16.10.2019

Як беруться похідні від найскладніших функцій. Доказ формули похідної складної функції


Складні похідні. Логарифмічна похідна.
Похідна статечно-показової функції

Продовжуємо підвищувати свою техніку диференціювання. На цьому уроці ми закріпимо пройдений матеріал, розглянемо складніші похідні, а також познайомимося з новими прийомами та хитрощами знаходження похідної, зокрема з логарифмічною похідною.

Тим читачам, у кого низький рівеньпідготовки, слід звернутися до статті Як знайти похідну? Приклади рішеньяка дозволить підняти свої навички практично з нуля. Далі необхідно уважно вивчити сторінку Похідна складної функції, зрозуміти та вирішувати Усенаведені приклади. Даний урок логічно третій за рахунком, і після його освоєння Ви впевнено диференціюватимете досить складні функції. Небажано дотримуватись позиції «Куди ще? Та й так вистачить!», оскільки всі приклади та прийоми рішення взято з реальних контрольних робітта часто зустрічаються на практиці.

Почнемо із повторення. На уроці Похідна складної функціїми розглянули низку прикладів із докладними коментарями. У ході вивчення диференціального обчислення та інших розділів математичного аналізу – диференціювати доведеться дуже часто, і не завжди буває зручно (та й завжди потрібно) розписувати приклади дуже докладно. Тому ми потренуємося в усному знаходженні похідних. Найкращими «кандидатами» для цього є похідні найпростіших із складних функцій, наприклад:

За правилом диференціювання складної функції :

При вивченні інших тем матану в майбутньому такий докладний запис найчастіше не потрібний, передбачається, що студент вміє знаходити подібні похідні на автопілоті автоматі. Припустимо, що о 3 годині ночі пролунав телефонний дзвінок, І приємний голос запитав: «Чому дорівнює похідна тангенса двох ікс?». На це має бути майже миттєва і ввічлива відповідь: .

Перший приклад буде одразу призначений для самостійного рішення.

Приклад 1

Знайти такі похідні усно, на одну дію, наприклад: . Для виконання завдання потрібно використовувати лише таблицю похідних елементарних функцій(Якщо вона ще не запам'яталася). Якщо виникнуть труднощі, рекомендую перечитати урок Похідна складної функції.

, , ,
, , ,
, , ,

, , ,

, , ,

, , ,

, ,

Відповіді наприкінці уроку

Складні похідні

Після попередньої артпідготовки будуть менш страшні приклади з 3-4-5 вкладеннями функцій. Можливо, наступні два приклади здадуться деяким складними, але якщо їх зрозуміти (хтось і мучиться), то майже все інше в диференціальному обчисленні здаватиметься дитячим жартом.

Приклад 2

Знайти похідну функції

Як зазначалося, при знаходженні похідної складної функції, передусім, необхідно правильноРОЗІБРАТИСЯ у вкладеннях. У тих випадках, коли є сумніви, нагадую корисний прийом: беремо піддослідне значення «ікс», наприклад, і пробуємо (подумки або на чернетці) підставити дане значення в «страшний вираз».

1) Спочатку нам потрібно обчислити вираз, отже, сума - найглибше вкладення.

2) Потім необхідно обчислити логарифм:

4) Потім косинус звести до куба:

5) На п'ятому кроці різниця:

6) І, нарешті, зовнішня функція – це квадратний корінь:

Формула диференціювання складної функції застосовуються у зворотному порядку, від самої зовнішньої функції, До самої внутрішньої. Вирішуємо:

Начебто без помилок.

(1) Беремо похідну від квадратного кореня.

(2) Беремо похідну від різниці, використовуючи правило

(3) Похідна трійки дорівнює нулю. У другому доданку беремо похідну від ступеня (куба).

(4) Беремо похідну від косинуса.

(5) Беремо похідну від логарифму.

(6) І, нарешті, беремо похідну від найглибшого вкладення.

