11.10.2019

Tg 1 на числовой окружности. Тригонометрия. Единичная окружность


Координаты x лежащих на окружности точек равны cos(θ), а координаты y соответствуют sin(θ), где θ - величина угла.

  • Если вам сложно запомнить данное правило, просто помните, что в паре (cos; sin) "синус стоит на последнем месте".
  • Это правило можно вывести, если рассмотреть прямоугольные треугольники и определение данных тригонометрических функций (синус угла равен отношению длины противолежащего, а косинус - прилежащего катета к гипотенузе).
  • Запишите координаты четырех точек на окружности. "Единичная окружность" - это такая окружность, радиус которой равен единице. Используйте это, чтобы определить координаты x и y в четырех точках пересечения координатных осей с окружностью. Выше мы обозначили эти точки для наглядности "востоком", "севером", "западом" и "югом", хотя они не имеют устоявшихся названий.

    • "Восток" соответствует точке с координатами (1; 0) .
    • "Север" соответствует точке с координатами (0; 1) .
    • "Запад" соответствует точке с координатами (-1; 0) .
    • "Юг" соответствует точке с координатами (0; -1) .
    • Это аналогично обычному графику, поэтому нет необходимости запоминать эти значения, достаточно помнить основной принцип.
  • Запомните координаты точек в первом квадранте. Первый квадрант расположен в верхней правой части круга, где координаты x и y принимают положительные значения. Это единственные координаты, которые необходимо запомнить:

    • точка π / 6 имеет координаты () ;
    • точка π / 4 имеет координаты () ;
    • точка π / 3 имеет координаты () ;
    • обратите внимание, что числитель принимает лишь три значения. Если перемещаться в положительном направлении (слева направо по оси x и снизу вверх по оси y ), числитель принимает значения 1 → √2 → √3.
  • Проведите прямые линии и определите координаты точек их пересечения с окружностью. Если вы проведете от точек одного квадранта прямые горизонтальные и вертикальные линии, вторые точки пересечения этих линий с окружностью будут иметь координаты x и y с теми же абсолютными значениями, но другими знаками. Иными словами, можно провести горизонтальные и вертикальные линии от точек первого квадранта и подписать точки пересечения с окружностью теми же координатами, но при этом оставить слева место для правильного знака ("+" или "-").

    • Например, можно провести горизонтальную линию между точками π / 3 и 2π / 3 . Поскольку первая точка имеет координаты ( 1 2 , 3 2 {\displaystyle {\frac {1}{2}},{\frac {\sqrt {3}}{2}}} ), координаты второй точки будут (? 1 2 , ? 3 2 {\displaystyle {\frac {1}{2}},?{\frac {\sqrt {3}}{2}}} ), где вместо знака "+" или "-" поставлен знак вопроса.
    • Используйте наиболее простой способ: обратите внимание на знаменатели координат точки в радианах. Все точки со знаменателем 3 имеют одинаковые абсолютные значения координат. То же самое относится к точкам со знаменателями 4 и 6.
  • Для определения знака координат используйте правила симметрии. Существует несколько способов определить, где следует поставить знак "-":

    • вспомните основные правила для обычных графиков. Ось x отрицательна слева и положительна справа. Ось y отрицательна снизу и положительна сверху;
    • начните с первого квадранта и проведите линии к другим точкам. Если линия пересечет ось y , координата x изменит свой знак. Если линия пересечет ось x , изменится знак у координаты y ;
    • запомните, что в первом квадранте положительны все функции, во втором квадранте положителен только синус, в третьем квадранте положителен лишь тангенс, и в четвертом квадранте положителен только косинус;
    • какой бы метод вы ни использовали, в первом квадранте должно получиться (+,+), во втором (-,+), в третьем (-,-) и в четвертом (+,-).
  • Проверьте, не ошиблись ли вы. Ниже приведен полный список координат "особых" точек (кроме четырех точек на координатных осях), если двигаться по единичной окружности против часовой стрелки. Помните, что для определения всех этих значений достаточно запомнить координаты точек лишь в первом квадранте:

