10.10.2019

Поступательное движение: определение, формулы, теорема. Поступательное и вращательное движение


Механика рассматривает всевозможные движения материальной точки и твердого тела. Все они описываются в нескольких разделах. К примеру, вопрос о том, как они движутся, будет прерогативой кинематики. В ней подробно описывается поступательное движение, а также более сложное - вращательное. Сначала о том, что проще. Потому что без этого сложно переходить к следующим темам.

Какие допущения позволяет механика?

Во многих задачах разрешено вводить приближение. Это связано с тем, что оно не окажет влияния на результат, зато упростит ход рассуждений.

Первое приближение связано с размерами тела. Если рассматриваемое тело существенно меньше других, находящихся с ним в одной системе отсчета, то его размерами пренебрегают. А само тело превращается в материальную точку.

Второе следует из отсутствия деформации у тела во время его перемещения. Или хотя бы настолько ее незначительной величины, которой вполне можно пренебречь.

В чем заключается поступательное движение тела?

Для пояснения потребуется рассмотреть две любые точки внутри твердого тела. Их нужно соединить отрезком. Если этот отрезок во время перемещения остается параллельным начальному положению, то говорят, что это - поступательное движение.

Если наблюдается пренебрежение размерами тела и рассматривается материальная точка, то отрезок отсутствует и она сама перемещается вдоль прямой.

Яркие примеры такого движения

Первое, о чем можно вспомнить — это кабина лифта. Она идеально иллюстрирует поступательное движение тела. Лифт всегда перемещается строго вверх или вниз без какого-либо вращения.

Следующим примером, иллюстрирующим поступательное движение, называют перемещение кабины колеса обозрения. Однако это реально только в ситуации, когда не учитывается небольшой наклон кабинки в начале каждого смещения.

Третья ситуация, когда можно говорить о поступательном движении, связана с движением педалей велосипеда. Их перемещение рассматривается относительно рамы. Здесь опять же вводится допущение, что ступни человека во время езды не качаются.

Завершить список можно перемещением поршней, которые колеблются внутри цилиндров двигателя внутреннего сгорания.

Главные понятия

Кинематика поступательного движения заключается в том, что изучает и описывает перемещение твердых тел и материальных точек. При этом она не рассматривает причины, которые тело к этому принуждают. Чтобы описать движение, потребуются координаты для указания его положения в пространстве. К тому же потребуется знание о скорости, причем в каждый конкретный момент времени.

Сначала стоит вспомнить о траектории. Она является линией, по которой двигалось тело.

Первым требуется ввести перемещение. Оно представляет собой вектор, который обозначается латинской буквой r. Он может соединять начало координат с положением материальной точки. В других случаях этот вектор проводится от начальной до конечной точки траектории. Единицы измерения перемещения — это метры.

Вторая величина, заслуживающая внимания, - путь. Он равен длине траектории, по которой двигалось тело. Обозначается путь буквой латинского алфавита S, которая тоже измеряется в метрах.

Основные формулы

Теперь настало время скорости. Она тоже является вектором. Причем характеризует не только направление движения тела, но и быстроту его перемещения. Вектор скорости всегда направлен вдоль касательной линии, которую можно провести к любой точке траектории. Обозначается она буквой V. Единицы ее измерения — м/с.
Скорость в каждое мгновение движения можно определить как производную перемещения по времени. Если в задаче идет речь о равномерном движении, то справедлива следующая формула:

  • V = S: t, где t — время движения.

В ситуации, когда направление движения изменяется, приходится использовать сумму всех перемещений.

Следующая величина — ускорение. Снова векторная величина, которая направлена в сторону скорости с большим значением. Определяется она как первая производная от скорости по времени. Принятое обозначение — буква «а». Размерность указывается в м/с 2 .

Формулы для каждой составляющей ускорения, направленных вдоль осей, вычисляется как отношение изменения скорости вдоль этой оси к промежутку времени. Если сделать математическую запись, то получится следующее:

  • а х = ∆V х: ∆t.

