22.09.2019

Какие могут быть треугольники. Свойства треугольника. В том числе равенство и подобие, равные треугольники, стороны треугольника, углы треугольника, площадь треугольника — формулы вычисления, прямоугольный треугольник, равнобедренн


Треугольники

Треугольником называется фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки -- его сторонами.

Виды треугольников

Треугольник называется равнобедренным, если у него две сторны равны. Эти равные стороны называются боковыми сторонами, а третья сторона называется основанием треугольника.

Треугольник, у которого все сторны равны, называется равносторонним или правильным.

Треугольник называется прямоугольным, если у него есть прямой угол, то есть угол в 90°. Сторона прямоугольного треугольника, противолежащая прямому углу, называется гипотенузой, две другие стороны называются катетами.

Треугольник называется остроугольным, если все три его угла - острые, то есть меньше 90°.

Треугольник называется тупоугольным, если один из его углов - тупой, то есть больше 90°.

Основные линии треугольника

Медиана

Медиана треугольника - это отрезок, соединяющий верщину треугольника с серединой противолежащей стороны этого треугольника.

Свойства медиан треугольника

    Медиана разбивает треугольник на два треугольника одинаковой площади.

    Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника.

    Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.

Биссектриса

Биссектриса угла - это луч, который исходит из его вершины, проходит между его сторонами и делит данный угол пополам. Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.

Свойства биссектрис треугольника

Высота

Высотой треугольника называется перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону этого треугольника.

Свойства высот треугольника

    В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.

    В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.

Срединный перпендикуляр

Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.

Свойства серединных перпендикуляров треугольника

    Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.

    Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника .

Средняя линия

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

Свойство средней линии треугольника

Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.

Формулы и соотношения

Признаки равенства треугольников

Два треугольника равны, если у них соответственно равны:

    две стороны и угол между ними;

    два угла и прилежащая к ним сторона;

    три стороны.

Признаки равенства прямоугольных треугольников

Два прямоугольных треугольника равны, если у них соответственно равны:

    гипотенуза и острый угол;

    катет и противолежащий угол;

    катет и прилежащий угол;

    два катета ;

    гипотенуза и катет .

Подобие треугольников

Два треугольника подобны, если выполняется одно из следующих условий, называемых признаками подобия:

    два угла одного треугольника равны двум углам другого треугольника;

    две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, образованные этими сторонами, равны;

    три стороны одного треугольника соответственно пропорциональны трем сторонам другого треугольника.

В подобных треугольниках соответствующие линии (высоты , медианы , биссектрисы и т. п.) пропорциональны.

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов, причем коэффициент пропорциональности равен диаметру описанной около треугольника окружности :

Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

a 2 = b 2 + c 2 - 2bc cos

Формулы площади треугольника

    Произвольный треугольник

a, b, c - стороны; - угол между сторонамиa и b ;- полупериметр;R - радиус описанной окружности; r - радиус вписанной окружности; S - площадь; h a - высота, проведенная к стороне a .

Задачи:

1. Познакомить учащихся с разными видами треугольников в зависимости от вида углов (прямоугольный, остроугольный, тупоугольный). Учиться находить на чертежах треугольники и их виды. Закреплять основные геометрические понятия и их свойства: прямая линия, отрезок, луч, угол.

2. Развитие мышления, воображения, математической речи.

3. Воспитание внимания, активности.

Ход урока

I. Организационный момент.

Много ль надо нам, ребята,
Для умелых наших рук?
Нарисуем два квадрата,
А на них огромный круг.
А потом ещё кружочки,
Треугольник колпачок.
Вот и вышел очень - очень
Развесёлый Чудачок.

II. Объявление темы урока.

Сегодня на уроке мы с вами совершим путешествие по городу Геометрии и побываем в микрорайоне Треугольники (т.е. познакомимся с разными видами треугольников в зависимости от их углов, будем учиться находить эти треугольники на чертежах.) Проведём урок в форме “игры-соревнования” по командам.

1 команда - “Отрезок”.

2 команда - “Луч”.

3 команда - “Угол”.

А гости будут представлять жюри.

Жюри нас по пути направит

И без вниманья не оставит. (Оценивать по баллам 5,4,3,...).

А на чём же мы будем путешествовать по городу Геометрии? Вспомните, какие виды пассажирского транспорта есть в городе? Нас очень много, какой же мы выберем? (Автобус).

Автобус. Чётко, кратко. Начинается посадка.

Усаживаемся поудобнее и начнём наше путешествие. Капитаны команд получите билеты.

Но билеты эти непростые, а билеты - “задания”.

III. Повторение пройденного материала.

Первая остановка “ Повторяй-ка”.

Вопрос всем командам.

Найти на чертеже прямую линию и назвать её свойства.

Без конца и края линия прямая!
Хоть сто лет по ней иди,
Не найдёшь конца пути!

  • Прямая не имеет ни начала, ни конца - она бесконечна, поэтому её измерить нельзя.

Начинаем наше соревнование.

Защита названий своих команд.

(Все команды читают первые вопросы и обсуждают. По очереди капитаны команд зачитывают вопросы, 1 команда читает 1 вопрос).

1. Показать на чертеже отрезок. Что называется отрезком. Назвать его свойства.