Може здатися дуже важко, але це ще не найбільш звірячий приклад. Візьміть, наприклад, збірку Кузнєцова і ви оціните всю красу і простоту розібраної похідної. Я помітив, що схожу штуку люблять давати на іспиті, щоб перевірити, чи розуміє студент, як знаходити похідну складної функції, чи не розуміє.

Наступний приклад самостійного рішення.

Приклад 3

Знайти похідну функції

Підказка: Спочатку застосовуємо правила лінійності та правило диференціювання твору

Повне рішення та відповідь наприкінці уроку.

Настав час перейти до чогось більш компактного та симпатичного.
Не рідкісна ситуація, як у прикладі дано твір не двох, а трьох функцій. Як знайти похідну від твору трьох множників?

Приклад 4

Знайти похідну функції

Спочатку дивимося, а чи не можна твір трьох функцій перетворити на твір двох функцій? Наприклад, якби у нас у творі було два багаточлени, то можна було б розкрити дужки. Але в прикладі всі функції різні: ступінь, експонента і логарифм.

У таких випадках необхідно послідовнозастосувати правило диференціювання твору два рази

Фокус у тому, що з «у» ми позначимо твір двох функцій: , а й за «ве» – логарифм: . Чому можна так зробити? А хіба - Це не твір двох множників і правило не працює? Нічого складного немає:

Тепер залишилося вдруге застосувати правило до дужки:

Можна ще зневіритися і винести щось за дужки, але в даному випадку відповідь краще залишити саме в такому вигляді - легше перевірятиме.

Розглянутий приклад можна вирішити другим способом:

Обидва способи вирішення абсолютно рівноцінні.

Приклад 5

Знайти похідну функції

Це приклад самостійного рішення, у зразку він вирішений першим способом.

Розглянемо аналогічні приклади із дробами.

Приклад 6

Знайти похідну функції

Тут можна йти кількома шляхами:

Або так:

Але рішення запишеться компактніше, якщо в першу чергу використовувати правило диференціювання приватного , Прийнявши за весь чисельник:

У принципі приклад вирішено, і якщо його залишити в такому вигляді, то це не буде помилкою. Але за наявності часу завжди бажано перевірити на чернетці, а чи не можна спростити відповідь? Наведемо вираз чисельника до спільного знаменника та позбавимося триповерховості дробу:

Мінус додаткових спрощень полягає в тому, що є ризик припуститися помилки вже не при знаходженні похідної, а при банальних шкільних перетвореннях. З іншого боку, викладачі нерідко бракують завдання і просять «довести до пуття» похідну.

Простіший приклад для самостійного вирішення:

Приклад 7

Знайти похідну функції

Продовжуємо освоювати прийоми знаходження похідної, і зараз ми розглянемо типовий випадок, коли для диференціювання запропоновано «страшний» логарифм

Приклад 8

Знайти похідну функції

Тут можна піти довгим шляхом, використовуючи правило диференціювання складної функції:

Але перший крок відразу кидає у зневіру - належить взяти неприємну похідну від дробового ступеня, а потім ще й від дробу.

Тому перед тимяк брати похідну від «накрученого» логарифму, його попередньо спрощують, використовуючи відомі шкільні властивості:



! Якщо під рукою є зошит із практикою, перепишіть ці формули прямо туди. Якщо зошита немає, перемалюйте їх на листочок, оскільки приклади уроку, що залишилися, буду обертатися навколо цих формул.

Саме рішення можна оформити приблизно так:

Перетворимо функцію:

Знаходимо похідну:

Попереднє перетворення самої функції значно спростило рішення. Таким чином, коли для диференціювання запропоновано подібний логарифм, його завжди доцільно «розвалити».

А зараз кілька нескладних прикладів для самостійного вирішення:

Приклад 9

Знайти похідну функції

Приклад 10

Знайти похідну функції

Всі перетворення та відповіді в кінці уроку.

Логарифмічна похідна

Якщо похідна від логарифмів – це така солодка музика, виникає питання, а чи не можна в деяких випадках організувати логарифм штучно? Можна, можливо! І навіть треба.

