующие в молекуле неорганические или содержащие углерод группы, ведущие свое начало от воды (гидроксил –ОН), аммиака (аминогруппа –NH 2), угольной кислоты (карбоксил –COOH), в первую очередь определяли химическое поведение (функцию) молекулы и делали его сходным с поведением прототипа.

Структурная теория строения органических соединений позволила классифицировать огромный экспериментальный материал и указала пути целенаправленного синтеза органических веществ.

Следует отметить, что установление структуры вещества химическим путем осуществляют каждый раз индивидуально. Нужна уверенность в индивидуальности веществ и знание количественного элементного состава и молекулярной массы. Если известны состав соединения и его молекулярная масса, можно вывести молекулярную формулу. Приведем пример выведения структурных формул для веществ с составом С 2 Н 6 О.

Первое вещество реагирует с натрием по типу воды, выделяя один атом водорода на один атом натрия, причем натрий входит в состав молекулы продукта реакции вместо ушедшего водорода.

2C 2 H 6 O + 2Na → H 2 + 2C 2 H 5 ONa

В полученное соединение уже не удается ввести второй атом натрия. То есть, можно предположить, что вещество содержало гидроксильную группу и, выделяя ее в формуле соединения, последнее можно записать так: С 2 Н 5 ОН. Подтверждением этого вывода служит то, что при действии на исходное вещество бромида фосфора(III) гидроксильная группа уходит из молекулы как целое, переходя к атому фосфора и заменяясь на атом брома.

2C 2 H 5 OH + PBr 3 → 3C 2 H 5 Br + H 3 PO 3

Изомерное ему вещество, т.е. имеющее такую же брутто-формулу, не реагирует с металлическим натрием, а при взаимодействии с иодоводородом разлагается по уравнению:

C 2 H 6 O + HI → CH 3 I + CH 4 O .

Из этого можно сделать вывод, что в исходном веществе два атома углерода не связаны друг с другом, т. к. иодоводород не способен разрывать С–С-связь. В нем нет и особого водорода, способного замещаться на натрий. После разрыва молекулы этого вещества при действии иодоводорода образуются СН 4 О и СН 3 I. Последнему нельзя приписать иную структуру, чем указанную ниже, поскольку и водород, и иод одновалентны.

Второе из образовавшихся веществ, СН 4 О, ведет себя в реакции не только с натрием, но и с бромидом фосфора(III), подобно этиловому спирту.

2CH 4 O + 2Na → 2CH 3 ONa + H 2

3CH 4 O + PBr 3 → CH 3 Br + P(OH) 3

Естественно предположить, что иодоводород разорвал связь двух метильных групп, осуществляющуюся атомом кислорода.

Действительно, при действии одного из продуктов этой реакции на натриевое производное другого удается осуществить синтез исходного вещества, изомерного этиловому спирту, и подтвердить принятую для него структуру диметилового эфира.

Первым пробным камнем проверки теории строения органических соединений явился синтез предсказанных, но неизвестных в то время трет -бутилового спирта и изобутилена, осуществленный автором созданной теории и его учеником А. Зайцевым. Другой ученик А. Бутлерова – В. Марковников синтезировал теоретически предсказанную изомасляную кислоту и на ее основе изучил взаимное влияние атомов в молекуле.

Следующий этап в развитии теоретических вопросов связывают с возникновением стереохимических представлений, развитых в работах Я. Вант-Гоффа и Ж. Ле Беля.

В начале ХХ в. закладываются представления об электронном строении атомов и молекул. На электронном уровне трактуется природа химической связи и реакционной способности органических молекул.

Создание теории органических веществ послужило основой синтетических методов не только в лаборатории, но и в промышленности. Возникают производства синтетических красителей, взрывчатых веществ и медикаментов. В органический синтез широко внедряются катализаторы и высокие давления.

В области органического синтеза осуществлено получение многих природных веществ (хлорофилл, витамины, антибиотики, гормоны). Выявлена роль нуклеиновых кислот в хранении и передаче наследственности.

Решение многих вопросов в строении сложных органических молекул стало эффективным благодаря привлечению современных спектральных методов.


Шталь Г. (1659-1734) – немецкий химик и врач. Создатель теории флогистона – первой химической теории, позволившей покончить с теоретическими возрениями алхимии.

Кольбе А. (1818 – 1884) – немецкий химик-органик, создатель теории радикалов. Синтезировал ряд органических кислот. Разработал электрохимический метод получения алканов – метод Кольбе.

Бертло П. (1827-1907) – французский химик. Один из основоположников органической химии. Фундаментальные работы в области термохимии.

Фарадей М. (1791-1867) – английский физик и химик. Один из основателей учения об электромагнетизме. Открыл количественные законы электролиза. Исследования в области сжиженных газов, стекла, органической химии.

Перкин У. ст. (1838-1907) –английский химик. Разработал промышленное производство красителей мовеина, ализарина. Открыл реакцию конденсации ароматических альдегидов с ангидридами карбоновых кислот (реакция Перкина ).

Вюрц Ш. (1817-1884) – французский химик Учился у Ю. Либиха, ассистент Ж. Дюма. Синтезировал амины, фенолы, этиленгликоль, молочную кислоту, провел альдольную и кротоновую конденсацию.

Дюма Ж. (1800-1884) – французский химик. Создал теорию радикалов. Открыл реакцию хлорирования, установил существование гомологического ряда – ряда муравьиной кислоты. Предложил способ количественного определения азота.

Лоран О. (1807-1853) – французский химик. Изучал продукты каменноугольной смолы. Открыл фталевую кислоту, индиго и нафталин.

Кекуле Ф. (1829 - 1896) – немецкий химик. Основные труды в области теоретической органической химии. Синтезировал антрахинон, трифенилметан.

Купер Л. (1834 - 1891) – шотландский химик, основные работы посвящены теоретическим проблемам химии.