Для проекций ускорения на другие оси формулы аналогичны.
К тому же при рассмотрении движения по траектории с изгибами существует возможность разложить вектор ускорения на два слагаемых:

  • а = а t + а n , где а t — тангенциальное ускорение, направленное по касательной к изгибу, а n — нормальное, которое указывает на центр искривления.

Поступательное движение любого твердого тела сводится к тому, чтобы описать перемещение только одной его точки. Формулы, которыми нужно пользоваться, такие:

  • S = S 0 + V 0 t + (at 2) : 2.
  • V = V 0 + at.

В этой формуле индексами «ноль» обозначены начальные значения величин.

Теорема о величинах поступательного движения

Ее формулировка звучит так: траектория, скорость и ускорение всех точек тела одинаковы при его поступательном движении.

Для ее доказательства нужно записать формулу сложения векторов перемещения и вектора, соединяющего две произвольные точки. Траектории всех точек получаются благодаря их переносу вдоль второго вектора. А он не изменяет своего направления и величины с течением времени. Поэтому можно утверждать, что все точки тела движутся по одинаковым траекториям.

Если взять производную по времени, то получится значение скорости. Причем выражение упрощается до той степени, что скорости двух точек равны.
Поле второй производной по времени получается результат с равенством ускорений двух точек.

Движение твердого тела разделяют на виды:

  • поступательное;
  • вращательное по неподвижной оси;
  • плоское;
  • вращательное вокруг неподвижной точки;
  • свободное.

Первые два из них – простейшие, а остальные представляют как комбинацию основных движений.

Определение 1

Поступательным называют движение твердого тела, при котором любая прямая, проведенная в нем, двигается, оставаясь параллельной своему начальному направлению.

Прямолинейное движение является поступательным, но не всякое поступательное будет прямолинейным. При наличии поступательного движения путь тела представляют в виде кривых линий.

Рисунок 1 . Поступательное криволинейное движение кабин колеса обзора

Теорема 1

Свойства поступательного движения определяются теоремой: при поступательном движении все точки тела описывают одинаковые траектории и в каждый момент времени обладают одинаковыми по модулю и направлению значениями скорости и ускорения.

Следовательно, поступательное движение твердого тела определено движением любой его точки. Это сводится к задаче кинематики точки.

Определение 2

Если имеется поступательное движение, то общая скорость для всех точек тела υ → называется скоростью поступательного движения , а ускорение a → - ускорением поступательного движения . Изображение векторов υ → и a → принято указывать приложенными в любой точке тела.

Понятие о скорости и ускорении тела имеют смысл только при наличии поступательного движения. В других случаях точки тела характеризуются разными скоростями и ускорениями.

Определение 3

Вращательное движение абсолютно твердого тела вокруг неподвижной оси – это движение всех точек тела, находящихся в плоскостях, перпендикулярных неподвижной прямой, называемой осью вращения, и описывание окружностей, центры которых располагаются на этой оси.

Чтобы определить положение вращающегося тела, необходимо начертить ось вращения, вдоль которой направляется ось A z , полуплоскость – неподвижную, проходящую через тело и движущуюся с ним, как показано на рисунке 2 .

Рисунок 2 . Угол поворота тела

Положение тела в любой момент времени будет характеризоваться соответствующим знаком перед углом φ между полуплоскостями, который получил название угол поворота тела. При его откладывании, начиная от неподвижной плоскости (направление против хода часовой стрелки), угол принимает положительное значение, против плоскости – отрицательное. Измерение угла производится в радианах. Для определения положения тела в любой момент времени следует учитывать зависимость угла φ от t , то есть φ = f (t) . Уравнение является законом вращательного движения твердого тела вокруг неподвижной оси.

При наличии такого вращения значения углов поворота радиус-вектора различных точек тела будут аналогичны.

Вращательное движение твердого тела характеризуется угловой скоростью ω и угловым ускорением ε .