Приклад 11

Знайти похідну функції

Подібні приклади ми нещодавно розглянули. Що робити? Можна послідовно застосувати правило диференціювання приватного, та був правило диференціювання твори. Недолік способу полягає в тому, що вийде величезний триповерховий дріб, з яким зовсім не хочеться мати справи.

Але в теорії та практиці є така чудова річ, як логарифмічна похідна. Логарифми можна організувати штучно, «навісивши» їх на обидві частини:

Тепер потрібно максимально розвалити логарифм правої частини (формули перед очима?). Я розпишу цей процес докладно:

Власне приступаємо до диференціювання.
Укладаємо під штрих обидві частини:

Похідна правої частини досить проста, її я не коментуватиму, оскільки якщо ви читаєте цей текст, то повинні впевнено з нею впоратися.

Як бути з лівою частиною?

У лівій частині у нас складна функція. Передбачаю питання: «Чому, там же одна буква «ігрок» під логарифмом?».

Справа в тому, що ця «одна літерка ігрек» – САМА ЗА СЕБЕ Є ФУНКЦІЄЮ(якщо не зрозуміло, зверніться до статті Похідна від функції, заданої неявно). Тому логарифм – це зовнішня функція, а «гравець» – внутрішня функція. І ми використовуємо правило диференціювання складної функції :

У лівій частині як за помахом чарівної паличкиу нас «намалювалася» похідна. Далі за правилом пропорції перекидаємо «ігрок» із знаменника лівої частини нагору правої частини:

А тепер згадуємо, про який такий «гравець»-функцію ми міркували під час диференціювання? Дивимося на умову:

Остаточна відповідь:

Приклад 12

Знайти похідну функції

Це приклад самостійного рішення. Зразок оформлення прикладу цього типу наприкінці уроку.

За допомогою логарифмічної похідної можна було вирішити будь-який із прикладів №№4-7, інша річ, що там функції простіші, і, можливо, використання логарифмічної похідної не надто й виправдане.

Похідна статечно-показової функції

Цю функцію ми ще розглядали. Ступінно-показова функція – це функція, у якої і ступінь та основа залежать від «ікс». Класичний приклад, який вам наведуть у будь-якому підручнику або на будь-якій лекції:

Як знайти похідну від статечно-показової функції?

Необхідно використовувати щойно розглянутий прийом – логарифмічну похідну. Навішуємо логарифми на обидві частини:

Як правило, у правій частині з-під логарифму виноситься ступінь:

У результаті в правій частині у нас вийшов добуток двох функцій, який диференціюватиметься за стандартною формулою .

Знаходимо похідну, для цього укладаємо обидві частини під штрихи:

Подальші дії нескладні:

Остаточно:

Якщо якесь перетворення не зовсім зрозуміле, будь ласка, уважно перечитайте пояснення Прикладу №11.

У практичних завданнях статечно-показова функція завжди буде складнішою, ніж розглянутий лекційний приклад.

Приклад 13

Знайти похідну функції

Використовуємо логарифмічну похідну.

У правій частині у нас константа та твір двох множників – «ікса» та «логарифма логарифма ікс» (під логарифм вкладено ще один логарифм). При диференціюванні константу, як ми пам'ятаємо, краще одразу винести за знак похідної, щоб вона не заважала під ногами; і, звичайно, застосовуємо знайоме правило :


Як бачите, алгоритм застосування логарифмічної похідної не містить у собі якихось особливих хитрощів або хитрощів, і знаходження похідної статечно-показової функції зазвичай не пов'язане з «муками».

Наводиться доказ формули похідної складної функції. Детально розглянуті випадки, коли складна функція залежить від однієї та двох змінних. Проводиться узагальнення у разі довільного числа змінних.

Тут ми наводимо виведення таких формул для похідної складної функції.
Якщо то
.
Якщо то
.
Якщо то
.

