12.10.2019

Похідні складної функції дивитись на прикладах. Похідна функції. Вичерпне керівництво (2019)


Визначення.Нехай функція \(y = f(x) \) визначена в деякому інтервалі, що містить у собі точку \(x_0 \). Дамо аргументу приріст (Delta x) таке, щоб не вийти з цього інтервалу. Знайдемо відповідне збільшення функції \(\Delta y \) (при переході від точки \(x_0 \) до точки \(x_0 + \Delta x \)) і складемо відношення \(\frac(\Delta y)(\Delta x) \). Якщо існує межа цього відношення при \(\Delta x \rightarrow 0 \), то вказану межу називають похідної функції\(y=f(x) \) у точці \(x_0 \) і позначають \(f"(x_0) \).

$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x_0) $$

Для позначення похідної часто використовують символ y". Зазначимо, що y" = f(x) - це нова функція, але, природно, пов'язана з функцією y = f(x), визначена у всіх точках x, в яких існує вказана вище межа . Цю функцію називають так: похідна функції у = f(x).

Геометричний зміст похідноїполягає у наступному. Якщо до графіку функції у = f(x) у точці з абсцисою х=a можна провести дотичну, непаралельну осі y, то f(a) виражає кутовий коефіцієнт дотичної:
\(k = f"(a) \)

Оскільки \(k = tg(a) \), то вірна рівність \(f"(a) = tg(a) \).

А тепер витлумачимо визначення похідної з погляду наближених рівностей. Нехай функція \(y = f(x) \) має похідну в конкретній точці \(x \):
$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x) $$
Це означає, що біля точки х виконується наближена рівність \(\frac(\Delta y)(\Delta x) \approx f"(x) \), тобто \(\Delta y \approx f"(x) \cdot \Delta x \). Змістовний зміст отриманої наближеної рівності полягає в наступному: збільшення функції «майже пропорційно» збільшенню аргументу, причому коефіцієнтом пропорційності є значення похідної в заданій точціх. Наприклад, для функції \(y = x^2 \) справедливо наближена рівність \(\Delta y \approx 2x \cdot \Delta x \). Якщо уважно проаналізувати визначення похідної, ми виявимо, що у ньому закладено алгоритм її знаходження.

Сформулюємо його.

Як знайти похідну функції у = f (x)?

1. Зафіксувати значення \(x \), знайти \(f(x) \)
2. Дати аргументу \(x \) збільшення \(\Delta x \), перейти в нову точку \(x+ \Delta x \), знайти \(f(x+ \Delta x) \)
3. Знайти збільшення функції: \(\Delta y = f(x + \Delta x) - f(x) \)
4. Скласти відношення \(\frac(\Delta y)(\Delta x) \)
5. Обчислити $$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) $$
Ця межа і є похідною функцією в точці x.

Якщо функція у = f(x) має похідну в точці х, її називають диференційованою в точці х. Процедуру знаходження похідної функції у = f(x) називають диференціюваннямфункції у = f(x).

Обговоримо таке питання: як пов'язані між собою безперервність та диференційність функції у точці.

Нехай функція у = f(x) диференційована у точці х. Тоді до графіку функції в точці М(х; f(x)) можна провести дотичну, причому, нагадаємо, кутовий коефіцієнт дотичної дорівнює f"(x). Такий графік не може «розриватися» у точці М, тобто функція зобов'язана бути безперервною у точці х.

Це були міркування "на пальцях". Наведемо більш строгу міркування. Якщо функція у = f(x) диференційована в точці х, то виконується наближена рівність \(\Delta y \approx f"(x) \cdot \Delta x \). Якщо в цій рівності \(\Delta x \) спрямувати до нулю, то й \(\Delta y \) прагнутиме до нуля, а це і є умова безперервності функції в точці.

Отже, якщо функція диференційована у точці х, вона і безперервна у цій точці.

Зворотне твердження не так. Наприклад: функція у = | х | безперервна скрізь, зокрема у точці х = 0, але щодо графіку функції в «точці стику» (0; 0) не існує. Якщо деякій точці до графіку функції не можна провести дотичну, то цій точці немає похідна.