Уравнения вращательного движения получают из уравнений поступательного, используя замены перемещения S на угловое перемещение φ , скорость υ на угловую скорость ω , а ускорение a на угловое ε .

Вращательное и поступательное движение. Формулы

Задачи на вращательное движение

Пример 1

Дана материальная точка, которая движется прямолинейно соответственно уравнению s = t 4 + 2 t 2 + 5 . Вычислить мгновенную скорость и ускорение точки в конце второй секунды после начала движения, среднюю скорость и пройденный за этот промежуток времени путь.

Дано: s = t 4 + 2 t 2 + 5 , t = 2 с.

Найти: s ; υ ; υ ; α .

Решение

s = 2 4 + 2 · 2 2 + 5 = 29 м.

υ = d s d t = 4 t 3 + 4 t = 4 · 2 3 + 4 · 2 = 37 м / с.

υ = ∆ s ∆ t = 29 2 = 14 , 5 м / с.

a = d υ d t = 12 t 2 + 4 = 12 · 2 2 + 4 = 52 м / с 2 .

Ответ: s = 29 м; υ = 37 м / с; υ = 14 , 5 м / с; α = 52 м / с 2

Пример 2

Задано тело, вращающееся вокруг неподвижной оси по уравнению φ = t 4 + 2 t 2 + 5 . Произвести вычисление мгновенной угловой скорости, углового ускорения тела в конце 2 секунды после начала движения, средней угловой скорости и угла поворота за данный промежуток времени.

Дано: φ = t 4 + 2 t 2 + 5 , t = 2 с.

Найти: φ ; ω ; ω ; ε .

Решение

φ = 2 4 + 2 · 2 2 + 5 = 29 р а д.

ω = d φ d t = 4 t 3 + 4 t = 4 · 2 3 + 4 · 2 = 37 р а д / с.

ω = ∆ φ ∆ t = 29 2 = 14 , 5 р а д / с.

ε = d ω d t = 12 2 + 4 = 12 · 2 2 + 4 = 52 р а д / с 2 .

Ответ: φ = 29 р а д; ω = 37 р а д / с; ω = 14 , 5 р а д / с; ε = 52 р а д / с 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Поступательное движение

Рис 1.Поступательное движение тела на плоскости слева-направо, с произвольно выделенным в нём отрезком AB . Вначале прямолинейное , затем - криволинейное, переходящее во вращение каждой точки вокруг своего центра с равными для данного момента угловыми скоростями и равными значениями радиуса поворота. Точки O - мгновенные центры поворота вправо. R - их равные для каждого конца отрезка, но различные для разных моментов времени мгновенные радиусы поворота.

Поступательное движение - это механическое движение системы точек (тела), при котором любой отрезок прямой , связанный с движущимся телом , форма и размеры которого во время движения не меняются, остается параллельным своему положению в любой предыдущий момент времени.

Приведённая иллюстрация показывает, что, в отличие от распространённого утверждения . поступательное движение не является противоположностью движению вращательному, а в общем случае может рассматриваться как совокупность поворотов - не закончившихся вращений. При этом подразумевается, что прямолинейное движение есть поворот вокруг бесконечно удалённого от тела центра поворота.

В общем случае поступательное движение происходит в трёхмерном пространстве, но его основная особенность - сохранение параллельности любого отрезка самому себе, остаётся в силе.

Математически поступательное движение по своему конечному результату эквивалентно параллельному переносу .Однако, рассматриваемое как физический процесс оно представляет собой в трёхмерном пространстве вариант винтового движения (См. Рис. 2)

Примеры поступательного движения

Поступательно движется, например, кабина лифта . Также, в первом приближении, поступательное движение совершает кабина колеса обозрения . Однако, строго говоря, движение кабины колеса обозрения нельзя считать поступательным.

Одной из важнейших характеристик движения точки является её траектория , в общем случае представляющая собой пространственную кривую, которую можно представить в виде сопряжённых дуг различного радиуса, исходящего каждый из своего центра, положение которого может меняться во времени. В пределе и прямая может рассматриваться как дуга, радиус которой равен бесконечности .