  • Часть прямой, ограниченная двумя точками, называется отрезком. У отрезка есть начало и конец, потому его можно измерить при помощи линейки.

(2 команда читает 1 вопрос).

1. Показать на чертеже луч. Что называется лучом. Назвать его свойства.

  • Если отметить точку и из неё провести часть прямой, то получится изображение луча. Точка, из которой проведена часть прямой, называется началом луча.

Конца у луча нет, поэтому его измерить нельзя.

(3 команда читает 1 вопрос).

1 .Показать на чертеже угол. Что называется углом. Назвать его свойства.

  • Проведя из одной точки два луча, получается геометрическая фигура, которая называется углом. У угла есть вершина, а сами лучи называются сторонами угла. Углы измеряются в градусах с помощью транспортира.

Физкультминутка (под музыку).

IV. Подготовка к изучению нового материала.

Вторая остановка “Сказочная”.

На прогулке Карандаш встретил разные углы. Хотел с ними поздороваться, да забыл, как зовут каждого из них. Придётся Карандашу помочь.

(Углы уч-ся проверяют с помощью модели прямого угла).

Задание командам. Прочитайте вопросы №2, обсудите.

1 команда читает 2 вопрос.

2. Найти прямой угол, дать определение.

  • Угол величиной 90°называется прямым углом.

2 команда читает 2 вопрос.

2. Найти острый угол, дать определение.

  • Угол меньше прямого, называется острым.

3 команда читает 2 вопрос.

2. Найти тупой угол, дать определение.

Угол больше прямого, называется тупым.

В микрорайоне, где любил гулять Карандаш, все углы отличались от других жителей тем, что гуляли всегда втроём, пили чай втроём, ходили в кино втроём. И Карандаш никак не мог понять, что за геометрическую фигуру вместе составляют три угла?

А подсказкой вам будет стихотворение.

Ты на меня, ты на него,
На всех нас посмотри.
У нас всего, у нас всего,
У нас всего по три!

О свойствах какой фигуры говорится?

  • О треугольнике.

Какая же фигура называется треугольником?

  • Треугольник - это геометрическая фигура, у которой три вершины, три угла, три стороны.

(Уч-ся показывают на чертеже треугольник, называют вершины, углы и стороны).

Вершины: А, В, С (точки)

Углы: ВАС, АВС, ВСА.

Стороны: АВ, ВС, СА (отрезки).

V. Физкультминутка:

8 раз ногою топнем,
9 раз руками хлопнем,
мы присядем 10 раз,
и наклонимся 6 раз,
мы подпрыгнем ровно
столько (показ треугольника)
Ай, да, счёт! Игра и только!

VI. Изучение нового материала.

Скоро углы подружились и стали неразлучны.

И теперь микрорайон мы будем так и называть: микрорайон Треугольники.

Третья остановка “Знайка”.

А как зовут эти треугольники?

Давайте дадим им имена. И попробуем сами сформулировать определение.

2. Найди треугольники разных видов

1 команда найдет и покажет тупоугольные треугольники.

2 команда найдёт и покажет прямоугольные треугольники.

3 команда найдёт и покажет остроугольные треугольники.

VIII. Следующая остановка “Соображай-ка”.

Задание всем командам.

Переложив 6 палочек, составьте из фонаря 4 равных треугольника.

Какие по виду углов получились треугольники? (Остроугольные).

IX. Итог урока.

В каком же микрорайоне мы с вами побывали?

С какими видами треугольников познакомились?