Ще один приклад. Функція \(y=\sqrt(x) \) безперервна на всій числовій прямій, у тому числі в точці х = 0. І дотична до графіка функції існує в будь-якій точці, у тому числі в точці х = 0. Але в цій точці дотична збігається з віссю у, тобто перпендикулярна до осі абсцис, її рівняння має вигляд х = 0. Кутового коефіцієнтау такої прямої немає, значить, не існує і \(f"(0) \)

Отже, ми познайомилися з новою властивістю функції - диференціювання. А як за графіком функції можна дійти невтішного висновку про її диференційованості?

Відповідь фактично отримано вище. Якщо деякій точці до графіку функції можна провести дотичну, не перпендикулярну осі абсцис, то цій точці функція диференційована. Якщо у певній точці дотична до графіку функції немає чи вона перпендикулярна осі абсцис, то цій точці функція не диференційована.

Правила диференціювання

Операція знаходження похідної називається диференціюванням. За виконання цієї операції часто доводиться працювати з приватними, сумами, творами функцій, і навіть з «функціями функцій», тобто складними функціями. Виходячи з визначення похідної, можна вивести правила диференціювання, що полегшують роботу. Якщо C - постійне число і f = f (x), g = g (x) - деякі функції, що диференціюються, то справедливі наступні правила диференціювання:

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ ( Cf)"=Cf" $$ $$ \left(\frac(f)(g) \right) " = \frac(f"g-fg")(g^2) $$ $$ \left(\frac (C)(g) \right) " = -\frac(Cg")(g^2) $$ Похідна складної функції:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Таблиця похідних деяких функцій

$$ \left(\frac(1)(x) \right) " = -\frac(1)(x^2) $$ $$ (\sqrt(x)) " = \frac(1)(2\ sqrt(x)) $$ $$ \left(x^a \right) " = a x^(a-1) $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac(1)(x) $$ $$ (\log_a x)" = \frac (1)(x\ln a) $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text(tg) x) " = \frac(1)(\cos^2 x) $$ $$ (\text(ctg) x)" = -\frac(1)(\sin^2 x) $$ $$ (\arcsin x) " = \frac(1)(\sqrt(1-x^2)) $$ $$ (\arccos x)" = \frac(-1)(\sqrt(1-x^2)) $$ $$ (\text(arctg) x)" = \frac(1)(1+x^2) $$ $$ (\text(arcctg) x)" = \frac(-1)(1+x^2) $ $

Після попередньої артпідготовки будуть менш страшні приклади з 3-4-5 вкладеннями функцій. Можливо, наступні два приклади здадуться деяким складними, але якщо їх зрозуміти (хтось і мучиться), то майже все інше в диференціальному обчисленні здаватиметься дитячим жартом.

Приклад 2

Знайти похідну функції

Як зазначалося, при знаходженні похідної складної функції, передусім, необхідно правильноРОЗІБРАТИСЯ у вкладеннях. У тих випадках, коли є сумніви, нагадую корисний прийом: беремо піддослідне значення «ікс», наприклад, і пробуємо (подумки або на чернетці) підставити дане значення в «страшний вираз».

1) Спочатку нам потрібно обчислити вираз, отже, сума - найглибше вкладення.

2) Потім необхідно обчислити логарифм:

4) Потім косинус звести до куба:

5) На п'ятому кроці різниця:

6) І, нарешті, сама зовнішня функція- це квадратний корінь:

Формула диференціювання складної функції застосовуються у зворотному порядку, від самої зовнішньої функції, до внутрішньої. Вирішуємо:

Начебто без помилок:

1) Беремо похідну від квадратного кореня.

2) Беремо похідну від різниці, використовуючи правило

3) Похідна трійки дорівнює нулю. У другому доданку беремо похідну від ступеня (куба).

4) Беремо похідну від косинуса.

6) І, нарешті, беремо похідну від найглибшого вкладення.