Рис.2 Пример Трёхмерного поступательного движения тела

В таком случае оказывается, что при поступательном движении в каждый заданный момент времени любая точка тела совершает поворот вокруг своего мгновенного центра поворота, причём длина радиуса в данный момент одинакова для всех точек тела. Одинаковы по величине и направлению и векторы скорости точек тела, а также испытываемые ими ускорения.

При решении задач теоретической механики бывает удобно рассматривать движение тела как сложение движения центра масс тела и вращательного движения самого тела вокруг центра масс (это обстоятельство принято во внимание при формулировке теоремы Кёнига).

Примеры устройств

Торговые весы, чашки которых движутся поступательно, но не прямолинейно

Принцип поступательного движения реализован в чертёжном приборе - пантографе , ведущее и ведомое плечо которого всегда остаются параллельными, то есть движутся поступательно. При этом любая точка на движущихся частях совершает в плоскости заданные движения, каждая вокруг своего мгновенного центра вращения с одинаковой для всех движущихся точек прибора угловой скоростью .

Существенно, что ведущее и ведомое плечо прибора, хотя и движущиеся согласно, представляют собой два разных тела. Поэтому радиусы кривизны , по которым движутся заданные точки на ведущем и ведомом плече могут быть сделаны неодинаковыми, и именно в этом и заключается смысл использования прибора, позволяющего воспроизводить любую кривую на плоскости в масштабе , определяемым отношением длин плеч.

По сути дела пантограф обеспечивает синхронное поступательное движение системы двух тел: «читающего» и «пишущего», движение каждого из которых иллюстрируется приведённым выше чертежом.

См. также

  • Прямолинейное движение точки
  • Центростремительные и центробежные силы

Примечания

Литература

  • Ньютон И. Математические начала натуральной философии. Пер. и прим. А. Н. Крылова. М.: Наука, 1989
  • С. Э. Хайкин. Силы инерции и невесомость. М.: «Наука», 1967 г. Ньютон И. Математические начала натуральной философии. Пер. и прим. А. Н. Крылова.
  • Фриш С. А. и Тиморева А. В. Курс общей физики, Учебник для физико-математических и физико-технических факультетов государственных университетов, Том I. М.: ГИТТЛ, 1957

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :
  • Миранда, Эдисон
  • Зубков, Валентин Иванович

Смотреть что такое "Поступательное движение" в других словарях:

    Поступательное движение - Поступательное движение. Перемещение отрезка прямой АВ происходит параллельно самому себе. ПОСТУПАТЕЛЬНОЕ ДВИЖЕНИЕ, перемещение тела, при котором любая прямая, проведенная в теле, перемещается параллельно самой себе. При поступательном движении… … Иллюстрированный энциклопедический словарь

    ПОСТУПАТЕЛЬНОЕ ДВИЖЕНИЕ - движение тв. тела, при к ром прямая, соединяющая две любые точки тела, перемещается, оставаясь параллельной своему начальному направлению. При П. д. все точки тела описывают одинаковые траектории и имеют в каждый момент времени одинаковые по… … Физическая энциклопедия

    поступательное движение - продвижение, подвижка, шаг вперед, лед тронулся, совершенствование, рост, сдвиг, шаг, движение вперед, прогресс, развитие Словарь русских синонимов. поступательное движение сущ., кол во синонимов: 11 движение вперед … Словарь синонимов

    поступательное движение - твёрдого тела; поступательное движение Движение тела, при котором прямая, соединяющая две любые точки этого тела, перемещается, оставаясь параллельной своему начальному направлению … Политехнический терминологический толковый словарь

    ПОСТУПАТЕЛЬНОЕ ДВИЖЕНИЕ - движение вперед. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907 … Словарь иностранных слов русского языка

