23.09.2019

Нейтронные звезды названия. Нейтронные звезды: что известно человечеству об этом явлении


С момента открытия нейтронных звезд в 1960-х годах ученые стремились ответить на очень важный вопрос: насколько массивными могут быть нейтронные звезды? В отличие от черных дыр, эти звезды не могут иметь произвольную массу. И вот астрофизикам из университета им. Гёте удалось вычислить верхний предел максимальной массы нейтронных звезд.

Имея радиус около 12 километров, и массу, которая может быть вдвое больше, чем у , нейтронные звезды входят в число самых плотных объектов во Вселенной, создавая гравитационные поля, сравнимые по мощности с полями, генерируемыми . Большинство нейтронных звезд имеют массу примерно в 1,4 раза больше, чем у Солнца, однако также известны примеры, такие как пульсар PSR J0348 + 0432, имеющий 2,01 массы Солнца.

Плотность этих звезд огромна, она примерно такова, как если бы Гималаи были сжаты до размеров пивной кружки. Однако есть основания полагать, что нейтронная звезда с максимальной массой сожмется до черной дыры, если бы будет добавлен хотя бы один нейтрон.

Вместе со своими учениками Элиасом Мостом и Лукасом Вейхом, профессор Лучиано Реццолла, физик, старший научный сотрудник Франкфуртского института перспективных исследований (FIAS) и профессор теоретической астрофизики в университете имени Гёте во Франкфурте, в настоящее время решили проблему, которая оставалась без ответа в течение 40 лет. Их вывод таков: с вероятностью до нескольких процентов максимальная масса невращающихся не может превышать 2,16 массы Солнца.

Основой для этого результата был подход «универсальных отношений», разработанный во Франкфурте несколько лет назад. Существование «универсальных отношений» подразумевает, что практически все нейтронные звезды «похожи друг на друга», что означает, что их свойства могут быть выражены в терминах безразмерных величин. Исследователи объединили эти «универсальные отношения» с данными о гравитационных волнах и электромагнитном излучении, полученными во время наблюдения в прошлом году двух нейтронных звезд в рамках эксперимента . Это значительно упрощает расчеты, поскольку делает их независимыми от уравнения состояния. Это уравнение является теоретической моделью, используемой для описания плотной материи внутри звезды, которая предоставляет информацию о ее составе на разных глубинах. Поэтому такая универсальная связь сыграла существенную роль в определении новой максимальной массы.

Полученный результат — хороший пример взаимодействия теоретических и экспериментальных исследований. «Прелесть теоретических исследований заключается в том, что она позволяет нам делать прогнозы. Теория, однако, отчаянно нуждается в экспериментах, чтобы сузить некоторые из ее неопределенностей», — говорит профессор Реццолла. «Поэтому весьма примечательно, что наблюдение единственного столкновения нейтронных звезд, произошедшее в миллионах световых лет от нас, в сочетании с универсальными отношениями, открытыми в нашей теоретической работе, позволило нам решить загадку, по поводу которой было так много спекуляций в прошлом».

Результаты были опубликованы в виде письма в астрофизическом журнале (Astrophysical Journal) . Всего несколько дней спустя исследовательские группы из США и Японии подтвердили полученные выводы, несмотря на то, что до сих пор придерживались разных и независимых подходов.

Она возникает после взрыва Сверхновой.

Это — закат жизни звезды. Её гравитация имеет такую силу, что она сбрасывает электроны с орбит атомов, превращая их в нейтроны.

Когда она теряет поддержку своего внутреннего давления, она схлопывается, и это приводит к взрыву Сверхновой .

Остатки этого тела становятся Нейтронной звездой, масса которой составляет 1,4 от массы Солнца, а радиус почти равен радиусу Манхеттена в США.

Вес кусочка сахара с плотностью нейтронной звезды равен…

Если, к примеру, взять кусочек сахара объёмом 1 см 3 и представить, что он сделан из вещества нейтронной звезды , то его масса составила бы приблизительно около одного миллиарда тонн. Это равняется массе примерно 8-ми тысяч авианосцев. Маленький объект с невероятной плотностью !

Новорождённая нейтронная звезда может похвастаться высокой скоростью вращения. Когда массивная звезда превращается в нейтронную, скорость её вращения изменяется.

Вращающаяся нейтронная звезда — природный электрогенератор. Её вращение создаёт мощное магнитное поле. Эта огромная сила магнетизма захватывает электроны и прочие частицы атомов и отправляет их вглубь Вселенной на громадной скорости. Высокоскоростные частицы имеют свойство излучать радиацию. Мерцание, которое мы наблюдаем у звёзд-пульсаров, и есть излучение этих частиц. Но мы замечаем его только тогда, когда излучение его направлено в нашу сторону.