Може здатися дуже важко, але це ще не найбільш звірячий приклад. Візьміть, наприклад, збірку Кузнєцова і ви оціните всю красу і простоту розібраної похідної. Я помітив, що схожу штуку люблять давати на іспиті, щоб перевірити, чи розуміє студент, як знаходити похідну складної функції, чи не розуміє.

Наступний приклад самостійного рішення.

Приклад 3

Знайти похідну функції

Підказка: Спочатку застосовуємо правила лінійності та правило диференціювання твору

Повне рішення та відповідь наприкінці уроку.

Настав час перейти до чогось більш компактного та симпатичного.
Не рідкісна ситуація, як у прикладі дано твір не двох, а трьох функцій. Як знайти похідну від твору трьох множників?

Приклад 4

Знайти похідну функції

Спочатку дивимося, а чи не можна твір трьох функцій перетворити на твір двох функцій? Наприклад, якби у нас у творі було два багаточлени, то можна було б розкрити дужки. Але в прикладі всі функції різні: ступінь, експонента і логарифм.

У таких випадках необхідно послідовнозастосувати правило диференціювання твору два рази

Фокус у тому, що з «у» ми позначимо твір двох функцій: , а й за «ве» - логарифм: . Чому можна так зробити? А хіба - це не твір двох множників і правило не працює? Нічого складного немає:


Тепер залишилося вдруге застосувати правило до дужки:

Можна ще поплутатися і винести щось за дужки, але в даному випадку відповідь краще залишити саме в такому вигляді - легше перевірятиме.

Розглянутий приклад можна вирішити другим способом:

Обидва способи вирішення абсолютно рівноцінні.

Приклад 5

Знайти похідну функції

Це приклад самостійного рішення, у зразку він вирішений першим способом.

Розглянемо аналогічні приклади із дробами.

Приклад 6

Знайти похідну функції

Тут можна йти кількома шляхами:

Або так:

Але рішення запишеться компактніше, якщо в першу чергу використовувати правило диференціювання приватного , Прийнявши за весь чисельник:

У принципі приклад вирішено, і якщо його залишити в такому вигляді, то це не буде помилкою. Але за наявності часу завжди бажано перевірити на чернетці, а чи не можна спростити відповідь?

Наведемо вираз чисельника до спільного знаменника і позбавимося триповерховості дробу:

Мінус додаткових спрощень полягає в тому, що є ризик припуститися помилки вже не при знаходженні похідної, а при банальних шкільних перетвореннях. З іншого боку, викладачі нерідко бракують завдання та просять «довести до пуття» похідну.

Простіший приклад для самостійного вирішення:

Приклад 7

Знайти похідну функції

Продовжуємо освоювати прийоми знаходження похідної, і зараз ми розглянемо типовий випадок, коли для диференціювання запропоновано «страшний» логарифм

У «старих» підручниках його ще називають «ланцюговим» правилом. Отже якщо у = f(u), а u = φ(х), тобто

у = f(φ(х))

    складна - складова функція (композиція функцій)

де , після обчислення розглядається при u = φ(х).



Зазначимо, що ми тут брали «різні» композиції з тих самих функцій, і результат диференціювання природно виявився залежним від порядку «змішування».

Ланцюгове правило природним чином поширюється і композицію з трьох і більше функцій. При цьому «ланок» у «ланцюжку», що становить похідну, буде відповідно три або більше. Тут і аналогія з множенням: "у нас" - таблиця похідних; "там" - таблиця множення; "у нас" - ланцюгове правило а "там" - правило множення "стовпчиком". При обчисленні таких «складних» похідних жодних допоміжних аргументів (u?v та ін.), звичайно ж, не вводиться, а, зазначивши для себе число і послідовність функцій, що беруть участь у композиції, «нанизують» у зазначеному порядку відповідні ланки.

.