Выберите рубрику Книги Математика Физика Контроль и управления доступом Пожарная безопасность Полезное Поставщики оборудования Cредства измерений (КИП) Измерение влажности — поставщики в РФ. Измерение давления. Измерение расходов. Расходомеры. Измерение температуры Измерение уровней. Уровнемеры. Бестраншейные технологии Канализационные системы. Поставщики насосов в РФ. Ремонт насосов. Трубопроводная арматура. Затворы поворотные (дисковые затворы). Обратные клапаны. Регулирующая арматура. Фильтры сетчатые, грязевики, магнито-механические фильтры. Шаровые краны. Трубы и элементы трубопроводов. Уплотнения резьб, фланцев и т.д. Электродвигатели, электроприводы… Руководство Алфавиты, номиналы, единицы, коды… Алфавиты, в т.ч. греческий и латинский. Символы. Коды. Альфа, бета, гамма, дельта, эпсилон… Номиналы электрических сетей. Перевод единиц измерения Децибел. Сон. Фон. Единицы измерения чего? Единицы измерения давления и вакуума. Перевод единиц измерения давления и вакуума. Единицы измерения длины. Перевод единиц измерения длины (линейного размера, расстояний). Единицы измерения объема. Перевод единиц измерения объема. Единицы измерения плотности. Перевод единиц измерения плотности. Единицы измерения площади. Перевод единиц измерения площади. Единицы измерения твердости. Перевод единиц измерения твердости. Единицы измерения температуры. Перевод единиц температур в шкалах Кельвина (Kelvin) / Цельсия (Celsius) / Фаренгейта (Fahrenheit) / Ранкина (Rankine) / Делисле (Delisle) / Ньютона (Newton) / Реамюрa Единицы измерения углов ("угловых размеров"). Перевод единиц измерения угловой скорости и углового ускорения. Стандартные ошибки измерений Газы различные как рабочие среды. Азот N2 (хладагент R728) Аммиак (холодильный агент R717). Антифризы. Водород H^2 (хладагент R702) Водяной пар. Воздух (Атмосфера) Газ природный — натуральный газ. Биогаз — канализационный газ. Сжиженный газ. ШФЛУ. LNG. Пропан-бутан. Кислород O2 (хладагент R732) Масла и смазки Метан CH4 (хладагент R50) Свойства воды. Угарный газ CO. Монооксид углерода. Углекислый газ CO2. (Холодильный агент R744). Хлор Cl2 Хлороводород HCl, он же — Cоляная кислота. Холодильные агенты (хладагенты). Хладагент (холодильный агент) R11 — Фтортрихлорметан (CFCI3) Хладагент (Холодильный агент) R12 — Дифтордихлорметан (CF2CCl2) Хладагент (Холодильный агент) R125 — Пентафторэтан (CF2HCF3). Хладагент (Холодильный агент) R134а — 1,1,1,2-Тетрафторэтан (CF3CFH2). Хладагент (Холодильный агент) R22 — Дифторхлорметан (CF2ClH) Хладагент (Холодильный агент) R32 — Дифторметан (CH2F2). Хладагент (Холодильный агент) R407С — R-32 (23%)/ R-125 (25%)/ R-134a (52%)/ Проценты по массе. другие Материалы — тепловые свойства Абразивы — зернистость, мелкость, шлифовальное оборудование. Грунты, земля, песок и другие породы. Показатели разрыхления, усадки и плотности грунтов и пород. Усадка и разрыхление, нагрузки. Углы откоса, отвала. Высоты уступов, отвалов. Древесина. Пиломатериалы. Лесоматериалы. Бревна. Дрова… Керамика. Клеи и клеевые соединения Лед и снег (водяной лед) Металлы Алюминий и сплавы алюминия Медь, бронзы и латуни Бронза Латунь Медь (и классификация медных сплавов) Никель и сплавы Соответствие марок сплавов Стали и сплавы Cправочные таблицы весов металлопроката и труб. +/-5% Вес трубы. Вес металла. Механические свойства сталей. Чугун Минералы. Асбест. Продукты питания и пищевое сырье. Свойства и пр. Ссылка на другой раздел проекта. Резины, пластики, эластомеры, полимеры. Подробное описание Эластомеров PU, ТPU, X-PU, H-PU, XH-PU, S-PU, XS-PU, T-PU, G-PU (CPU), NBR, H-NBR, FPM, EPDM, MVQ, TFE/P, POM, PA-6, TPFE-1, TPFE-2, TPFE-3, TPFE-4, TPFE-5 (PTFE модифицированный), Сопротивление материалов. Сопромат. Строительные материалы. Физические, механические и теплотехнические свойства. Бетон. Бетонный раствор. Раствор. Строительная арматура. Стальная и прочая. Таблицы применимости материалов. Химическая стойкость. Температурная применимость. Коррозионная стойкость. Уплотнительные материалы — герметики соединений. PTFE (фторопласт-4) и производные материалы. Лента ФУМ. Анаэробные клеи Герметики невысыхающие (незастывающие). Герметики силиконовые (кремнийорганические). Графит, асбест, парониты и производные материалы Паронит. Терморасширенный графит (ТРГ, ТМГ), композиции. Свойства. Применение. Производство. Лен сантехнический Уплотнители резиновых эластомеров Утеплители и теплоизоляционные материалы. (ссылка на раздел проекта) Инженерные приемы и понятия Взрывозащита. Защита от воздействия окружающей среды. Коррозия. Климатические исполнения (Таблицы совместимости материалов) Классы давления, температуры, герметичности Падение (потеря) давления. — Инженерное понятие. Противопожарная защита. Пожары. Теория автоматического управления (регулирования). ТАУ Математический справочник Арифметическая, Геометрическая прогрессии и суммы некоторых числовых рядов. Геометрические фигуры. Свойства, формулы: периметры, площади, объемы, длины. Треугольники, Прямоугольники и т.д. Градусы в радианы. Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д. Площади неправильных фигур, объемы неправильных тел. Средняя величина сигнала. Формулы и способы расчета площади. Графики. Построение графиков. Чтение графиков. Интегральное и дифференциальное исчисление. Табличные производные и интегралы. Таблица производных. Таблица интегралов. Таблица первообразных. Найти производную. Найти интеграл. Диффуры. Комплексные числа. Мнимая единица. Линейная алгебра. (Вектора, матрицы) Математика для самых маленьких. Детский сад — 7 класс. Математическая логика. Решение уравнений. Квадратные и биквадратные уравнения. Формулы. Методы. Решение дифференциальных уравнений Примеры решений обыкновенных дифференциальных уравнений порядка выше первого. Примеры решений простейших = решаемых аналитически обыкновенных дифференциальных уравнений первого порядка. Системы координат. Прямоугольная декартова, полярная, цилиндрическая и сферическая. Двухмерные и трехмерные. Системы счисления. Числа и цифры (действительные, комплексные, ….). Таблицы систем счисления. Степенные ряды Тейлора, Маклорена (=Макларена) и периодический ряд Фурье. Разложение функций в ряды. Таблицы логарифмов и основные формулы Таблицы численных значений Таблицы Брадиса. Теория вероятностей и статистика Тригонометрические функции, формулы и графики. sin, cos, tg, ctg….