Вращающаяся нейтронная звезда — это Пульсар, экзотический объект, появившийся, после взрыва Сверхновой. Это — закат её жизни.

Плотность нейтронных звёзд распределена по-разному. У них есть кора, отличающаяся невероятной плотностью. Но силы внутри нейтронной звезды способны пробить кору. И когда это происходит, звезда корректирует своё положение, что приводит к изменению её вращения. Это называется: кора треснула. На нейтронной звезде происходит взрыв.

Статьи

Kevin Gill / flickr.com

Немецкие астрофизики уточнили максимально возможную массу нейтронной звезды, опираясь на результаты измерений гравитационных волн и электромагнитного излучения от . Оказалось, что масса невращающейся нейтронной звезды не может быть больше 2,16 масс Солнца, говорится в статье, опубликованной в Astrophysical Journal Letters .

Нейтронные звезды - это сверхплотные компактные звезды, которые образуются во время вспышек сверхновых. Радиус нейтронных звезд не превышает нескольких десятков километров, а масса может быть сравнима с массой Солнца, что приводит к огромной плотности вещества звезды (порядка 10 17 килограмм на кубический метр). В то же время, масса нейтронной звезды не может превышать определенный предел - объекты с большими массами коллапсируют в черные дыры под действием собственной гравитации.

По различным оценкам, верхняя граница для массы нейтронной звезды лежит в диапазоне от двух до трех масс Солнца и зависит от уравнения состояния вещества, а также от скорости вращения звезды. В зависимости от плотности и массы звезды ученые выделяют несколько различных типов звезд, схематичная диаграмма изображена на рисунке. Во-первых, не вращающиеся звезды не могут иметь массу, большую M TOV (белая область). Во-вторых, когда звезда вращается с постоянной скоростью, ее масса может быть, как меньше M TOV (светло-зеленая область), так и больше (ярко-зеленая), но все же не должна превышать еще один предел, M max . Наконец, нейтронная звезда с переменной скоростью вращения теоретически может иметь произвольную массу (красные области разной яркости). Впрочем, всегда следует помнить, что плотность вращающихся звезд не может быть больше определенной величины, иначе звезда все равно коллапсирует в черную дыру (вертикальная линия на диаграмме отделяет стабильные решения от нестабильных).


Диаграмма различных типов нейтронных звезд в зависимости от их массы и плотности. Крестом отмечены параметры объекта, образовавшегося после слияния звезд двойной системы, пунктирными линиями - один из двух вариантов эволюции объекта

L. Rezzolla et al. / The Astrophysocal Journal

Группа астрофизиков под руководством Лучиано Реццолла (Luciano Rezzolla) установила новые, более точные ограничения на максимально возможную массу не вращающейся нейтронной звезды M TOV . В своей работе ученые использовали данные предыдущих исследований, посвященных процессам, которые происходили в системе двух сливающихся нейтронных звезд и привели к излучению гравитационных (событие GW170817) и электромагнитных (GRB 170817A) волн. Одновременная регистрация этих волн оказалось очень важным событием для науки, подробнее про него можно прочитать в нашей и в материале .

Из предыдущих работ астрофизиков следует , что после слияния нейтронных звезд образовалась гипермассивная нейтронная звезда (то есть ее масса M > M max), которая в дальнейшем развивалась по одному из двух возможных сценариев и через небольшой промежуток времени превратилась в черную дыру (пунктирные линии на диаграмме). Наблюдение за электромагнитной компонентой излучения звезды указывает на первый сценарий , в котором барионная масса звезды остается практически постоянной, а гравитационная масса относительно медленно уменьшается за счет излучения гравитационных волн. С другой стороны, гамма-всплеск от системы пришел практически одновременно с гравитационными волнами (всего на 1,7 секунды позже), а значит, точка превращения в черную дыру должна лежать близко к M max .

Поэтому если проследить эволюцию гипермассивной нейтронной звезды обратно до начального состояния, параметры которого были с хорошей точностью рассчитаны в предыдущих работах, можно найти значение интересующей нас M max . Зная M max , несложно уже найти M TOV , поскольку эти две массы связаны соотношением M max ≈ 1,2 M TOV . В этой статье астрофизики выполнили такие вычисления, используя так называемые «универсальные соотношения» , которые связывают параметры нейтронных звезд различной массы и не зависят от вида уравнения состояния их вещества. Авторы подчеркивают, что их вычисления используют только простые предположения и не опираются на численное моделирование. Конечный результат для максимально возможной массы составил от 2,01 до 2,16 масс Солнца. Нижняя граница для нее была получена раньше в результате наблюдений за массивными пульсарами в двойных системах - проще говоря, максимальная масса не может быть меньше 2,01 масс Солнца, поскольку астрономы в действительности наблюдали нейтронные звезды с такой большой массой.

Ранее мы писали о том, как астрофизики с помощью компьютерных симуляций на массу и радиус нейтронных звезд, слияние которых привело к событиям GW170817 и GRB 170817A.

Дмитрий Трунин

МОСКВА, 28 авг - РИА Новости. Ученые обнаружили рекордно тяжелую нейтронную звезду, масса которой в два раза превышает массу Солнца, что заставит их пересмотреть ряд теорий, в частности, теории, согласно которой внутри сверхплотного вещества нейтронных звезд могут присутствовать "свободные" кварки, говорится в статье, опубликованной в четверг в журнале Nature .

Нейтронная звезда представляет собой "труп" звезды, оставшийся после вспышки сверхновой. Ее размер не превышает размеров небольшого города, однако вещество по плотности в 10-15 раз выше плотности атомного ядра - "щепотка" вещества нейтронной звезды весит более 500 миллионов тонн.

Гравитация "вдавливает" электроны в протоны, превращая их в нейтроны, почему нейтронные звезды и получили такое название. До последнего времени ученые полагали, что масса нейтронной звезды не может превысить две солнечных, поскольку иначе гравитация "схлопнет" звезду в черную дыру. Состояние недр нейтронных звезд во многом является загадкой. Например, обсуждается присутствие "свободных" кварков и таких элементарных частиц, как K-мезоны и гипероны в центральных областях нейтронной звезды.

Авторы исследования, группа американских ученых во главе с Полом Деморестом (Paul Demorest) из Национальной радиообсерватории, изучали двойную звезду J1614-2230 в трех тысячах световых лет от Земли, один из компонентов которой является нейтронной звездой, а второй белым карликом.

При этом нейтронная звезда представляет собой пульсар, то есть звезду, испускающую узконаправленные потоки радиоизлучения, в результате вращения звезды поток излучения можно уловить с поверхности Земли с помощью радиотелескопов через разные промежутки времени.

Белый карлик и нейтронная звезда вращаются друг относительно друга. Однако на скорость прохождения радиосигнала от центра нейтронной звезды влияет гравитация белого карлика, она "тормозит" его. Ученые, измеряя на Земле время прихода радиосигналов, могут с высокой точностью установить массу объекта, "ответственного" за задержку сигнала.

"Нам очень повезло с этой системой. Быстровращающийся пульсар дает нам сигнал, приходящий с орбиты, которая прекрасно расположена. Более того, наш белый карлик довольно крупный для звезд подобного типа. Эта уникальная комбинация позволяет использовать эффект Шапиро (гравитационную задержку сигнала) в полной мере и упрощает измерения", - говорит один из авторов статьи Скотт Ренсом (Scott Ransom).

Двойная система J1614-2230 расположена таким образом, что наблюдать ее можно почти "с ребра", то есть в плоскости орбиты. Это облегчает точное измерение масс, входящих в нее звезд.

В результате масса пульсара оказалась равна 1,97 солнечной массы, что стало рекордом для нейтронных звезд.

"Эти измерения массы говорят нам, что если кварки вообще есть в ядре нейтронной звезды, они не могут быть "свободными", а, скорее всего, должны взаимодействовать друг с другом гораздо сильнее, чем в "обычных" атомных ядрах", - поясняет руководитель группы астрофизиков, занимающихся этим вопросом, Ферьял Озел (Feryal Ozel) из университета штата Аризона.

"Меня удивляет, что такой простой факт, как масса нейтронной звезды, может сказать так много в различных областях физики и астрономии", - говорит Ренсом.

Астрофизик Сергей Попов из Государственного астрономического института имени Штернберга отмечает, что изучение нейтронных звезд может дать важнейшую информацию о строении материи.

"В земных лабораториях нельзя изучать вещество при плотности намного больше ядерной. А это очень важно для понимания того, как устроен мир. К счастью, такое плотное вещество есть в недрах нейтронных звезд. Для определения свойств этого вещества очень важно узнать, какую предельную массу может иметь нейтронная звезда и не превратиться в черную дыру", - сказал Попов РИА Новости.