Похідна складної функції від однієї змінної

Нехай функцію від змінної x можна представити як складну функцію у такому вигляді:
,
де є деякі функції. Функція диференційована при певному значенні змінної x.
Функція диференційована при значенні змінної.
(1) .

Тоді складна (складова) функція диференційована в точці x та її похідна визначається за формулою:
;
.

Формулу (1) також можна записати так:

Доведення
;
.
Введемо такі позначення.

Тут є функція від змінних та , є функція від змінних та .
;
.

Але ми опускатимемо аргументи цих функцій, щоб не захаращувати викладки.
.
Оскільки функції та диференційовані в точках x і відповідно, то в цих точках існують похідні цих функцій, які є наступними межами:
.
Розглянемо таку функцію:
.

При фіксованому значенні змінної u є функцією від .
.
Розглянемо таку функцію:
.

Очевидно, що

.

Тоді

Оскільки функція є функцією, що диференціюється в точці , то вона безперервна в цій точці. Тому

Якщо функцію від змінної x можна подати як складну функцію від складної функції
,
то її похідна визначається за формулою
.
Тут , і є деякі функції, що диференціюються.

Щоб довести цю формулу ми послідовно обчислюємо похідну за правилом диференціювання складної функції.
Розглянемо складну функцію
.
Її похідна
.
Розглянемо вихідну функцію
.
Її похідна
.

Похідна складної функції від двох змінних

Тепер нехай складна функція залежить від кількох змінних. Спочатку розглянемо випадок складної функції від двох змінних.

Нехай функцію , яка залежить від змінної x , можна як складну функцію від двох змінних у вигляді:
,
де
і є функції, що диференціюються при деякому значенні змінної x ;
- Функція від двох змінних, що диференціюється в точці , .
(2) .

Формулу (1) також можна записати так:

Тоді складна функція визначена в деякій околиці точки і має похідну, яка визначається за формулою:
;
.
Оскільки функції і диференційовані в точці , то вони визначені в околицях цієї точки, безперервні в точці і існують їх похідні в точці , які є такими межами:
;
.
Тут
;
.

Через безперервність цих функцій у точці маємо:
(3) .
Оскільки функції і диференційовані в точці , то вони визначені в околицях цієї точки, безперервні в точці і існують їх похідні в точці , які є такими межами:

Оскільки функція диференційована в точці , то вона визначена в околиці цієї точки, безперервна в цій точці і її збільшення можна записати в наступному вигляді:
;

- збільшення функції при збільшенні її аргументів на величини і ;
- Приватні похідні функції по змінним та .
;
.
При фіксованих значеннях і і є функції від змінних і .
;
.

Вони прагнуть до нуля при і :

. :
.
Оскільки і , то



.

Тоді

Приріст функції:

Підставимо (3):

Похідна складної функції від кількох змінних Наведений вище висновок легко узагальнюється у разі, коли кількість змінних складної функції більше двох.Наприклад, якщо f є
,
де
функцією від трьох змінних
, то
, і є функції, що диференціюються при деякому значенні змінної x ;
(4)
.
- функція, що диференціюється, від трьох змінних, в точці , , .
; ; ,
Тоді, з визначення диференційності функції маємо:
;
;
.

Оскільки, через безперервність,
.

то Розділивши (4) на та виконавши граничний перехід, отримаємо:.
І, нарешті, розглянемо
,
де
найзагальніший випадок
Нехай функцію від змінної x можна уявити як складну функцію від n змінних у такому вигляді:
, , ... , .
Розглянемо таку функцію:
.

Після попередньої артпідготовки будуть менш страшні приклади з 3-4-5 вкладеннями функцій. Можливо, наступні два приклади здадуться деяким складними, але якщо їх зрозуміти (хтось і мучиться), то майже все інше в диференціальному обчисленні здаватиметься дитячим жартом.