Значения тригонометрических функций. Формулы приведения тригонометрических функций. Тригонометрические тождества. Численные методы Оборудование — стандарты, размеры Бытовая техника, домашнее оборудование. Водосточные и водосливные системы. Емкости, баки, резервуары, танки. КИПиА Контрольно-измерительные приборы и автоматика. Измерение температуры. Конвейеры, ленточные транспортеры. Контейнеры (ссылка) Крепеж. Лабораторное оборудование. Насосы и насосные станции Насосы для жидкостей и пульп. Инженерный жаргон. Словарик. Просеивание. Фильтрация. Сепарация частиц через сетки и сита. Прочность примерная веревок, тросов, шнуров, канатов из различных пластиков. Резинотехнические изделия. Сочленения и присоединения. Диаметры условные, номинальные, Ду, DN, NPS и NB. Метрические и дюймовые диаметры. SDR. Шпонки и шпоночные пазы. Стандарты коммуникации. Сигналы в системах автоматизации (КИПиА) Аналоговые входные и выходные сигналы приборов, датчиков, расходомеров и устройств автоматизации. Интерфейсы подключения. Протоколы связи (коммуникации) Телефонная связь. Трубопроводная арматура. Краны, клапаны, задвижки…. Строительные длины. Фланцы и резьбы. Стандарты. Присоединительные размеры. Резьбы. Обозначения, размеры, использование, типы… (справочная ссылка) Соединения ("гигиенические", "асептические") трубопроводов в пищевой, молочной и фармацевтической промышленности. Трубы, трубопроводы. Диаметры труб и другие характеристики. Выбор диаметра трубопровода. Скорости потока. Расходы. Прочность. Таблицы выбора, Падение давления. Трубы медные. Диаметры труб и другие характеристики. Трубы поливинилхлоридные (ПВХ). Диаметры труб и другие характеристики. Трубы полиэтиленовые. Диаметры труб и другие характеристики. Трубы полиэтиленовые ПНД. Диаметры труб и другие характеристики. Трубы стальные (в т.ч. нержавеющие). Диаметры труб и другие характеристики. Труба стальная. Труба нержавеющая. Трубы из нержавеющей стали. Диаметры труб и другие характеристики. Труба нержавеющая. Трубы из углеродистой стали. Диаметры труб и другие характеристики. Труба стальная. Фитинги. Фланцы по ГОСТ, DIN (EN 1092-1) и ANSI (ASME). Соединение фланцев. Фланцевые соединения. Фланцевое соединение. Элементы трубопроводов. Электрические лампы Электрические разъемы и провода (кабели) Электродвигатели. Электромоторы. Электрокоммутационные устройства. (Ссылка на раздел) Стандарты личной жизни инженеров География для инженеров. Расстояния, маршруты, карты….. Инженеры в быту. Семья, дети, отдых, одежда и жилье. Детям инженеров. Инженеры в офисах. Инженеры и другие люди. Социализация инженеров. Курьезы. Отдыхающие инженеры. Это нас потрясло. Инженеры и еда. Рецепты, полезности. Трюки для ресторанов. Международная торговля для инженеров. Учимся думать барыжным образом. Транспорт и путешествия. Личные автомобили, велосипеды…. Физика и химия человека. Экономика для инженеров. Бормотология финансистов — человеческим языком. Технологические понятия и чертежи Бумага писчая, чертежная, офисная и конверты. Стандартные размеры фотографий. Вентиляция и кондиционирование. Водоснабжение и канализация Горячее водоснабжение (ГВС). Питьевое водоснабжение Сточная вода. Холодное водоснабжение Гальваническая промышленность Охлаждение Паровые линии / системы. Конденсатные линии / системы. Паропроводы. Конденсатопроводы. Пищевая промышленность Поставка природного газа Сварочные металлы Символы и обозначения оборудования на чертежах и схемах. Условные графические изображения в проектах отопления, вентиляции, кондиционирования воздуха и теплохолодоснабжения, согласно ANSI/ASHRAE Standard 134-2005. Стерилизация оборудования и материалов Теплоснабжение Электронная промышленность Электроснабжение Физический справочник Алфавиты. Принятые обозначения. Основные физические константы. Влажность абсолютная, относительная и удельная. Влажность воздуха. Психрометрические таблицы. Диаграммы Рамзина. Время Вязкость, Число Рейнольдса (Re). Единицы измерения вязкости. Газы. Свойства газов. Индивидуальные газовые постоянные. Давление и Вакуум Вакуум Длина, расстояние, линейный размер Звук. Ультразвук. Коэффициенты звукопоглощения (ссылка на другой раздел) Климат. Климатические данные. Природные данные. СНиП 23-01-99. Строительная климатология. (Статистика климатических данных) СНИП 23-01-99 .Таблица 3 — Средняя месячная и годовая температура воздуха, °С. Бывший СССР. СНИП 23-01-99 Таблица 1. Климатические параметры холодного периода года. РФ. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. Бывший СССР. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. РФ. СНИП 23-01-99 Таблица 3. Средняя месячная и годовая температура воздуха, °С. РФ. СНиП 23-01-99. Таблица 5а* — Среднее месячное и годовое парциальное давление водяного пара, гПа = 10^2 Па. РФ. СНиП 23-01-99. Таблица 1. Климатические параметры холодного времени года. Бывший СССР. Плотности. Веса. Удельный вес. Насыпная плотность. Поверхностное натяжение. Растворимость. Растворимость газов и твердых веществ. Свет и цвет. Коэффициенты отражения, поглощения и преломления Цветовой алфавит:) — Обозначения (кодировки) цвета (цветов). Свойства криогенных материалов и сред. Таблицы. Коэффициенты трения для различных материалов. Тепловые величины, включая температуры кипения, плавления, пламени и т.д …… дополнительная информация см.: Коэффициенты (показатели) адиабаты. Конвекционный и полный теплообмен. Коэффициенты теплового линейного расширения, теплового объемного расширения. Температуры, кипения, плавления, прочие… Перевод единиц измерения температуры. Воспламеняемость. Температура размягчения. Температуры кипения Температуры плавления Теплопроводность. Коэффициенты теплопроводности. Термодинамика. Удельная теплота парообразования (конденсации). Энтальпия парообразования. Удельная теплота сгорания (теплотворная способность). Потребность в кислороде. Электрические и магнитные величины Дипольные моменты электрические. Диэлектрическая проницаемость. Электрическая постоянная. Длины электромагнитных волн (справочник другого раздела) Напряженности магнитного поля Понятия и формулы для электричества и магнетизма. Электростатика. Пьезоэлектрические модули. Электрическая прочность материалов Электрический ток Электрическое сопротивление и проводимость. Электронные потенциалы Химический справочник "Химический алфавит (словарь)" — названия, сокращения, приставки, обозначения веществ и соединений. Водные растворы и смеси для обработки металлов. Водные растворы для нанесения и удаления металлических покрытий Водные растворы для очистки от нагара (асфальтосмолистого нагара, нагара двигателей внутреннего сгорания…) Водные растворы для пассивирования. Водные растворы для травления — удаления окислов с поверхности Водные растворы для фосфатирования Водные растворы и смеси для химического оксидирования и окрашивания металлов. Водные растворы и смеси для химического полирования Обезжиривающие водные растворы и органические растворители Водородный показатель pH. Таблицы показателей pH. Горение и взрывы. Окисление и восстановление. Классы, категории, обозначения опасности (токсичности) химических веществ Периодическая система химических элементов Д.И.Менделеева. Таблица Менделеева. Плотность органических растворителей (г/см3)в зависимости от температуры. 0-100 °С. Свойства растворов. Константы диссоциации, кислотности, основности. Растворимость. Смеси. Термические константы веществ. Энтальпии. Энтропии. Энергии Гиббса… (ссылка на химический справочник проекта) Электротехника Регуляторы Системы гарантированного и бесперебойного электроснабжения. Системы диспетчеризации и управления Структурированные кабельные системы Центры обработки данных