    • первый квадрант: ( 3 2 , 1 2 {\displaystyle {\frac {\sqrt {3}}{2}},{\frac {1}{2}}} ); ( 2 2 , 2 2 {\displaystyle {\frac {\sqrt {2}}{2}},{\frac {\sqrt {2}}{2}}} ); ( 1 2 , 3 2 {\displaystyle {\frac {1}{2}},{\frac {\sqrt {3}}{2}}} );
    • второй квадрант: ( − 1 2 , 3 2 {\displaystyle -{\frac {1}{2}},{\frac {\sqrt {3}}{2}}} ); ( − 2 2 , 2 2 {\displaystyle -{\frac {\sqrt {2}}{2}},{\frac {\sqrt {2}}{2}}} ); ( − 3 2 , 1 2 {\displaystyle -{\frac {\sqrt {3}}{2}},{\frac {1}{2}}} );
    • третий квадрант: ( − 3 2 , − 1 2 {\displaystyle -{\frac {\sqrt {3}}{2}},-{\frac {1}{2}}} ); ( − 2 2 , − 2 2 {\displaystyle -{\frac {\sqrt {2}}{2}},-{\frac {\sqrt {2}}{2}}} ); ( − 1 2 , − 3 2 {\displaystyle -{\frac {1}{2}},-{\frac {\sqrt {3}}{2}}} );
    • четвертый квадрант: ( 1 2 , − 3 2 {\displaystyle {\frac {1}{2}},-{\frac {\sqrt {3}}{2}}} ); ( 2 2 , − 2 2 {\displaystyle {\frac {\sqrt {2}}{2}},-{\frac {\sqrt {2}}{2}}} ); ( 3 2 , − 1 2 {\displaystyle {\frac {\sqrt {3}}{2}},-{\frac {1}{2}}} ).
  • Если вы уже знакомы с тригонометрическим кругом , и хотите лишь освежить в памяти отдельные элементы, или вы совсем нетерпеливы, – то вот он, :

    Мы же здесь будем все подробно разбирать шаг за шагом.

    Тригонометрический круг – не роскошь, а необходимость

    Тригонометрия у многих ассоциируется с непроходимой чащей. Вдруг наваливается столько значений тригонометрических функций, столько формул… А оно ведь, как, – незаладилось вначале, и… пошло-поехало… сплошное непонимание…

    Очень важно не махать рукой на значения тригонометрических функций , – мол, всегда можно посмотреть в шпору с таблицей значений.

    Если вы постоянно смотрите в таблицу со значениями тригонометрических формул, давайте избавляться от этой привычки!

    Нас выручит ! Вы несколько раз поработаете с ним, и далее он у вас сам будет всплывать в голове. Чем он лучше таблицы? Да в таблице-то вы найдете ограниченное число значений, а на круге – ВСЕ!

    К примеру, скажите, глядя в стандартную таблицу значений тригонометрических формул , чему равен синус, скажем, 300 градусов, или -45.


    Никак?.. можно, конечно, подключить формулы приведения … А глядя на тригонометрический круг, легко можно ответить на такие вопросы. И вы скоро будете знать как!

    А при решении тригонометрических уравнений и неравенств без тригонометрического круга – вообще никуда.

    Знакомство с тригонометрическим кругом

    Давайте по порядку.

    Сначала выпишем вот такой ряд чисел:

    А теперь такой:

    И, наконец, такой:

    Конечно, понятно, что, на самом-то деле, на первом месте стоит , на втором месте стоит , а на последнем – . То есть нас будет больше интересовать цепочка .

    Но как красиво она получилась! В случае чего – восстановим эту «лесенку-чудесенку».

    И зачем оно нам?

    Эта цепочка – и есть основные значения синуса и косинуса в первой четверти.

    Начертим в прямоугольной системе координат круг единичного радиуса (то есть радиус-то по длине берем любой, а его длину объявляем единичной).

    От луча «0-Старт» откладываем в направлении стрелки (см. рис.) углы .

    Получаем соответствующие точки на круге. Так вот если спроецировать точки на каждую из осей, то мы выйдем как раз на значения из указанной выше цепочки.

    Это почему же, спросите вы?

    Не будем разбирать все. Рассмотрим принцип , который позволит справиться и с другими, аналогичными ситуациями.

    Треугольник АОВ – прямоугольный, в нем . А мы знаем, что против угла в лежит катет вдвое меньший гипотенузы (гипотенуза у нас = радиусу круга, то есть 1).

    Значит, АВ= (а следовательно, и ОМ=). А по теореме Пифагора

    Надеюсь, уже что-то становится понятно?

    Так вот точка В и будет соответствовать значению , а точка М – значению

    Аналогично с остальными значениями первой четверти.

    Как вы понимаете, привычная нам ось (ox) будет осью косинусов , а ось (oy) – осью синусов . позже.

    Слева от нуля по оси косинусов (ниже нуля по оси синусов) будут, конечно, отрицательные значения.

    Итак, вот он, ВСЕМОГУЩИЙ , без которого никуда в тригонометрии.

    А вот как пользоваться тригонометрическим кругом, мы поговорим в .