Приклад 2

Знайти похідну функції

Як зазначалося, при знаходженні похідної складної функції, передусім, необхідно правильноРОЗІБРАТИСЯ у вкладеннях. У тих випадках, коли є сумніви, нагадую корисний прийом: беремо піддослідне значення «ікс», наприклад, і пробуємо (подумки або на чернетці) підставити це значення в «страшний вираз».

1) Спочатку нам потрібно обчислити вираз, отже, сума - найглибше вкладення.

2) Потім необхідно обчислити логарифм:

4) Потім косинус звести до куба:

5) На п'ятому кроці різниця:

6) І, нарешті, сама зовнішня функція – це квадратний корінь:

Формула диференціювання складної функції застосовуються у зворотному порядку, від самої зовнішньої функції, до внутрішньої. Вирішуємо:

Начебто без помилок:

1) Беремо похідну від квадратного кореня.

2) Беремо похідну від різниці, використовуючи правило

3) Похідна трійки дорівнює нулю. У другому доданку беремо похідну від ступеня (куба).

4) Беремо похідну від косинуса.

6) І, нарешті, беремо похідну від найглибшого вкладення.

Може здатися дуже важко, але це ще не найбільш звірячий приклад. Візьміть, наприклад, збірку Кузнєцова і ви оціните всю красу і простоту розібраної похідної. Я помітив, що схожу штуку люблять давати на іспиті, щоб перевірити, чи розуміє студент, як знаходити похідну складної функції, чи не розуміє.

Наступний приклад самостійного рішення.

Приклад 3

Знайти похідну функції

Підказка: Спочатку застосовуємо правила лінійності та правило диференціювання твору

Повне рішення та відповідь наприкінці уроку.

Настав час перейти до чогось більш компактного та симпатичного.
Не рідкісна ситуація, як у прикладі дано твір не двох, а трьох функцій. Як знайти похідну від твору трьох множників?

Приклад 4

Знайти похідну функції

Спочатку дивимося, а чи не можна твір трьох функцій перетворити на твір двох функцій? Наприклад, якби у нас у творі було два багаточлени, то можна було б розкрити дужки. Але в прикладі всі функції різні: ступінь, експонента і логарифм.

У таких випадках необхідно послідовнозастосувати правило диференціювання твору два рази

Фокус у тому, що з «у» ми позначимо твір двох функцій: , а й за «ве» - логарифм: . Чому можна так зробити? А хіба - це не твір двох множників і правило не працює? Нічого складного немає:


Тепер залишилося вдруге застосувати правило до дужки:

Можна ще поплутатися і винести щось за дужки, але в даному випадку відповідь краще залишити саме в такому вигляді - легше перевірятиме.

Розглянутий приклад можна вирішити другим способом:

Обидва способи вирішення абсолютно рівноцінні.

Приклад 5

Знайти похідну функції

Це приклад самостійного рішення, у зразку він вирішений першим способом.

Розглянемо аналогічні приклади із дробами.

Приклад 6

Знайти похідну функції

Тут можна йти кількома шляхами:

Або так:

Але рішення запишеться компактніше, якщо в першу чергу використовувати правило диференціювання приватного , Прийнявши за весь чисельник:

У принципі приклад вирішено, і якщо його залишити в такому вигляді, то це не буде помилкою. Але за наявності часу завжди бажано перевірити на чернетці, а чи не можна спростити відповідь?

Наведемо вираз чисельника до спільного знаменника і позбавимося триповерховості дробу:

Мінус додаткових спрощень полягає в тому, що є ризик припуститися помилки вже не при знаходженні похідної, а при банальних шкільних перетвореннях. З іншого боку, викладачі нерідко бракують завдання і просять «довести до пуття» похідну.

Простіший приклад для самостійного вирішення:

Приклад 7

Знайти похідну функції

Продовжуємо освоювати прийоми знаходження похідної, і зараз ми розглянемо типовий випадок, коли для диференціювання запропоновано «страшний» логарифм

Функції складного виглядуякий завжди підходять під визначення складної функції. Якщо є функція виду y = sin x - (2 - 3) · r c t g x x 5 7 x 10 - 17 x 3 + x - 11, то її не можна вважати складною на відміну від y = sin 2 x.