Тут з «іксом» для отримання значення «гравця» роблять п'ять операцій, тобто, має місце композиція з п'яти функцій: «зовнішня» (остання з них) – показова – е ; далі у зворотному порядку статечна. (♦) 2 ;тригонометрична sin ();

статечна. () 3 і, нарешті, логарифмічна ln.(). ТомуНаступними прикладами «вбиватимемо пари зайців»: потренуємося в диференціювання складних функцій і доповнимо таблицю похідних

елементарних функцій . Отже: 4. Для статечної функції - у = х α - переписав її за допомогою відомого «основного

логарифмічної тотожності

.

» - b = e ln b - у вигляді х α = х α ln x отримуємо

Для отримання похідних зворотних тригонометричних функцій скористаємося співвідношенням якому задовольняють похідні двох взаємозворотних функцій, тобто φ (х) і f (х) пов'язаних співвідношеннями:

Ось це співвідношення

Саме з цієї формули для взаємно зворотних функцій

і
,

Під кінець зведемо ці та деякі інші, так само легко одержувані похідні, наступну таблицю.

Похідна складна функція. Приклади рішень

На цьому уроці ми навчимося знаходити похідну складної функції. Урок є логічним продовженням заняття Як знайти похідну?, На якому ми розібрали найпростіші похідні, а також познайомилися з правилами диференціювання та деякими технічними прийомами знаходження похідних. Таким чином, якщо з похідними функцій у Вас не дуже або якісь моменти цієї статті будуть не зовсім зрозумілі, то спочатку ознайомтеся з вищезгаданим уроком. Будь ласка, налаштуйтеся на серйозний лад – матеріал не з простих, але я намагаюся викласти його просто і доступно.

На практиці з похідною складною функцією доводиться стикатися дуже часто, я навіть сказав би, майже завжди, коли Вам дано завдання на перебування похідних.

Дивимося в таблицю правило (№5) диференціювання складної функції:

Розбираємось. Насамперед звернемо увагу на запис . Тут у нас дві функції - і, причому функція, образно кажучи, вкладена в функцію. Функція такого виду (коли одна функція вкладена в іншу) і називається складною функцією.

Функцію я називатиму зовнішньою функцією, а функцію – внутрішньою (або вкладеною) функцією.

! Дані визначення не є теоретичними та не повинні фігурувати у чистовому оформленні завдань. Я застосовую неформальні вирази "зовнішня функція", "внутрішня" функція тільки для того, щоб Вам легше було зрозуміти матеріал.

Для того щоб прояснити ситуацію, розглянемо:

Приклад 1

Знайти похідну функції

Під синусом у нас знаходиться не просто буква «ікс», а ціле вираження, тому знайти похідну відразу за таблицею не вийде. Також ми помічаємо, що тут неможливо застосувати перші чотири правила, начебто є різниця, але річ у тому, що «розривати на частини» синус не можна:

У цьому прикладі з моїх пояснень інтуїтивно зрозуміло, що функція – це складна функція, причому многочлен є внутрішньої функцією (вкладенням), а – зовнішньої функцією.

Перший крок, який потрібно виконати при знаходженні похідної складної функції полягає в тому, щоб розібратися, яка функція є внутрішньою, а яка – зовнішньою.

У разі простих прикладів зрозуміло, що під синус вкладений многочлен . А як бути, якщо все не очевидно? Як точно визначити яка функція є зовнішньою, а яка внутрішньою? Для цього я пропоную використовувати наступний прийом, який можна проводити подумки або на чернетці.

Уявимо, що нам потрібно обчислити на калькуляторі значення виразу (замість одиниці може бути будь-яке число).

Що ми обчислимо насамперед? В першу чергунеобхідно виконати таку дію: , тому многочлен і буде внутрішньої функцією :

У другу чергупотрібно буде знайти, тому синус - буде зовнішньою функцією:

Після того, як ми РОЗІБРАЛИСЯз внутрішньої та зовнішньої функціями саме час застосувати правило диференціювання складної функції.

Починаємо вирішувати. З уроку Як знайти похідну?ми пам'ятаємо, що оформлення рішення будь-якої похідної завжди починається так - укладаємо вираз у дужки і ставимо праворуч угорі штрих:

Спочаткузнаходимо похідну зовнішньої функції (синусу), дивимося на таблицю похідних елементарних функцій і помічаємо, що . Всі табличні формули застосовні і в тому випадку, якщо «ікс» замінити складним виразом, в даному випадку:

Зверніть увагу, що внутрішня функція не змінилася, її ми не чіпаємо.

Ну і цілком очевидно, що

Результат застосування формули у чистовому оформленні виглядає так:

Постійний множник зазвичай виносять на початок виразу:

Якщо залишилося якесь непорозуміння, перепишіть рішення на папір і прочитайте пояснення.

Приклад 2

Знайти похідну функції

Приклад 3

Знайти похідну функції

Як завжди записуємо:

Розбираємось, де у нас зовнішня функція, а де внутрішня. Для цього пробуємо (подумки або на чернетці) обчислити значення виразу при . Що потрібно виконати насамперед? В першу чергу потрібно порахувати чому рівна основа: , отже, багаточлен - і є внутрішня функція:

І тільки потім виконується зведення в ступінь , отже, статечна функція- це зовнішня функція:

Відповідно до формули , спочатку потрібно знайти похідну від зовнішньої функції, у разі, від ступеня. Розшукуємо у таблиці необхідну формулу: . Повторюємо ще раз: будь-яка таблична формула справедлива не тільки для «ікс», але і для складного вираження. Таким чином, результат застосування правила диференціювання складної функції наступний:

Знову наголошую, що коли ми беремо похідну від зовнішньої функції, внутрішня функція у нас не змінюється:

Тепер залишилося знайти зовсім просту похідну від внутрішньої функції і трохи «зачесати» результат:

Приклад 4

Знайти похідну функції

Це приклад самостійного рішення (відповідь наприкінці уроку).

Для закріплення розуміння похідної складної функції наведу приклад без коментарів, спробуйте самостійно розібратися, поміркувати, де зовнішня і внутрішня функція, чому завдання вирішені саме так?

Приклад 5

а) Знайти похідну функції

б) Знайти похідну функції

Приклад 6

Знайти похідну функції

Тут у нас корінь, а для того, щоб продиференціювати корінь, його потрібно подати у вигляді ступеня. Таким чином, спочатку наводимо функцію в належний для диференціювання вигляд:

Аналізуючи функцію, приходимо до висновку, що сума трьох доданків – це внутрішня функція, а зведення у ступінь – зовнішня функція. Застосовуємо правило диференціювання складної функції:

Ступінь знову представляємо у вигляді радикала (кореня), а для похідної внутрішньої функції застосовуємо просте правило диференціювання суми:

Готово. Можна ще у дужках привести вираз до спільного знаменника та записати все одним дробом. Гарно, звичайно, але коли виходять громіздкі довгі похідні – краще цього не робити (легко заплутатися, припуститися непотрібної помилки, та й викладачеві буде незручно перевіряти).

Приклад 7

Знайти похідну функції

Це приклад самостійного рішення (відповідь наприкінці уроку).

Цікаво відзначити, що іноді замість правила диференціювання складної функції можна використовувати правило приватного диференціювання , але таке рішення буде виглядати як спотворення смішно. Ось характерний приклад:



Приклад 8

Знайти похідну функції

Тут можна використовувати правило диференціювання приватного , але набагато вигідніше знайти похідну через правило диференціювання складної функції:

Підготовляємо функцію для диференціювання – виносимо мінус за знак похідної, а косинус піднімаємо до чисельника:

Косинус – внутрішня функція, зведення у ступінь – зовнішня функція.
Використовуємо наше правило:

Знаходимо похідну внутрішньої функції, косинус скидаємо назад донизу:

Готово. У розглянутому прикладі важливо не заплутатися у знаках. До речі, спробуйте вирішити його за допомогою правила , відповіді повинні збігтися.

Приклад 9

Знайти похідну функції

Це приклад самостійного рішення (відповідь наприкінці уроку).

Досі ми розглядали випадки, коли у нас у складній функції було лише одне вкладення. У практичних завданнях часто можна зустріти похідні, де, як матрьошки, одна в іншу, вкладені відразу 3, а то і 4-5 функцій.

Приклад 10

Знайти похідну функції

Розбираємось у вкладеннях цієї функції. Пробуємо обчислити вираз за допомогою піддослідного значення. Як би ми рахували на калькуляторі?

Спочатку потрібно знайти, значить, арксинус - найглибше вкладення:

Потім цей арксинус одиниці слід звести у квадрат:

І, нарешті, сімку зводимо в ступінь:

Тобто, в даному прикладі у нас три різні функції і два вкладення, при цьому найвнутрішній функцією є арксинус, а зовнішньої функцією – показова функція.

Починаємо вирішувати

Відповідно до правила спочатку потрібно взяти похідну від зовнішньої функції. Дивимося в таблицю похідних та знаходимо похідну показової функції: Єдина відмінність – замість «ікс» у нас складний виразщо не скасовує справедливість цієї формули. Отже, результат застосування правила диференціювання складної функції наступний:

Під штрихом знову складна функція! Але вона вже простіша. Легко переконатися, що внутрішня функція – арксинус, зовнішня функція – ступінь. Відповідно до правила диференціювання складної функції спочатку потрібно взяти похідну від ступеня.

Наводяться приклади обчислення похідних із застосуванням похідної формули складної функції.

Тут ми наводимо приклади обчислення похідних від таких функцій:
; ; ; ; .

Якщо функцію можна представити як складну функцію у такому вигляді:
,
то її похідна визначається за формулою:
.
У наведених нижче прикладах ми записуватимемо цю формулу в наступному вигляді:
.
де.
Тут нижні індекси або розташовані під знаком похідної позначають змінні, по якій виконується диференціювання.

Зазвичай, в похідних таблицях , наводяться похідні функцій від змінної x .

Однак x – це формальний параметр. Змінну x можна замінити будь-якою іншою змінною. Тому, при диференціювання функції від змінної , ми просто змінюємо, у таблиці похідних, змінну x на змінну u .

Прості приклади

Приклад 1
.

Знайти похідну складної функції

Рішення Запишемозадану функцію
.
в еквівалентному вигляді:
;
.

У таблиці похідних знаходимо:
.
За формулою похідної складної функції маємо:

Тут.

Відповідь

Приклад 2
.

Знайти похідну складної функції

Знайти похідну
.


.
За формулою похідної складної функції маємо:

Тут.

Виносимо постійну 5 за знак похідної та з таблиці похідних знаходимо:

Приклад 3
.

Знайти похідну складної функції

Знайдіть похідну -1 Виносимо постійну
;
за знак похідної та з таблиці похідних знаходимо:
.

З таблиці похідних знаходимо:
.
За формулою похідної складної функції маємо:

Тут.

Застосовуємо формулу похідної складної функції:

Більш складні приклади У більшскладних прикладах ми застосовуємо правило диференціювання складної функції кілька разів. При цьому ми обчислюємо похідну з кінця. Тобто розбиваємо функцію на складові частини та знаходимо похідні найпростіших частин, використовуючитаблицю похідних . Також ми застосовуємоправила диференціювання суми

, твори та дроби . Потім робимо підстановки та застосовуємо формулу похідної складної функції.

Приклад 3
.

Знайти похідну складної функції

Виділимо найпростішу частину формули та знайдемо її похідну. .



.
Тут ми використовували позначення
.

Знаходимо похідну наступної частини вихідної функції, застосовуючи отримані результати. Застосовуємо правило диференціювання суми:
.

Ще раз застосовуємо правило диференціювання складної функції.

.
За формулою похідної складної функції маємо:

Тут.

Приклад 5

Знайдіть похідну функції
.

Знайти похідну складної функції

Виділимо найпростішу частину формули та з таблиці похідних знайдемо її похідну. .

Застосовуємо правило диференціювання складної функції.
.
Тут
.