    В этой статье мы очень подробно разберем определение числовой окружности, узнаем её главное свойство и расставим числа 1,2,3 и т.д. Про то, как отмечать другие числа на окружности (например, \(\frac{π}{2}, \frac{π}{3}, \frac{7π}{4}, 10π, -\frac{29π}{6}\)) разбирается в .

    Числовой окружностью называют окружность единичного радиуса, точки которой соответствуют , расставленным по следующим правилам:

    1) Начало отсчета находится в крайней правой точке окружности;

    2) Против часовой стрелки - положительное направление; по часовой – отрицательное;

    3) Если в положительном направлении отложить на окружности расстояние \(t\), то мы попадем в точку со значением \(t\);

    4) Если в отрицательном направлении отложить на окружности расстояние \(t\), то мы попадем в точку со значением \(–t\).

    Почему окружность называется числовой?
    Потому что на ней обозначаются числа. В этом окружность похожа на числовую ось – на окружности, как и на оси, для каждого числа есть определенная точка.


    Зачем знать, что такое числовая окружность?
    С помощью числовой окружности определяют значение синусов, косинусов, тангенсов и котангенсов. Поэтому для знания тригонометрии и сдачи ЕГЭ на 60+ баллов, обязательно нужно понимать, что такое числовая окружность и как на ней расставить точки.


    Что в определении означают слова «…единичного радиуса…»?
    Это значит, что радиус этой окружности равен \(1\). И если мы построим такую окружность с центром в начале координат, то она будет пересекаться с осями в точках \(1\) и \(-1\).



    Ее не обязательно рисовать маленькой, можно изменить «размер» делений по осям, тогда картинка будет крупнее (см. ниже).

    Почему радиус именно единица? Так удобнее, ведь в этом случае при вычислении длины окружности с помощью формулы \(l=2πR\) мы получим:

    Длина числовой окружности равна \(2π\) или примерно \(6,28\).


    А что значит «…точки которой соответствуют действительным числам»?
    Как говорили выше, на числовой окружности для любого действительного числа обязательно найдется его «место» - точка, которая соответствует этому числу.


    Зачем определять на числовой окружности начало отсчета и направления?
    Главная цель числовой окружности - каждому числу однозначно определить свою точку. Но как можно определить, где поставить точку, если неизвестно откуда считать и куда двигаться?

    Тут важно не путать начало отсчета на координатной прямой и на числовой окружности – это две разные системы отсчета! А так же не путайте \(1\) на оси \(x\) и \(0\) на окружности – это точки на разных объектах.

    Какие точки соответствуют числам \(1\), \(2\) и т.д?

    Помните, мы приняли, что у числовой окружности радиус равен \(1\)? Это и будет нашим единичным отрезком (по аналогии с числовой осью), который мы будем откладывать на окружности.

    Чтобы отметить на числовой окружности точку соответствующую числу 1, нужно от 0 пройти расстояние равное радиусу в положительном направлении.


    Чтобы отметить на окружности точку соответствующую числу \(2\), нужно пройти расстояние равное двум радиусам от начала отсчета, чтобы \(3\) – расстояние равное трем радиусам и т.д.

    При взгляде на эту картинку у вас могут возникнуть 2 вопроса:
    1. Что будет, когда окружность «закончится» (т.е. мы сделаем полный оборот)?
    Ответ: пойдем на второй круг! А когда и второй закончится, пойдем на третий и так далее. Поэтому на окружность можно нанести бесконечное количество чисел.

    2. Где будут отрицательные числа?
    Ответ: там же! Их можно так же расставить, отсчитывая от нуля нужное количество радиусов, но теперь в отрицательном направлении.

    К сожалению, обозначать на числовой окружности целые числа затруднительно. Это связано с тем, что длина числовой окружности будет равна не целому числу: \(2π\). И на самых удобных местах (в точках пересечения с осями) тоже будут не целые числа, а доли

    На тригонометрическом круге помимо углов в градусы мы наблюдаем .

    Подробнее про радианы:

    Радиан определяется как угловая величина дуги, длина которой равна её радиусу. Соответственно, так как длина окружности равна , то очевидно, что в окружности укладывается радиан, то есть

    1 рад ≈ 57,295779513° ≈ 57°17′44,806″ ≈ 206265″.

    Все знают, что радиан – это

    Так вот, например, , а . Так, мы научились переводить радианы в углы .

    Теперь наоборот, давайте переводить градусы в радианы .

    Допустим, нам надо перевести в радианы. Нам поможет . Поступаем следующим образом:

    Так как, радиан, то заполним таблицу:

    Тренируемся находить значения синуса и косинуса по кругу

    Давайте еще уточним следующее.

    Ну хорошо, если нас просят вычислить, скажем, , – здесь обычно путаницы не возникает – все начинают первым делом искать на круге.

    А если просят вычислить, например, … Многие, вдруг, начинают не понимают где искать этот ноль… Частенько ищут его в начале координат. Почему?

    1) Давайте договоримся раз и навсегда! То, что стоит после или – это аргумент=угол, а углы у нас располагаются на круге, не ищите их на осяx! (Просто отдельные точки попадают и на круг, и на ось…) А сами значения синусов и косинусов – ищем на осях!

    2) И еще! Если мы от точки «старт» отправляемся против часовой стрелки (основное направление обхода тригонометрического круга), то мы откладываем положительные значения углов , значения углов растут при движении в этом направлении.

    Если же мы от точки «старт» отправляемся по часовой стрелке, то мы откладываем отрицательные значения углов.

    Пример 1.

    Найти значение .

    Решение:

    Находим на круге . Проецируем точку на ось синусов (то есть проводим перпендикуляр из точки к оси синусов (оу)).

    Приходим в 0. Значит, .

    Пример 2.

    Найти значение .

    Решение:

    Находим на круге (проходим против часовой стрелки и еще ). Проецируем точку на ось синусов (а она уже лежит на оси синусов).

    Попадаем в -1 по оси синусов.

    Заметим, за точкой «скрываются» такие точки, как (мы могли бы пойти в точку, помеченную как , по часовой стрелке, а значит появляется знак минус), и бесконечно много других.

    Можно привести такую аналогию:

    Представим тригонометрический круг как беговую дорожку стадиона.


    Вы ведь можете оказаться в точке «Флажок», отправляюсь со старта против часовой стрелки, пробежав, допустим, 300 м. Или пробежав, скажем, 100м по часовой стрелке (считаем длину дорожки 400 м).

    А также вы можете оказаться в точке «Флажок» (после «старт»), пробежав, скажем, 700 м, 1100 м, 1500 м и т. д. против часовой стрелки. Вы можете оказаться в точке «Флажок», пробежав 500 м или 900 м и т. д. по часовой стрелке от «старт».

    Разверните мысленно беговую дорожку стадиона в числовую прямую. Представьте, где на этой прямой будут, например, значения 300, 700, 1100, 1500 и т.д. Мы увидим точки на числовой прямой, равноотстоящие друг от друга. Свернем обратно в круг. Точки «cлепятся» в одну.

    Так и с тригонометрическим кругом. За каждой точкой скрыто бесконечно много других.

    Скажем, углы , , , и т.д. изображаются одной точкой. И значения синуса, косинуса в них, конечно же, совпадают. (Вы заметили, что мы прибавляли/вычитали или ? Это период для функции синус и косинус.)

    Пример 3.

    Найти значение .

    Решение:

    Переведем для простоты в градусы

    (позже, когда вы привыкнете к тригонометрическому кругу, вам не потребуется переводить радианы в градусы):

    Двигаться будем по часовой стрелки от точки Пройдем полкруга () и еще

    Понимаем, что значение синуса совпадает со значением синуса и равняется

    Заметим, если б мы взяли, например, или и т.д., то мы получили бы все тоже значение синуса.

    Пример 4.

    Найти значение .

    Решение:

    Все же, не будем переводить радианы в градусы, как в предыдущем примере.

    То есть нам надо пройти против часовой стрелки полкруга и еще четверть полкруга и спроецировать полученную точку на ось косинусов (горизонтальная ось).

    Пример 5.

    Найти значение .

    Решение:

    Как отложить на тригонометрическом круге ?


    Если мы пройдем или , да хоть , мы все равно окажемся в точке, которую мы обозначили как «старт». Поэтому, можно сразу пройти в точку на круге

    Пример 6.

    Найти значение .

    Решение:

    Мы окажемся в точке ( приведет нас все равно в точку ноль). Проецируем точку круга на ось косинусов (смотри тригонометрический круг), попадаем в . То есть .

    Тригонометрический круг – у вас в руках

    Вы же уже поняли, что главное – запомнить значения тригонометрических функций первой четверти. В остальных четвертях все аналогично, нужно лишь следить за знаками. А «цепочку-лесенку» значений тригонометрических функций, вы, надеюсь уже не забудете.

    Как находить значения тангенса и котангенса основных углов .

    После чего, познакомившись с основными значениями тангенса и котангенса, вы можете пройти

    На пустой шаблон круга. Тренируйтесь!




















    Назад Вперёд

    Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

    Цель: научить использовать единичную окружность при решении различных тригонометрических заданий.

    В школьном курсе математики возможны различные варианты введения тригонометрических функций. Наиболее удобной и часто используемой является «числовая единичная окружность». Её применение в теме «Тригонометрия» весьма обширно.

    Единичная окружность используется для:

    – определения синуса, косинуса, тангенса и котангенса угла;
    – нахождения значений тригонометрических функций для некоторых значений числового и углового аргумента;
    – выведение основных формул тригонометрии;
    – выведения формул приведения;
    – нахождения области определения и области значений тригонометрических функций;
    – определения периодичности тригонометрических функций;
    – определения четности и нечетности тригонометрических функций;
    – определения промежутков возрастания и убывания тригонометрических функций;
    – определения промежутков знакопостоянства тригонометрических функций;
    – радианного измерения углов;
    – нахождения значений обратных тригонометрических функций;
    – решение простейших тригонометрических уравнений;
    – решение простейших неравенств и др.

    Таким образом, активное осознанное владение учащимися данным видом наглядности дает неоспоримые преимущества для овладения разделом математики «Тригонометрия».

    Использование ИКТ на уроках преподавания математики позволяет облегчить овладение числовой единичной окружностью. Конечно, интерактивная доска имеет широчайший диапазон применения, однако не во всех классах она есть. Если же говорить о применении презентаций, то на просторах Интернета и их выбор велик, и каждый педагог может найти наиболее приемлемый вариант для своих уроков.

    В чем особенность представляемой мною презентации?

    Данная презентация предполагает различные варианты использования и не является наглядностью к конкретному уроку в теме «Тригонометрия». Каждый слайд данной презентации можно использовать обособлено, как на этапе объяснения материала, формирования навыков, так и для рефлексии. При создании данной презентации особое внимание уделялось «читаемости» её с дальнего расстояния, поскольку количество учеников со сниженным зрением постоянно растет. Продумано цветовое решение, логически связанные объекты объединены единым цветом. Презентация анимирована таким образом, чтобы учитель имел возможность комментировать фрагмент слайда, а ученик задать вопрос. Таким образом, данная презентация – это своего рода «подвижные» таблицы. Последние слайды не анимированы и используются для проверки усвоения материала, в ходе решения тригонометрических заданий. Окружность на слайдах максимально упрощена внешне и максимально приближена к изображаемой на тетрадном листе учениками. Это условие я считаю принципиальным. У учащихся важно сформировать мнение о единичной окружности, как о доступном и мобильном (хотя и не единственном) виде наглядности при решении тригонометрических заданий.

    Данная презентация поможет педагогам познакомить учеников с единичной окружностью в 9 классе на уроках геометрии при изучении темы «Соотношения между сторонами и углами треугольника». И, конечно, она поможет расширить и углубить навык работы с единичной окружностью при решении тригонометрических заданий у учащихся старшего звена обучения на уроках алгебры.

    Слайды 3, 4 поясняют построение единичной окружности; принцип определения местоположения точки на единичной окружности в I и II координатных четвертях; переход от геометрических определений функций синус и косинус (в прямоугольном треугольнике) к алгебраическим на единичной окружности.

    Слайды 5-8 поясняют, как найти значения тригонометрических функций для основных углов I координатной четверти.

    Слайды 9-11 поясняет знаки функций в координатных четвертях; определение промежутков знакопостоянства тригонометрических функций.

    Слайд 12 используется для формирования представлений о положительных и отрицательных значениях углов; знакомством с понятием периодичности тригонометрических функций.

    Слайды 13, 14 используются при переходе на радианную меру угла.

    Слайды 15-18 не анимированы и используются при решении различных тригонометрических заданий, закрепления и проверки результатов усвоения материала.

    1. Титульный лист.
    2. Целеполагание.
    3. Построение единичной окружности. Основные значения углов в градусной мере.
    4. Определение синуса и косинуса угла на единичной окружности.
    5. Табличные значения для синуса в порядке возрастания.
    6. Табличные значения для косинуса в порядке возрастания.
    7. Табличные значения для тангенса в порядке возрастания.
    8. Табличные значения для котангенса в порядке возрастания.
    9. Знаки функции sin α.
    10. Знаки функции cos α.
    11. Знаки функций tg α и ctg α.
    12. Положительные и отрицательные значения углов на единичной окружности.
    13. Радианная мера угла.
    14. Положительные и отрицательные значения углов в радианах на единичной окружности.
    15. Различные варианты единичной окружности для закрепления и проверки результатов усвоения материала.