Ця стаття покаже поняття складної функції та її виявлення. Попрацюємо з формулами знаходження похідної із прикладами рішень у висновку. Застосування таблиці похідних та правила диференціювання помітно зменшують час для знаходження похідної.

Yandex.RTB R-A-339285-1

Основні визначення

Визначення 1

Складною функцією вважається така функція, яка аргумент також є функцією.

Позначається це так: f (g (x)) . Маємо, що функція g(x) вважається аргументом f(g(x)).

Визначення 2

Якщо є функція f і є функцією котангенсу, тоді g(x) = ln x – це функція натурального логарифму. Отримуємо, що складна функція f(g(x)) запишеться як arctg(lnx). Або функція f , що є функцією зведеної в 4 ступінь, де g (x) = x 2 + 2 x - 3 вважається цілою раціональною функцією, отримуємо, що f (g (x)) = (x 2 + 2 x - 3) 4 .

Очевидно, що g(x) може бути складною. З прикладу y = sin 2 x + 1 x 3 - 5 видно, що значення g має кубічний корінь із дробом. Даний вираз можна позначати як y = f (f 1 (f 2 (x))) . Звідки маємо, що f - це функція синуса, а f 1 - функція, що розташовується під квадратним коренем, f 2 (x) = 2 x + 1 x 3 – 5 – дробова раціональна функція.

Визначення 3

Ступінь вкладеності визначено будь-яким натуральним числомі записується як y = f (f 1 (f 2 (f 3 (. . . (f n (x))))))))).

Визначення 4

Поняття композиція функції належить до кількості вкладених функцій за умовою завдання. Для вирішення використовується формула знаходження похідної складної функції виду

(f(g(x))) "=f"(g(x)) · g"(x)

Приклади

Приклад 1

Знайти похідну складної функції виду y = (2 x + 1) 2 .

Рішення

За умовою видно, що f є функцією зведення квадрат, а g (x) = 2 x + 1 вважається лінійною функцією.

Застосуємо формулу похідної для складної функції та запишемо:

f "(g (x)) = ((g (x)) 2)" = 2 · (g (x)) 2 - 1 = 2 · g (x) = 2 · (2 ​​x + 1); g " (x) = (2 x + 1) " = (2 x) " + 1 " = 2 · x " + 0 = 2 · 1 · x 1 - 1 = 2 ⇒ (f (g (x))) "= f "(g (x)) · g "(x) = 2 · (2 ​​x + 1) · 2 = 8 x + 4

Необхідно знайти похідну зі спрощеним вихідним виглядом функції. Отримуємо:

y = (2 x + 1) 2 = 4 x 2 + 4 x + 1

Звідси маємо, що

y " = (4 x 2 + 4 x + 1) " = (4 x 2) " + (4 x) " + 1 " = 4 · (x 2) " + 4 · (x) " + 0 = = 4 · 2 · x 2 - 1 + 4 · 1 · x 1 - 1 = 8 x + 4

Результати збіглися.

При вирішенні завдань такого виду важливо розуміти, де розташовуватиметься функція виду f і g (x) .

Приклад 2

Слід знайти похідні складних функцій виду y = sin 2 x та y = sin x 2 .

Рішення

Перший запис функції свідчить, що f є функцією зведення квадрат, а g (x) – функцією синуса. Тоді отримаємо, що

y " = (sin 2 x) " = 2 · sin 2 - 1 x · (sin x) " = 2 · sin x · cos x

Другий запис показує, що f є функцією синуса, а g(x) = x 2 позначаємо статечну функцію. Звідси випливає, що добуток складної функції запишемо як

y " = (sin x 2) " = cos (x 2) · (x 2) " = cos (x 2) · 2 · x 2 - 1 = 2 · x · cos (x 2)

Формула для похідної y = f (f 1 (f 2 (f 3 (. . . (f n (x)))))))) запишеться як y "= f "(f 1 (f 2 (f 3 (. . .) f n (x)))))) · f 1 "(f 2 (f 3 (. . . (f n (x)))))) · · f 2 " (f 3 (. . . (f n (x))) )) · . . . · f n "(x)

Приклад 3

Знайти похідну функції y = sin (ln 3 a r c t g (2 x)).