    ПОСТУПАТЕЛЬНОЕ ДВИЖЕНИЕ - перемещение тела, при котором любая прямая, проведенная в теле, перемещается параллельно самой себе. При поступательном движении все точки тела описывают одинаковые траектории и имеют в каждый момент времени одинаковые скорости и ускорения … Большой Энциклопедический словарь

    поступательное движение - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN advancetransiational advanceheadwayforward motion … Справочник технического переводчика

    поступательное движение - перемещение тела, при котором любая прямая (например, АВ на рис.), проведённая в теле, перемещается параллельно самой себе. При поступательном движении все точки тела описывают одинаковые траектории и имеют в каждый момент времени одинаковые… … Энциклопедический словарь

    ПОСТУПАТЕЛЬНОЕ ДВИЖЕНИЕ - перемещение тела, при к ром любая прямая (напр., АВ на рис.), проведённая в теле, перемещается параллельно самой себе. При П. д. все точки тела описывают одинаковые траектории и имеют в каждый момент времени одинаковые скорости и ускорения … Естествознание. Энциклопедический словарь

    поступательное движение - slenkamasis judesys statusas T sritis automatika atitikmenys: angl. traslational motion; traslational movement vok. fortschreitende Bewegung, f; Schiebung, f rus. поступательное движение, n pranc. mouvement de translation, m … Automatikos terminų žodynas

Книги

  • Поступательное движение в Среднюю Азию в торговом и дипломатически-военном отношениях. Дополнительный материал для истории Хивинского похода 1873 г. , Лобысевич Ф.И.. Книга представляет собой репринтное издание 1900 года. Несмотря на то, что была проведена серьезная работа по восстановлению первоначального качества издания, на некоторых страницах могут…

Поступательным называется такое движение твердого тела, когда всякая прямая, мысленно проведенная в теле, перемещается параллельно самой себе.

Теорема. При поступательном движении все точки тела описывают одинаковые (конгруэнтные) траектории и имеют в каждый момент времени геометрически равные скорости и ускорения.

Доказательство. Пусть тело движется поступательно (рис. 91). Произвольно выберем в теле две точки и . Вектор эти точки, при поступательном движении тела является постоянным вектором - его направление остается постоянным в соответствии с определением поступательного движения, модуль - в силу неизменности расстояний между точками абсолютно твердого тела. Следовательно, для радиусов-векторов выделенных точек в любой момент времени выполняется соотношение:

Это равенство означает, что если положение точки в какой-то момент времени стало известно, то положение точки в этот момент найдется путем смещения точки на векторную величину , одинаковую во все моменты времени. Поэтому, если известно геометрическое место положений (траектория) точки , то геометрическое место положений (траектория) точки получается путем сдвига траектории точки в направлении и на величину вектора . Что и доказывает конгруэнтность траекторий точек и . Поскольку точки выбраны произвольно, то конгруэнтны траектории всех точек тела.

Дифференцируя написанное равенство последовательно два раза по времени, убеждаемся в справедливости и второй части теоремы:

Общая для всех точек тела скорость и называется скоростью тела; общее для всех точек ускорение - ускорением тела. Сразу заметим, что эти термины имеют смысл только при поступательном движении; во всех других случаях движения тела отдельные точки тела имеют разные скорости и ускорения.

Из всего сказанного следует, что изучение поступательного движения тела сводится к задаче кинематики точки. Именно, в теле выбирается точка, движение которой определяется наиболее просто, и методами кинематики точки определяются ее траектория, скорость, ускорение. Траектории, скорости и ускорения остальных точек определяются простым переносом кинематических характеристик выделенной точки.

Определить траекторию, скорость и ускорение точки М, жестко связанной со звеном АВ механизма спарника (рис. 92), если , а угол .

Замечаем, что звено АВ механизма движется поступательно. Движение его точки А, которая одновременно служит концом кривошипа , легко определяется. Выделим эту точку и найдем ее кинематические характеристики.

Непосредственно видно, что траекторией точки А является окружность с центром в точке и радиусом . Сместив эту окружность так, чтобы ее центр оказался в точке О, причем , получаем траекторию точки М.