Самый простой многоугольник, который изучается в школе — это треугольник. Он более понятен для учащихся и встречает меньше трудностей. Несмотря на то что существуют различные виды треугольников, у которых имеются особенные свойства.

Какая фигура называется треугольником?

Образованная тремя точками и отрезками. Первые называются вершинами, вторые — сторонами. Причем все три отрезка должны быть соединены, чтобы между ними образовывались углы. Отсюда и название фигуры «треугольник».

Различия в названиях по углам

Поскольку они могут быть острыми, тупыми и прямыми, то и виды треугольников определяются по этим названиям. Соответственно, групп таких фигур три.

  • Первая. Если все углы треугольника острые, то он будет иметь название остроугольного. Все логично.
  • Вторая. Один из углов тупой, значит треугольник тупоугольный. Проще некуда.
  • Третья. Имеется угол, равный 90 градусам, который называется прямым. Треугольник становится прямоугольным.

Различия в названиях по сторонам

В зависимости от особенностей сторон выделяют такие виды треугольников:

    общий случай — разносторонний, в котором все стороны имеют произвольную длину;

    равнобедренный, у двух сторон которого имеются одинаковые числовые значения;

    равносторонний, длины всех его сторон одинаковые.

Если в задаче не указан конкретный вид треугольника, то нужно чертить произвольный. У которого все углы острые, а стороны имеют разную длину.

Свойства, общие для всех треугольников

  1. Если сложить все углы треугольника, то получится число, равное 180º. И неважно, какого он вида. Это правило действует всегда.
  2. Числовое значение любой стороны треугольника меньше, чем сложенные вместе две другие. При этом она же больше, чем их разность.
  3. Каждый внешний угол имеет значение, которое получается при сложении двух внутренних, не смежных с ним. Причем он всегда больше, чем смежный с ним внутренний.
  4. Напротив меньшей стороны треугольника всегда лежит самый маленький угол. И наоборот, если сторона большая, то и угол будет самым большим.

Эти свойства справедливы всегда, какие бы виды треугольников ни рассматривались в задачах. Все остальные вытекают из конкретных особенностей.

Свойства равнобедренного треугольника

  • Углы, которые прилегают к основанию, равны.
  • Высота, которая проведена к основанию, является также медианой и биссектрисой.
  • Высоты, медианы и биссектрисы, которые построены к боковым сторонам треугольника, соответственно равны друг другу.

Свойства равностороннего треугольника

Если имеется такая фигура, то будут верны все свойства, описанные немного выше. Потому что равносторонний всегда будет равнобедренным. Но не наоборот, равнобедренный треугольник не обязательно будет равносторонним.

  • Все его углы равны друг другу и имеют значение 60º.
  • Любая медиана равностороннего треугольника является его высотой и биссектрисой. Причем они все равны друг другу. Для определения их значений существует формула, которая состоит из произведения стороны на квадратный корень из 3, деленного на 2.

Свойства прямоугольного треугольника

  • Два острых угла дают в сумме значение в 90º.
  • Длина гипотенузы всегда больше, чем у любого из катетов.
  • Числовое значение медианы, проведенной к гипотенузе, равно ее половине.
  • Этому же значению равен катет, если он лежит напротив угла в 30º.
  • Высота, которая проведена из вершины со значением 90º, имеет определенную математическую зависимость от катетов: 1/н 2 = 1/а 2 + 1/в 2 . Здесь: а, в — катеты, н — высота.

Задачи с разными видами треугольников

№1. Дан равнобедренный треугольник. Его периметр известен и равен 90 см. Требуется узнать его стороны. В качестве дополнительного условия: боковая сторона меньше основания в 1,2 раза.

Значение периметра напрямую зависит от тех величин, которые нужно найти. Сумма всех трех сторон и даст 90 см. Теперь нужно вспомнить признак треугольника, по которому он является равнобедренным. То есть две стороны равны. Можно составить уравнение с двумя неизвестными: 2а + в = 90. Здесь а — боковая сторона, в — основание.

Настала очередь дополнительного условия. Следуя ему, получается второе уравнение: в = 1,2а. Можно выполнить подстановку этого выражения в первое. Получится: 2а + 1,2а = 90. После преобразований: 3,2а = 90. Отсюда а = 28,125 (см). Теперь несложно узнать основание. Лучше всего это сделать из второго условия: в = 1,2 * 28,125 = 33,75 (см).

Для проверки можно сложить три значения: 28,125 * 2 + 33,75 = 90 (см). Все верно.

Ответ: стороны треугольника равны 28,125 см, 28,125 см, 33,75 см.

№2. Сторона равностороннего треугольника равна 12 см. Нужно вычислить его высоту.

Решение. Для поиска ответа достаточно вернуться к тому моменту, где были описаны свойства треугольника. Так указана формула для нахождения высоты, медианы и биссектрисы равностороннего треугольника.

н = а * √3 / 2, где н — высота, а — сторона.

Подстановка и вычисление дают такой результат: н = 6 √3 (см).

Эту формулу необязательно запоминать. Достаточно вспомнить, что высота делит треугольник на два прямоугольных. Причем она оказывается катетом, а гипотенуза в нем — это сторона исходного, второй катет — половина известной стороны. Теперь нужно записать теорему Пифагора и вывести формулу для высоты.

Ответ: высота равна 6 √3 см.

№3. Дан МКР — треугольник, 90 градусов в котором составляет угол К. Известны стороны МР и КР, они равны соответственно 30 и 15 см. Нужно узнать значение угла Р.

Решение. Если сделать чертеж, то становится ясно, что МР — гипотенуза. Причем она в два раза больше катета КР. Снова нужно обратиться к свойствам. Одно из них как раз связано с углами. Из него понятно, что угол КМР равен 30º. Значит искомый угол Р будет равен 60º. Это следует из другого свойства, которое утверждает, что сумма двух острых углов должна равняться 90º.

Ответ: угол Р равен 60º.

№4. Нужно найти все углы равнобедренного треугольника. Про него известно, что внешний угол от угла при основании равен 110º.

Решение. Поскольку дан только внешний угол, то этим и нужно воспользоваться. Он образует с внутренним углом развернутый. Значит в сумме они дадут 180º. То есть угол при основании треугольника будет равен 70º. Так как он равнобедренный, то второй угол имеет такое же значение. Осталось вычислить третий угол. По свойству, общему для всех треугольников, сумма углов равна 180º. Значит, третий определится как 180º - 70º - 70º = 40º.

Ответ: углы равны 70º, 70º, 40º.

№5. Известно, что в равнобедренном треугольнике угол, лежащий напротив основания, равен 90º. На основании отмечена точка. Отрезок, соединяющий ее с прямым углом, делит его в отношении 1 к 4. Нужно узнать все углы меньшего треугольника.

Решение. Один из углов можно определить сразу. Поскольку треугольник прямоугольный и равнобедренный, то те, что лежат у его основания, будут по 45º, то есть по 90º/2.

Второй из них поможет найти известное в условии отношение. Поскольку оно равно 1 к 4, то частей, на которые он делится получается всего 5. Значит, чтобы узнать меньший угол треугольника нужно 90º/5 = 18º. Осталось узнать третий. Для этого из 180º (суммы всех углов треугольника) нужно вычесть 45º и 18º. Вычисления несложные, и получится: 117º.

Как правило, два треугольника считаются подобными если они имеют одинаковую форму, даже если они различаются размерами, повернуты или даже перевернуты.

Математическое представление двух подобных треугольников A 1 B 1 C 1 и A 2 B 2 C 2 , показанных на рисунке, записывается следующим образом:

ΔA 1 B 1 C 1 ~ ΔA 2 B 2 C 2

Два треугольника являются подобными если:

1. Каждый угол одного треугольника равен соответствующему углу другого треугольника:
∠A 1 = ∠A 2 , ∠B 1 = ∠B 2 и∠C 1 = ∠C 2

2. Отношения сторон одного треугольника к соответствующим сторонам другого треугольника равны между собой:
$\frac{A_1B_1}{A_2B_2}=\frac{A_1C_1}{A_2C_2}=\frac{B_1C_1}{B_2C_2}$

3. Отношения двух сторон одного треугольника к соответствующим сторонам другого треугольника равны между собой и при этом
углы между этими сторонами равны:
$\frac{B_1A_1}{B_2A_2}=\frac{A_1C_1}{A_2C_2}$ и $\angle A_1 = \angle A_2$
или
$\frac{A_1B_1}{A_2B_2}=\frac{B_1C_1}{B_2C_2}$ и $\angle B_1 = \angle B_2$
или
$\frac{B_1C_1}{B_2C_2}=\frac{C_1A_1}{C_2A_2}$ и $\angle C_1 = \angle C_2$

Не нужно путать подобные треугольники с равными треугольниками. У равных треугольников равны соответствующие длины сторон. Поэтому для равных треугольников:

$\frac{A_1B_1}{A_2B_2}=\frac{A_1C_1}{A_2C_2}=\frac{B_1C_1}{B_2C_2}=1$

Из этого следует что все равные треугольники являются подобными. Однако не все подобные треугольники являются равными.

Несмотря на то, что вышеприведенная запись показывает, что для выяснения, являются ли два треугольника подобными или нет, нам должны быть известны величины трех углов или длины трех сторон каждого треугольника, для решения задач с подобными треугольниками достаточно знать любые три величины из указанных выше для каждого треугольника. Эти величины могут составлять различные комбинации:

1) три угла каждого треугольника (длины сторон треугольников знать не нужно).

Или хотя бы 2 угла одного треугольника должны быть равны 2-м углам другого треугольника.
Так как если 2 угла равны, то третий угол также будет равным.(Величина третьего угла составляет 180 - угол1 - угол2)

2) длины сторон каждого треугольника (углы знать не нужно);

3) длины двух сторон и угол между ними.

Далее мы рассмотрим решение некоторых задач с подобными треугольниками. Сначала мы рассмотрим задачи, которые можно решить непосредственным использованием вышеуказанных правил, а затем обсудим некоторые практические задачи, которые решаются по методу подобных треугольников.

Практические задачи с подобными треугольниками

Пример №1: Покажите, что два треугольника на рисунке внизу являются подобными.

Решение:
Так как длины сторон обоих треугольников известны, то здесь можно применить второе правило:

$\frac{PQ}{AB}=\frac{6}{2}=3$ $\frac{QR}{CB}=\frac{12}{4}=3$ $\frac{PR}{AC}=\frac{15}{5}=3$

Пример №2: Покажите, что два данных треугольника являются подобными и определите длины сторон PQ и PR .

Решение:
∠A = ∠P и ∠B = ∠Q, ∠C = ∠R (так как ∠C = 180 - ∠A - ∠B и ∠R = 180 - ∠P - ∠Q)

Из этого следует, что треугольники ΔABC и ΔPQR подобны. Следовательно:
$\frac{AB}{PQ}=\frac{BC}{QR}=\frac{AC}{PR}$

$\frac{BC}{QR}=\frac{6}{12}=\frac{AB}{PQ}=\frac{4}{PQ} \Rightarrow PQ=\frac{4\times12}{6} = 8$ и
$\frac{BC}{QR}=\frac{6}{12}=\frac{AC}{PR}=\frac{7}{PR} \Rightarrow PR=\frac{7\times12}{6} = 14$

Пример №3: Определите длину AB в данном треугольнике.

Решение:

∠ABC = ∠ADE, ∠ACB = ∠AED и ∠A общий => треугольники ΔABC и ΔADE являются подобными.

$\frac{BC}{DE} = \frac{3}{6} = \frac{AB}{AD} = \frac{AB}{AB + BD} = \frac{AB}{AB + 4} = \frac{1}{2} \Rightarrow 2\times AB = AB + 4 \Rightarrow AB = 4$

Пример №4: Определить длину AD (x) геометрической фигуры на рисунке.

Треугольники ΔABC и ΔCDE являются подобными так как AB || DE и у них общий верхний угол C.
Мы видим, что один треугольник является масштабированной версией другого. Однако нам нужно это доказать математически.

AB || DE, CD || AC и BC || EC
∠BAC = ∠EDC и ∠ABC = ∠DEC

Исходя из вышеизложенного и учитывая наличие общего угла C , мы можем утверждать, что треугольники ΔABC и ΔCDE подобны.

Следовательно:
$\frac{DE}{AB} = \frac{7}{11} = \frac{CD}{CA} = \frac{15}{CA} \Rightarrow CA = \frac{15 \times 11}{7} = 23.57$
x = AC - DC = 23.57 - 15 = 8.57

Практические примеры

Пример №5: На фабрике используется наклонная конвеерная лента для транспортировки продукции с уровня 1 на уровень 2, который выше уровня 1 на 3 метра, как показано на рисунке. Наклонный конвеер обслуживается с одного конца до уровня 1 и с другого конца до рабочего места, расположенного на расстоянии 8 метров от рабочей точки уровня 1.

Фабрика хочет модернизировать конвеер для доступа к новому уровню, который находится на расстоянии 9 метров над уровнем 1, и при этом сохранить угол наклона конвеера.

Определите расстояние, на котором нужно установить новый рабочий пункт для обеспечения работы конвеера на его новом конце на уровне 2. Также вычислите дополнительное расстояние, которое пройдет продукция при перемещении на новый уровень.

Решение:

Для начала давайте обозначим каждую точку пересечения определенной буквой, как показано на рисунке.

Исходя из рассуждений, приведенных выше в предыдущих примерах, мы можем сделать вывод о том, что треугольники ΔABC и ΔADE являются подобными. Следовательно,

$\frac{DE}{BC} = \frac{3}{9} = \frac{AD}{AB} = \frac{8}{AB} \Rightarrow AB = \frac{8 \times 9}{3} = 24 м$
x = AB - 8 = 24 - 8 = 16 м

Таким образом, новый пункт должен быть установлен на расстоянии 16 метров от уже существующего пункта.

А так как конструкция состоит из прямоугольных треугольников, мы можем вычислить расстояние перемещения продукции следующим образом:

$AE = \sqrt{AD^2 + DE^2} = \sqrt{8^2 + 3^2} = 8.54 м$

Аналогично, $AC = \sqrt{AB^2 + BC^2} = \sqrt{24^2 + 9^2} = 25.63 м$
что является расстоянием, которое проходит продукция в данный момент при попадании на существующий уровень.

y = AC - AE = 25.63 - 8.54 = 17.09 м
это дополнительное расстояние, которое должна пройти продукция для достижения нового уровня.

Пример №6: Стив хочет навестить своего приятеля, который недавно переехал в новый дом. Дорожная карта проезда к дому Стива и его приятеля вместе с известными Стиву расстояниями показана на рисунке. Помогите Стиву добраться к дому его приятеля наиболее коротким путем.

Решение:

Дорожную карту можно геометрически представить в следующем виде, как показано на рисунке.

Мы видим, что треугольники ΔABC и ΔCDE подобны, следовательно:
$\frac{AB}{DE} = \frac{BC}{CD} = \frac{AC}{CE}$

В условии задачи сказано, что:

AB = 15 км, AC = 13.13 км, CD = 4.41 км и DE = 5 км

Используя эту информацию, мы можем вычислить следующие расстояния:

$BC = \frac{AB \times CD}{DE} = \frac{15 \times 4.41}{5} = 13.23 км$
$CE = \frac{AC \times CD}{BC} = \frac{13.13 \times 4.41}{13.23} = 4.38 км$

Стив может добраться к дому своего друга по следующим маршрутам:

A -> B -> C -> E -> G, суммарное расстояние равно 7.5+13.23+4.38+2.5=27.61 км

F -> B -> C -> D -> G, суммарное расстояние равно 7.5+13.23+4.41+2.5=27.64 км

F -> A -> C -> E -> G, суммарное расстояние равно 7.5+13.13+4.38+2.5=27.51 км

F -> A -> C -> D -> G, суммарное расстояние равно 7.5+13.13+4.41+2.5=27.54 км

Следовательно, маршрут №3 является наиболее коротким и может быть предложен Стиву.

Пример 7:
Триша хочет измерить высоту дома, но у нее нет нужных инструментов. Она заметила, что перед домом растет дерево и решила применить свою находчивость и знания геометрии, полученные в школе, для определения высоты здания. Она измерила расстояние от дерева до дома, результат составил 30 м. Затем она встала перед деревом и начала отходить назад, пока верхний край здания стал виден над верхушкой дерева. Триша отметила это место и измерила расстояние от него до дерева. Это расстояние составило 5 м.

Высота дерева равна 2.8 м, а высота уровня глаз Триши равна 1.6 м. Помогите Трише определить высоту здания.

Решение:

Геометрическое представление задачи показано на рисунке.

Сначала мы используем подобность треугольников ΔABC и ΔADE.

$\frac{BC}{DE} = \frac{1.6}{2.8} = \frac{AC}{AE} = \frac{AC}{5 + AC} \Rightarrow 2.8 \times AC = 1.6 \times (5 + AC) = 8 + 1.6 \times AC$

$(2.8 - 1.6) \times AC = 8 \Rightarrow AC = \frac{8}{1.2} = 6.67$

Затем мы можем использовать подобность треугольников ΔACB и ΔAFG или ΔADE и ΔAFG. Давайте выберем первый вариант.

$\frac{BC}{FG} = \frac{1.6}{H} = \frac{AC}{AG} = \frac{6.67}{6.67 + 5 + 30} = 0.16 \Rightarrow H = \frac{1.6}{0.16} = 10 м$