Рішення

Даний приклад показує складність запису та визначення розташування функцій. Тоді y = f (f 1 (f 2 (f 3 (f 4 (x)))))) позначимо, де f , f 1 , f 2 , f 3 , f 4 (x) є функцією синуса, функцією зведення в 3 ступінь, функцією з логарифмом та основою е, функцією арктангенсу та лінійною.

З формули визначення складної функції маємо, що

y " = f "(f 1 (f 2 (f 3 (f 4 (x))))) · f 1 "(f 2 (f 3 (f 4 (x))))) · · f 2 " (f 3 (f 4 (x))) · f 3 "(f 4 (x)) · f 4 " (x)

Отримуємо, що слід знайти

  1. f" (f 1 (f 2 (f 3 (f 4 (x))))) як похідна синуса по таблиці похідних, тоді f " (f 1 (f 2 (f 3 (f 4 (x))))) ) = cos (ln 3 a r c t g (2 x)).
  2. f 1 "(f 2 (f 3 (f 4 (x)))) як похідну статечну функцію, тоді f 1 "(f 2 (f 3 (f 4 (x)))) = 3 · ln 3 - 1 a r c t g (2 x) = 3 · ln 2 a r c t g (2 x) .
  3. f 2 "(f 3 (f 4 (x))) як похідна логарифмічна, тоді f 2 "(f 3 (f 4 (x))) = 1 a r c t g (2 x) .
  4. f 3 "(f 4 (x)) як похідний арктангенса, тоді f 3 "(f 4 (x)) = 1 1 + (2 x) 2 = 1 1 + 4 x 2 .
  5. При знаходженні похідної f 4 (x) = 2 x зробити винесення 2 за знак похідної із застосуванням формули похідної статечної функції з показником, що дорівнює 1 тоді f 4 " (x) = (2 x) " = 2 · x " = 2 · 1 · x 1 - 1 = 2 .

Проводимо об'єднання проміжних результатів та отримуємо, що

y " = f "(f 1 (f 2 (f 3 (f 4 (x))))) · f 1 "(f 2 (f 3 (f 4 (x))))) · · f 2 " (f 3 (f 4 (x))) · f 3 "(f 4 (x)) · f 4 " (x) = = cos (ln 3 a r c t g (2 x)) · 3 · ln 2 a r c t g (2 x) · 1 a r c t g (2 x) · 1 1 + 4 x 2 · 2 = = 6 · cos (ln 3 a r c t g (2 x)) · ln 2 a r c t g (2 x) a r c t g (2 x) · (1 + 4 x 2)

Розбір таких функцій нагадує матрьошки. Правила диференціювання не завжди можуть бути застосовані у явному вигляді за допомогою таблиці похідних. Найчастіше потрібно застосовувати формулу знаходження похідних складних функцій.

Існують деякі відмінності складного виду складних функцій. При явному вмінні це розрізняти, знаходження похідних даватиме особливо легко.

Приклад 4

Необхідно розглянути на наведенні такого прикладу. Якщо є функція виду y = t g 2 x + 3 t g x + 1 , тоді її можна розглянути як складний вид g (x) = t g x , f (g) = g 2 + 3 g + 1 . Очевидно, що необхідне застосування формули для складної похідної:

f "(g (x)) = (g 2 (x) + 3 g (x) + 1)" = (g 2 (x)) "+ (3 g (x))" + 1 " = = 2 · g 2 - 1 (x) + 3 · g "(x) + 0 = 2 g (x) + 3 · 1 · g 1 - 1 (x) = = 2 g (x) + 3 = 2 t g x + 3; g "(x) = (t g x)" = 1 cos 2 x ⇒ y " = (f (g (x)))" = f "(g (x)) · g "(x) = (2 t g x + 3 ) · 1 cos 2 x = 2 t g x + 3 cos 2 x

Функція виду y = t g x 2 + 3 t g x + 1 не вважається складною, оскільки має суму t g x 2 3 t g x і 1 . Однак, t g x 2 вважається складною функцією, то отримуємо статечну функцію виду g (x) = x 2 і f є функцією тангенса. Для цього слід продиференціювати за сумою. Отримуємо, що

y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + (3 t g x) " + 1 " = = (t g x 2) " + 3 · (t g x) " + 0 = (t g x 2) " + 3 cos 2 x

Переходимо до знаходження похідної складної функції (t g x 2) " :

f "(g (x)) = (t g (g (x)))" = 1 cos 2 g (x) = 1 cos 2 (x 2) g "(x) = (x 2)" = 2 · x 2 - 1 = 2 x ⇒ (t g x 2) "= f "(g (x)) · g "(x) = 2 x cos 2 (x 2)

Отримуємо, що y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + 3 cos 2 x = 2 x cos 2 (x 2) + 3 cos 2 x

Функції складного виду можуть бути включені до складу складних функцій, причому самі складні функції можуть бути складовими складного функції.

Приклад 5

Наприклад розглянемо складну функцію виду y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x · (x 2 + 1)

Ця функція може бути представлена ​​у вигляді y = f (g (x)) , де значення f є функцією логарифму на підставі 3 , а g (x) вважається сумою двох функцій виду h (x) = x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 і k(x) = ln 2 x · (x 2 + 1) . Очевидно, що y = f(h(x) + k(x)) .

Розглянемо функцію h(x) . Це відношення l(x) = x 2 + 3 cos 3 (2 x + 1) + 7 к m (x) = e x 2 + 3 3

Маємо, що l(x) = x 2 + 3 cos 2 (2 x + 1) + 7 = n(x) + p(x) є сумою двох функцій n(x) = x 2 + 7 та p(x) = 3 cos 3 (2 x + 1) , де p (x) = 3 · p 1 (p 2 (p 3 (x))) є складною функцією з числовим коефіцієнтом 3 а p 1 - функцією зведення в куб, p 2 функцією косинуса, p 3 (x) = 2 x + 1 – лінійною функцією.

Отримали, що m (x) = e x 2 + 3 3 = q (x) + r (x) є сумою двох функцій q (x) = e x 2 і r (x) = 3 3 де q (x) = q 1 (q 2 (x)) – складна функція, q 1 – функція з експонентою, q 2 (x) = x 2 – статечна функція.

Звідси видно, що h (x) = l (x) m (x) = n (x) + p (x) q (x) + r (x) = n (x) + 3 · p 1 (p 2 ( p 3 (x))) q 1 (q 2 (x)) + r (x)

При переході до виразу виду k (x) = ln 2 x · (x 2 + 1) = s (x) · t (x) видно, що функція представлена ​​у вигляді складної s (x) = ln 2 x = s 1 ( s 2 (x)) з цілою раціональною t (x) = x 2 + 1 , де s 1 є функцією зведення в квадрат, а s 2 (x) = ln x - логарифмічної з основою е.

Звідси випливає, що вираз набуде вигляду k (x) = s (x) · t (x) = s 1 (s 2 (x)) · t (x) .

Тоді отримаємо, що

y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x · (x 2 + 1) = = f n (x) + 3 · p 1 (p 2 (p 3 (x))) q 1 (q 2 (x)) = r (x) + s 1 (s 2 (x)) · t (x)

За структурами функції стало явно, як і які формули необхідно застосовувати для спрощення вираження за його диференціювання. Для ознайомлення подібних завдань і для поняття їх вирішення необхідно звернутися до пункту диференціювання функції, тобто знаходження її похідної.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter