10.10.2019

Фильтрация анизотропная: для чего нужна, на что влияет, практическое использование


В современных играх используется все больше графических эффектов и технологий, улучшающих картинку. При этом разработчики обычно не утруждают себя объяснением, что же именно они делают. Когда в наличии не самый производительный компьютер, частью возможностей приходится жертвовать. Попробуем рассмотреть, что обозначают наиболее распространенные графические опции, чтобы лучше понимать, как освободить ресурсы ПК с минимальными последствиями для графики.

Анизотропная фильтрация
Когда любая текстура отображается на мониторе не в своем исходном размере, в нее необходимо вставлять дополнительные пикселы или, наоборот, убирать лишние. Для этого применяется техника, называемая фильтрацией.


трилинейная

анизотропная

Билинейная фильтрация является самым простым алгоритмом и требует меньше вычислительной мощности, однако и дает наихудший результат. Трилинейная добавляет четкости, но по-прежнему генерирует артефакты. Наиболее продвинутым способом, устраняющим заметные искажения на объектах, сильно наклоненных относительно камеры, считается анизотропная фильтрация. В отличие от двух предыдущих методов она успешно борется с эффектом ступенчатости (когда одни части текстуры размываются сильнее других, и граница между ними становится явно заметной). При использовании билинейной или трилинейной фильтрации с увеличением расстояния текстура становится все более размытой, анизотропная же этого недостатка лишена.

Учитывая объем обрабатываемых данных (а в сцене может быть множество 32-битовых текстур высокого разрешения), анизотропная фильтрация особенно требовательна к пропускной способности памяти. Уменьшить трафик можно в первую очередь за счет компрессии текстур, которая сейчас применяется повсеместно. Ранее, когда она практиковалась не так часто, а пропуская способность видеопамяти была гораздо ниже, анизотропная фильтрация ощутимо снижала количество кадров. На современных же видеокартах она почти не влияет на fps.

Анизотропная фильтрация имеет лишь одну настройку коэффициент фильтрации (2x, 4x, 8x, 16x). Чем он выше, тем четче и естественнее выглядят текстуры. Обычно при высоком значении небольшие артефакты заметны лишь на самых удаленных пикселах наклоненных текстур. Значений 4x и 8x, как правило, вполне достаточно для избавления от львиной доли визуальных искажений. Интересно, что при переходе от 8x к 16x снижение производительности будет довольно слабым даже в теории, поскольку дополнительная обработка понадобится лишь для малого числа ранее не фильтрованных пикселов.

Шейдеры
Шейдеры это небольшие программы, которые могут производить определенные манипуляции с 3D-сценой, например, изменять освещенность, накладывать текстуру, добавлять постобработку и другие эффекты.

Шейдеры делятся на три типа: вершинные (Vertex Shader) оперируют координатами, геометрические (Geometry Shader) могут обрабатывать не только отдельные вершины, но и целые геометрические фигуры, состоящие максимум из 6 вершин, пиксельные (Pixel Shader) работают с отдельными пикселами и их параметрами.

Шейдеры в основном применяются для создания новых эффектов. Без них набор операций, которые разработчики могли бы использовать в играх, весьма ограничен. Иными словами, добавление шейдеров позволило получать новые эффекты, по умолчанию не заложенные в видеокарте.

Шейдеры очень продуктивно работают в параллельном режиме, и именно поэтому в современных графических адаптерах так много потоковых процессоров, которые тоже называют шейдерами.

Parallax mapping
Parallax mapping это модифицированная версия известной техники bumpmapping, используемой для придания текстурам рельефности. Parallax mapping не создает 3D-объектов в обычном понимании этого слова. Например, пол или стена в игровой сцене будут выглядеть шероховатыми, оставаясь на самом деле абсолютно плоскими. Эффект рельефности здесь достигается лишь за счет манипуляций с текстурами.

Исходный объект не обязательно должен быть плоским. Метод работает на разных игровых предметах, однако его применение желательно лишь в тех случаях, когда высота поверхности изменяется плавно. Резкие перепады обрабатываются неверно, и на объекте появляются артефакты.

Parallax mapping существенно экономит вычислительные ресурсы компьютера, поскольку при использовании объектов-аналогов со столь же детальной 3D-структурой производительности видеоадаптеров не хватало бы для просчета сцен в режиме реального времени.

Эффект чаще всего применяется для каменных мостовых, стен, кирпичей и плитки.

Anti-Aliasing
До появления DirectX 8 сглаживание в играх осуществлялось методом SuperSampling Anti-Aliasing (SSAA), известным также как Full-Scene Anti-Aliasing (FSAA). Его применение приводило к значительному снижению быстродействия, поэтому с выходом DX8 от него тут же отказались и заменили на Multisample Аnti-Аliasing (MSAA). Несмотря на то что данный способ давал худшие результаты, он был гораздо производительнее своего предшественника. С тех пор появились и более продвинутые алгоритмы, например CSAA.

AA off AA on

Учитывая, что за последние несколько лет быстродействие видеокарт заметно увеличилось, как AMD, так и NVIDIA вновь вернули в свои ускорители поддержку технологии SSAA. Тем не менее использовать ее даже сейчас в современных играх не получится, поскольку количество кадров/с будет очень низким. SSAA окажется эффективной лишь в проектах предыдущих лет, либо в нынешних, но со скромными настройками других графических параметров. AMD реализовала поддержку SSAA только для DX9-игр, а вот в NVIDIA SSAA функционирует также в режимах DX10 и DX11.

Принцип работы сглаживания очень прост. До вывода кадра на экран определенная информация рассчитывается не в родном разрешении, а увеличенном и кратном двум. Затем результат уменьшают до требуемых размеров, и тогда «лесенка» по краям объекта становится не такой заметной. Чем выше исходное изображение и коэффициент сглаживания (2x, 4x, 8x, 16x, 32x), тем меньше ступенек будет на моделях. MSAA в отличие от FSAA сглаживает лишь края объектов, что значительно экономит ресурсы видеокарты, однако такая техника может оставлять артефакты внутри полигонов.

Раньше Anti-Aliasing всегда существенно снижал fps в играх, однако теперь влияет на количество кадров незначительно, а иногда и вовсе никак не cказывается.

Тесселяция
С помощью тесселяции в компьютерной модели повышается количество полигонов в произвольное число раз. Для этого каждый полигон разбивается на несколько новых, которые располагаются приблизительно так же, как и исходная поверхность. Такой способ позволяет легко увеличивать детализацию простых 3D-объектов. При этом, однако, нагрузка на компьютер тоже возрастет, и в ряде случаев даже не исключены небольшие артефакты.

На первый взгляд, тесселяцию можно спутать с Parallax mapping. Хотя это совершенно разные эффекты, поскольку тесселяция реально изменяет геометрическую форму предмета, а не просто симулирует рельефность. Помимо этого, ее можно применять практически для любых объектов, в то время как использование Parallax mapping сильно ограничено.

Технология тесселяции известна в кинематографе еще с 80-х годов, однако в играх она стала поддерживаться лишь недавно, а точнее после того, как графические ускорители наконец достигли необходимого уровня производительности, при котором она может выполняться в режиме реального времени.

Чтобы игра могла использовать тесселяцию, ей требуется видеокарта с поддержкой DirectX 11.

Вертикальная синхронизация

V-Sync это синхронизация кадров игры с частотой вертикальной развертки монитора. Ее суть заключается в том, что полностью просчитанный игровой кадр выводится на экран в момент обновления на нем картинки. Важно, что очередной кадр (если он уже готов) также появится не позже и не раньше, чем закончится вывод предыдущего и начнется следующего.

Если частота обновления монитора составляет 60 Гц, и видеокарта успевает просчитывать 3D-сцену как минимум с таким же количеством кадров, то каждое обновление монитора будет отображать новый кадр. Другими словами, с интервалом 16,66 мс пользователь будет видеть полное обновление игровой сцены на экране.

Следует понимать, что при включенной вертикальной синхронизации fps в игре не может превышать частоту вертикальной развертки монитора. Если же число кадров ниже этого значения (в нашем случае меньше, чем 60 Гц), то во избежание потерь производительности необходимо активировать тройную буферизацию, при которой кадры просчитываются заранее и хранятся в трех раздельных буферах, что позволяет чаще отправлять их на экран.

Главной задачей вертикальной синхронизации является устранение эффекта сдвинутого кадра, возникающего, когда нижняя часть дисплея заполнена одним кадром, а верхняя уже другим, сдвинутым относительно предыдущего.

Post-processing
Это общее название всех эффектов, которые накладываются на уже готовый кадр полностью просчитанной 3D-сцены (иными словами, на двухмерное изображение) для улучшения качества финальной картинки. Постпроцессинг использует пиксельные шейдеры, и к нему прибегают в тех случаях, когда для дополнительных эффектов требуется полная информация обо всей сцене. Изолированно к отдельным 3D-объектам такие приемы не могут быть применены без появления в кадре артефактов.

High dynamic range (HDR)
Эффект, часто используемый в игровых сценах с контрастным освещением. Если одна область экрана является очень яркой, а другая, наоборот, затемненной, многие детали в каждой из них теряются, и они выглядят монотонными. HDR добавляет больше градаций в кадр и позволяет детализировать сцену. Для его применения обычно приходится работать с более широким диапазоном оттенков, чем может обеспечить стандартная 24-битовая точность. Предварительные просчеты происходят в повышенной точности (64 или 96 бит), и лишь на финальной стадии изображение подгоняется под 24 бита.

HDR часто применяется для реализации эффекта приспособления зрения, когда герой в играх выходит из темного туннеля на хорошо освещенную поверхность.

Bloom
Bloom нередко применяется совместно с HDR, а еще у него есть довольно близкий родственник Glow, именно поэтому эти три техники часто путают.

Bloom симулирует эффект, который можно наблюдать при съемке очень ярких сцен обычными камерами. На полученном изображении кажется, что интенсивный свет занимает больше объема, чем должен, и «залазит» на объекты, хотя и находится позади них. При использовании Bloom на границах предметов могут появляться дополнительные артефакты в виде цветных линий.

Film Grain
Зернистость артефакт, возникающий в аналоговом ТВ при плохом сигнале, на старых магнитных видеокассетах или фотографиях (в частности, цифровых изображениях, сделанных при недостаточном освещении). Игроки часто отключают данный эффект, поскольку он в определенной мере портит картинку, а не улучшает ее. Чтобы понять это, можно запустить Mass Effect в каждом из режимов. В некоторых «ужастиках», например Silent Hill, шум на экране, наоборот, добавляет атмосферности.

Motion Blur
Motion Blur эффект смазывания изображения при быстром перемещении камеры. Может быть удачно применен, когда сцене следует придать больше динамики и скорости, поэтому особенно востребован в гоночных играх. В шутерах же использование размытия не всегда воспринимается однозначно. Правильное применение Motion Blur способно добавить кинематографичности в происходящее на экране.

Эффект также поможет при необходимости завуалировать низкую частоту смены кадров и добавить плавности в игровой процесс.

SSAO
Ambient occlusion техника, применяемая для придания сцене фотореалистичности за счет создания более правдоподобного освещения находящихся в ней объектов, при котором учитывается наличие поблизости других предметов со своими характеристиками поглощения и отражения света.

Screen Space Ambient Occlusion является модифицированной версией Ambient Occlusion и тоже имитирует непрямое освещение и затенение. Появление SSAO было обусловлено тем, что при современном уровне быстродействия GPU Ambient Occlusion не мог использоваться для просчета сцен в режиме реального времени. За повышенную производительность в SSAO приходится расплачиваться более низким качеством, однако даже его хватает для улучшения реалистичности картинки.

SSAO работает по упрощенной схеме, но у него есть множество преимуществ: метод не зависит от сложности сцены, не использует оперативную память, может функционировать в динамичных сценах, не требует предварительной обработки кадра и нагружает только графический адаптер, не потребляя ресурсов CPU.

Cel shading
Игры с эффектом Cel shading начали делать с 2000 г., причем в первую очередь они появились на консолях. На ПК по-настоящему популярной данная техника стала лишь через пару лет. С помощью Cel shading каждый кадр практически превращается в рисунок, сделанный от руки, или фрагмент из мультика.

В похожем стиле создают комиксы, поэтому прием часто используют именно в играх, имеющих к ним отношение. Из последних известных релизов можно назвать шутер Borderlands, где Cel shading заметен невооруженным глазом.

Особенностями технологии является применение ограниченного набора цветов, а также отсутствие плавных градиентов. Название эффекта происходит от слова Cel (Celluloid), т. е. прозрачного материала (пленки), на котором рисуют анимационные фильмы.

Depth of field
Глубина резкости это расстояние между ближней и дальней границей пространства, в пределах которого все объекты будут в фокусе, в то время как остальная сцена окажется размытой.

В определенной мере глубину резкости можно наблюдать, просто сосредоточившись на близко расположенном перед глазами предмете. Все, что находится позади него, будет размываться. Верно и обратное: если фокусироваться на удаленных объектах, то все, что размещено перед ними, получится нечетким.

Лицезреть эффект глубины резкости в гипертрофированной форме можно на некоторых фотографиях. Именно такую степень размытия часто и пытаются симулировать в 3D-сценах.

В играх с использованием Depth of field геймер обычно сильнее ощущает эффект присутствия. Например, заглядывая куда-то через траву или кусты, он видит в фокусе лишь небольшие фрагменты сцены, что создает иллюзию присутствия.

Влияние на производительность

Чтобы выяснить, как включение тех или иных опций сказывается на производительности, мы воспользовались игровым бенчмарком Heaven DX11 Benchmark 2.5. Все тесты проводились на системе Intel Core2 Duo e6300, GeForce GTX460 в разрешении 1280Ч800 точек (за исключением вертикальной синхронизации, где разрешение составляло 1680Ч1050).

Как уже упоминалось, анизотропная фильтрация практически не влияет на количество кадров. Разница между отключенной анизотропией и 16x составляет всего лишь 2 кадра, поэтому рекомендуем ее всегда ставить на максимум.

Сглаживание в Heaven Benchmark снизило fps существеннее, чем мы того ожидали, особенно в самом тяжелом режиме 8x. Тем не менее, поскольку для ощутимого улучшения картинки достаточно и 2x, советуем выбирать именно такой вариант, если на более высоких играть некомфортно.

Тесселяция в отличие от предыдущих параметров может принимать произвольное значение в каждой отдельной игре. В Heaven Benchmark картинка без нее существенно ухудшается, а на максимальном уровне, наоборот, становится немного нереалистичной. Поэтому следует устанавливать промежуточные значения moderate или normal.

Для вертикальной синхронизации было выбрано более высокое разрешение, чтобы fps не ограничивался вертикальной частотой развертки экрана. Как и предполагалось, количество кадров на протяжении почти всего теста при включенной синхронизации держалось четко на отметке 20 или 30 кадров/с. Это связано с тем, что они выводятся одновременно с обновлением экрана, и при частоте развертки 60 Гц это удается сделать не с каждым импульсом, а лишь с каждым вторым (60/2 = 30 кадров/с) или третьим (60/3 = 20 кадров/с). При отключении V-Sync число кадров увеличилось, однако на экране появились характерные артефакты. Тройная буферизация не оказала никакого положительного эффекта на плавность сцены. Возможно, это связано с тем, что в настройках драйвера видеокарты нет опции принудительного отключения буферизации, а обычное деактивирование игнорируется бенчмарком, и он все равно использует эту функцию.

Если бы Heaven Benchmark был игрой, то на максимальных настройках (1280Ч800; AA 8x; AF 16x; Tessellation Extreme) в нее было бы некомфортно играть, поскольку 24 кадров для этого явно недостаточно. С минимальной потерей качества (1280Ч800; AA 2x; AF 16x, Tessellation Normal) можно добиться более приемлемого показателя в 45 кадров/с.



Тесты производительности:

И вот, теперь, когда мы ознакомились с основными понятиями о фильтрации и сглаживании текстур, можно перебираться на практику.

Конфигурация компьютера:
Процессор: Intel Core 2 Quad Q6600 @ 3200MHz (400x8, 1.3125V)
Видеокарта: Palit Nvidia GeForce 8800GT
Материнская плата: Asus P5Q PRO TURBO
Память: 2x2048MB DDR2 Corsair XMS2 @ 1066MHz, 5-5-5-15
Блок питания: Corsair CMPSU-850HXEU 850W
Процессорный кулер: Zalman CNPS9700 LED
ОС: Windows 7 Ultimate x64
Версия видео драйвера: Nvidia 195.62 x64

Главным испытуемым в нашем сегодняшнем тестировании стала очень старая, но не менее знаменитая Counter-Strike:Source, поскольку эта одна из немногих по-настоящему распространенных игр, предоставляющих огромный набор различных настроек сглаживания и фильтрации. Несмотря на древность движка (2004 год), данная игра по-прежнему может неплохо нагрузить даже самую современную платформу. Вот такой богатый ассортимент настроек представлен пользователю:

Тесты сглаживания и фильтрации проводились во встроенном бенчмарке, при разрешении 1280x1024. Все остальные настройки были приняты за максимальные, как на скриншоте сверху. С целью максимально приблизить результат к истине, каждый параметр тестировался трижды, после чего находилось среднее арифметическое получившихся значений.

И так, что же у нас получилось:

Результаты получились достаточно неожиданными. Технология coveragesampling (CSAA), которая по определению должна потреблять меньше ресурсов чем MSAA, здесь показывает совершенно обратную картину. Причин данного явления может быть великое множество. Прежде всего необходимо учитывать, что во многом производительность при включении сглаживания зависит от архитектуры GPU. Да и оптимизация различных технологий самой игры и версия драйвера играют не меньшую роль. Поэтому результаты при использовании других видеокарт, или, даже, другой версии драйвера, могут быть совершенно иными.

Тесты с отключенным сглаживанием (для удобства восприятия отмечены синим цветом) показали примерно равную картину, что свидетельствует о небольшой разнице нагрузок на видеокарту.

Кроме того, проглядывается явное соответствие показателей фпс, при использовании одинакового метода сглаживания, для AF 8x и AF 16x. При этом, разница колеблется в диапазоне от 1 до 4 фпс (за исключением MSAA 8x, где разница составляет 11 фпс). Это говорит о том, что использование фильтрации 16х может быть очень полезным, если необходимо повысить качество картинки, без существенного удара по производительности.

И все же, необходимо оговориться, что получить такие же значения фпс непосредственно в игре попросту нереально, поскольку многие сцены оказываются значительно сложнее, особенно с множеством игроков.

Тесты картинки:

И так, что же мы имеем? Мы узнали о проявлении различных конфигураций настроек на производительность. "Но зачем же все это нужно?" - спросите вы. Для повышения качества отображаемой картинки, отвечу я. А есть ли, вообще, это повышение? Для ответа на этот вопрос предлагаю взглянуть на следующие скришоты:

Billinear / MSAA 2x Trillinear / MSAA 2x AF 2x / MSAA 2x
AF 2x / CSAA 8x AF 2x / MSAA 8x AF 2x / CSAA 16x
AF 2x / CSAA 16xQ AF 8x / MSAA x2 AF 8x / CSAA 8x
AF 8x / MSAA 8x AF 8x / CSAA 16x AF 8x / CSAA 16xQ
AF 16x / MSAA 2x AF 16x / CSAA 8x AF 16x / MSAA 8x
AF 16x / CSAA 16x AF 16x / CSAA 16xQ Billinear / CSAA 16xQ

Как видно, особой разницы в комбинациях "выше" AF 8x / MSAA 8x (CSAA 8x), попросту нет. Но при этом получается ощутимый удар по производительности, особенно при использовании Coverage Sampling AntiAliasing.

Выводы:

Наверняка среди читающих данную статью найдутся игроки Cs:s, HL2 и других игр на основе движка Source. Им эта статья окажется более интересной и познавательной, чем остальным. Однако целью данной писанины было лишь рассказать о современных технологиях, помогающих улучшить зрительное восприятие игр. А тесты - как способ показать на практике изложенную теорию.

Разумеется, для достоверности показаний следовало проводить тесты производительности как на других видеочипах, так и на дополнительных играх.

Как бы то не было, возвращаясь к теме данной статьи, каждый сам выбирает с какими настройками играть. И я не буду давать советов или рекомендаций, поскольку они заранее обречены на провал. Надеюсь, вышеизложенная теория с тестами помогут вам ближе ознакомиться с описанными технологиями.

By Stormcss


Злостно пинать ногами

Если судить по информации на форумах и из статей в Интернете, то ATi хитрит с трилинейной фильтрацией текстур на новом графическом процессоре X800. Впрочем, находятся и яростно защищающие ATi. Вообще, подобные дискуссии напоминают нам скандал годовалой давности, связанный с nVidia.

Поводом для столь горячего обсуждения стала статья на немецком сайте Computerbase. В ней было показано, как ATi использует оптимизированную трилинейную фильтрацию текстур, часто называемую "брилинейной" (brilinear) из-за смеси билинейной и трилинейной фильтраций, в графических процессорах Radeon 9600 и X800. Новость действительно стала ошеломляющей, ведь ATi всегда твердила о использовании настоящей трилинейной фильтрации.

Но как ситуация выглядит на самом деле? Это - оптимизация, хитрость или просто разумное решение? Чтобы судить, нам необходимо углубиться в технологии различных способов фильтрации. И первая часть статьи будет посвящена именно этому, причём, некоторые технологии мы изложим весьма упрощённо, чтобы уложиться в несколько страниц. Итак, давайте взглянем на базовые и принципиальные функции фильтрации.

Будет ли продолжение? Возможно, поскольку спор по поводу недавно открытой брилинейной фильтрации на картах Radeon 9600 и X800 не утихает. ATi следует отдать должное за то, что качество картинки карт визуально не страдает из-за этой фильтрации. По крайней мере, у нас нет примеров, говорящих об обратном. Пока брилинейная фильтрация проявляет себя при искусственно созданных лабораторных условиях. В то же время, ATi не позволяет включить полную трилинейную фильтрацию для упомянутых карт, будь она адаптивной или нет. Из-за новой фильтрации значения производительности в тестах не демонстрируют всего настоящего потенциала X800, поскольку значения FPS получены после оптимизации, влияние которой на скорость оценить сложно. Да и слово "адаптивная" оставляет горькое послевкусие. ATi не предоставила нам информацию о механизме работы драйвера и много раз заявляла, что карта даёт полную трилинейную фильтрацию. Лишь после упомянутого разоблачения ATi признала, что фильтрация оптимизирована. Будем надеяться, что в других местах драйвера подобной "адаптивности" нет.

Впрочем, производители медленно, но уверенно, двигаются к тому моменту, когда уровень терпимости будет преодолён. "Адаптивность" или определение запускаемого приложения не позволяют тестовым программам показать действительную производительность карты в играх. Качество картинки в игре может отличаться от одного драйвера к другому. Производители могут свободно развлекаться с драйвером, в зависимости от того, какая производительность нужна отделу маркетинга на данный момент. Ну, а право потребителя знать, что он, собственно, покупает, здесь уже никого не интересует. Всё это оставлено средствам массовой информации - пусть они выполняют свою образовательную миссию. И трюки с фильтрацией, которые мы обсудили в нашей статье, являются лишь самыми известными такими случаями. Что ещё скрыто от нашего внимания, остаётся лишь догадываться.

Каждый производитель решает сам, какой уровень качества изображения он будет обеспечивать стандартно. Однако производителям следует документировать используемые оптимизации, особенно если они скрыты от известных тестов, как в свежем примере с ATi. Решение очевидно: дайте возможность выключать оптимизации! Тогда потребитель сможет сам решать, что ему важнее - больше FPS или лучшее качество. На Microsoft, как на третейского судью, рассчитывать тоже не приходится. Тесты WHQL не позволяют определить многие вещи, да и их можно легко обойти: значение слова "адаптивная" вам знакомо?

Известные на сегодня оптимизации фильтрации
ATi nVidia
Трилинейная
оптимизация
R9600
X800
GF FX5xxx
(GF 6xxx)*
Угловая оптимизация
анизотропной фильтрации
R9xxx
X800
GF 6xxx
Адаптивная
анизотропная фильтрация
R9xxx
X800
GF FX5xxx
GF 6xxx
Оптимизация ступени R9xxx
X800
GF FX5xxx
Оптимизация LOD R9xxx
X800(?)

В целом, подобные дискуссии имеют свои преимущества: покупатели и, возможно, OEM-клиенты начинают прислушиваться к проблеме. Мы не сомневаемся, что мания необузданных оптимизаций будет продолжаться. Однако в тёмном царстве появился луч света, что наглядно продемонстрировала nVidia со своей трилинейной оптимизацией. Будем надеяться и на следующие подобные шаги!

Технологии отображения 3D-объектов на экране мониторов персональных компьютеров развиваются вместе с выпуском современных графических адаптеров. Получение идеальной картинки в трёхмерных приложениях, максимально приближённой к реальному видео, является основной задачей разработчиков железа и главной целью для ценителей компьютерных игр. Помочь в этом призвана технология, реализованная в видеокартах последних поколений — анизотропная фильтрация в играх.

Что это такое?

Каждому компьютерному игроку хочется, чтобы на экране разворачивалась красочная картина виртуального мира, чтобы, взобравшись на вершину горы, можно было обозревать живописные окрестности, чтобы, нажимая до отказа кнопку ускорения на клавиатуре, до самого горизонта можно было увидеть не только прямую трассу гоночного трека, а и полноценное окружение в виде городских пейзажей. Объекты, отображаемые на экране монитора, только в идеале стоят прямо перед пользователем в самом удобном масштабе, на самом деле подавляющее большинство трёхмерных объектов находится под углом к линии зрения. Более того, различное виртуальное расстояние текстур до точки взгляда также вносит коррективы в размеры объекта и его текстур. Расчётами отображения трёхмерного мира на двумерный экран и заняты различные 3D-технологии, призванные улучшить зрительное восприятие, в числе которых не последнее место занимает текстурная фильтрация (анизотропная или трилинейная). Фильтрация такого плана относится к числу лучших разработок в этой области.

На пальцах

Чтобы понять, что даёт анизотропная фильтрация, нужно понимать основные принципы алгоритмов текстурирования. Все объёкты трёхмерного мира состоят из «каркаса» (трехмерной объёмной модели предмета) и поверхности (текстуры) — двумерной картинки, «натянутой» поверх каркаса. Малейшая часть текстуры — цветной тексель, это как пиксели на экране, в зависимости от «плотности» текстуры, тексели могут быть разных размеров. Из разноцветных текселей состоит полная картина любого объекта в трёхмерном мире.

На экране текселям противопоставлены пиксели, количество которых ограничено доступным разрешением. Тогда как текселей в виртуальной зоне видимости может быть практически бесконечное множество, пиксели, выводящие картинку пользователю, имеют фиксированное количество. Так вот, преобразованием видимых текселей в цветные пиксели занимается алгоритм обработки трёхмерных моделей - фильтрация (анизотропная, билинейная или трилинейная). Подробнее обо всех видах - ниже по порядку, так как они исходят одна из другой.

Ближний цвет

Самым простым алгоритмом фильтрации является отображение цвета ближайшего к точке зрения каждого пискеля (Point Sampling). Всё просто: луч зрения определённой точки на экране падает на поверхность трёхмерного объекта, и текстура изображений возвращает цвет ближайшего к точке падения текселя, отфильтровывая все остальные. Идеально подходит для однотонных по цвету поверхностей. При небольших перепадах цвета тоже даёт вполне качественную картинку, но довольно унылую, так как где вы видели трёхмерные объекты одного цвета? Одни только шейдеры освещения, теней, отражений и другие готовы раскрасить любой объект в играх как новогоднюю ёлку, что же говорить о самих текстурах, которые порою представляют собой произведения изобразительного искусства. Даже серая бездушная бетонная стена в современных играх — это вам не просто прямоугольник невзрачного цвета, это испещрённая шероховатостями, порою трещинами и царапинами и другими художественными элементами поверхность, максимально приближающая вид виртуальной стены к реальным или выдуманным фантазией разработчиков стенам. В общем, ближний цвет мог быть использован в первых трёхмерных играх, сейчас же игроки стали гораздо требовательнее к графике. Что немаловажно: фильтрация ближнего цвета практически не требует вычислений, то есть очень экономична в плане ресурсов компьютера.

Линейная фильтрация

Отличия линейного алгоритма не слишком существенны, вместо ближайшей точки-текселя линейная фильтрация использует сразу 4 и рассчитывает средний цвет между ними. Единственная проблема, что на поверхностях, расположенных под углом к экрану, луч зрения образует как бы эллипс на текстуре, тогда как линейная фильтрация использует идеальный круг для подбора ближайших текселей независимо от угла обзора. Использование четырёх текселей вместо одного позволяет значительное улучшить прорисовку удалённых от точки обзора текстур, но всё равно недостаточно, чтобы корректно отразить картинку.

Mip-mapping

Эта технология позволяет слегка оптимизировать прорисовку компьютерной графики. Для каждой текстуры создаётся определённое количество копий с разной степенью детализации, для каждого уровня детализации выбирается своя картинка, к примеру, для длинного коридора или обширной залы ближние пол и стены требуют максимально возможной детализации, тогда как дальние углы охватывают всего лишь несколько пикселей и не требуют значительной детализации. Эта функция трёхмерной графики помогает избежать размытия дальних текстур, а также искажения и потери рисунка, и работает вместе с фильтрацией, потому что видеоадаптер при расчёте фильтрации самостоятельно не в состоянии решить, какие тексели важны для полноты картины, а какие - не очень.

Билинейная фильтрация

Используя вместе линейную фильтрацию и MIP-текстурирование, получаем билинейный алгоритм, который позволяет ещё лучше отображать удалённые объекты и поверхности. Однако всё те же 4 текселя не дают технологии достаточной гибкости, к тому же билинейная фильтрация не маскирует переходы на следующий уровень масштабирования, работая с каждой частью текстуры по отдельности, и их границы могут быть видны. Таким образом, на большом удалении или под большим углом текстуры сильно размываются, делая картинку неестественной, как будто для людей с близорукостью, плюс для текстур со сложными рисунками заметны линии стыка текстур разного разрешения. Но мы же за экраном монитора, не нужна нам близорукость и разные непонятные линии!

Трилинейная фильтрация

Эта технология призвана исправить прорисовку на линиях смены масштаба текстур. Тогда как билинейный алгоритм работает с каждым уровнем mip-mapping по отдельности, трилинейная фильтрация дополнительно просчитывает границы уровней детализации. При всём этом растут требования к оперативной памяти, а улучшение картинки на удалённых объектах при этом не слишком ощутимо. Само собой, границы между ближними уровнями масштабирования получают лучшую обработку, нежели при билинейной, и более гармонично смотрятся без резких переходов, что сказывается на общем впечатлении.

Анизотропная фильтрация

Если просчитывать проекцию луча зрения каждого экранного пикселя на текстуре согласно углу обзора, получатся неправильные фигуры — трапеции. Вкупе с использованием большего количества текселей для расчётов итогового цвета это может дать гораздо лучший результат. Что даёт анизотропная фильтрация? Учитывая, что пределов количества используемых текселей в теории нет, такой алгоритм способен отображать компьютерную графику неограниченного качества на любом удалении от точки обзора и под любым углом, в идеале сравнимую с реальным видео. Фильтрация анизотропная по своим возможностям упирается лишь в технические характеристики графических адаптеров персональных компьютеров, на которые и рассчитаны современные видеоигры.

Подходящие видеокарты

Режим анизотропной фильтрации был возможен на пользовательских видеоадаптерах уже с 1999 года, начиная с известных карт Riva TNT и Voodoo. Топовые комплектации этих карт вполне справлялись с просчётом трилинейной графики и даже выдавали сносные показатели FPS с использованием анизотропной фильтрации х2. Последняя цифра указывает на качество фильтрации, которое, в свою очередь, зависит от количества текселей, занятых в расчёте итогового цвета пикселя на экране, в данном случае их используется целых 8. Плюс ко всему, при расчётах используется соответствующая углу зрения область захвата этих текселей, а не круг, как в линейных алгоритмах ранее. Современные видеокарты способны обрабатывать фильтрацию анизотропным алгоритмом на уровне х16, что означает использование 128 текселей для расчётов итогового цвета пикселя. Это сулит значительное улучшение отображения удалённых от точки обзора текстур, а также и серьёзную нагрузку, но графические адаптеры последних поколений снабжены достаточным количеством оперативной памяти и многоядерными процессорами, чтобы справляться с этой задачей.

Влияние на FPS

Преимущества понятны, но как дорого обойдётся игрокам анизотропная фильтрация? Влияние на производительность игровых видеоадаптеров с серьёзной начинкой, выпущенных не позднее 2010 года, очень незначительно, что подтверждают тесты независимых экспертов в ряде популярных игр. Фильтрация текстур анизотропная в качестве х16 на бюджетных картах показывает снижение общего показателя FPS на 5-10%, и то за счёт менее производительных компонентов графического адаптера. Такая лояльность современного железа к ресурсоёмким вычислениям говорит о непрестанной заботе производителей о нас, скромных геймерах. Вполне возможно, что не за горами переход на следующие уровни качества анизотропии, лишь бы игроделы не подкачали.

Конечно, в улучшении качества картинки участвует далеко не одна только анизотропная фильтрация. Включать или нет ее, решать игроку, но счастливым обладателям последних моделей от Nvidia или AMD (ATI) не стоит даже задумываться над этим вопросом - настройка анизотропной фильтрации на максимальный уровень не повлияет на производительность и добавит реалистичности пейзажам и обширным локациям. Немногим сложнее ситуация у хозяев встроенных графических решений от компании Intel, так как в этом случае многое зависит от качеств оперативной памяти компьютера, её тактовой частоты и объёма.

Опции и оптимизация

Управление типом и качеством фильтрации доступно благодаря специальному ПО, регулирующему драйвера графических адаптеров. Также расширенная настройка анизотропной фильтрации доступна в игровых меню. Реализация больших разрешений и использование нескольких мониторов в играх заставили производителей задуматься об ускорении работы своих изделий, в том числе за счёт оптимизации анизотропных алгоритмов. Производители карт в последних версиях драйверов представили новую технологию под названием адаптивная анизотропная фильтрация. Что это значит? Эта функция, представленная AMD и частично реализованная в последних продуктах Nvidia, позволяет снижать коэффициент фильтрации там, где это возможно. Таким образом, фильтрация анизотропная коэффициентом х2 может обрабатывать ближние текстуры, тогда как удалённые объекты пройдут рендеринг по более сложным алгоритмам вплоть до максимального х16-коэффициента. Как обычно, оптимизация даёт существенное улучшение за счёт качества, местами адаптивная технология склонна к ошибкам, заметным на ультранастройках некоторых последних трёхмерных видеоигр.

На что влияет анизотропная фильтрация? Задействование вычислительных мощностей видеоадаптеров, по сравнению с другими технологиями фильтрации, намного выше, что сказывается на производительности. Впрочем, проблема быстродействия при использовании этого алгоритма давно решена в современных графических чипах. Вместе с остальными трёхмерными технологиями анизотропная фильтрация в играх (что это такое мы уже представляем) влияет на общее впечатление о целостности картинки, особенно при отображении удалённых объектов и текстур, расположенных под углом к экрану. Это, очевидно, главное, что требуется игрокам.

Взгляд в будущее

Современное железо со средними характеристиками и выше вполне способно справиться с требованиями игроков, поэтому слово о качестве трёхмерных компьютерных миров сейчас за разработчиками видеоигр. Графические адаптеры последнего поколения поддерживают не только высокие разрешения и такие ресурсоёмкие технологии обработки изображений, как фильтрация текстур анизотропная, но и VR-технологии или поддержку нескольких мониторов.

Текстурирование является важнейшим элементом сегодняшних 3D приложений, без него многие трехмерные модели теряют значительную часть своей визуальной привлекательности. Однако процесс нанесения текстур на поверхности не обходится без артефактов и соответствующих методов их подавления. В мире трехмерных игр то и дело встречаются специализированные термины типа "мип-мэппинг", "трилинейная фильтрация" и т.п., которые как раз и относятся к этим методам.

Частным случаем эффекта ступенчатости, рассмотренным ранее, является эффект ступенчатости текстурированных поверхностей, который, к сожалению, нельзя убрать методами мульти- или суперсэмплинга, описанными выше.

Представьте себе черно-белую шахматную доску большого, практически бесконечного размера. Допустим, мы рисуем эту доску на экране и смотрим на нее под небольшим углом. Для достаточно удаленных участков доски размеры клеток неизбежно начнут уменьшаться до размера одного пикселя и меньше. Это так называемое оптическое уменьшение текстуры (minification). Между пикселями текстуры начнется "борьба" за обладание пикселями экрана, что приведет к неприятному мельтешению, что является одной из разновидностей эффекта ступенчатости. Увеличение экранного разрешения (реального или эффективного) помогает только немного, потому что для достаточно удаленных объектов детали текстур все равно становятся меньше пикселей.

С другой стороны, наиболее ближние к нам части доски занимают большую экранную площадь, и можно наблюдать огромные пиксели текстуры. Это называется оптическим увеличением текстуры (magnification). Хотя эта проблема стоит не так остро, для уменьшения негативного эффекта с ней тоже необходимо бороться.

Для решения проблем текстурирования применяется так называемая фильтрация текстур. Если разобраться в процессе рисования трехмерного объекта с наложенной текстурой, можно увидеть, что вычисление цвета пикселя идет как бы "наоборот", - сначала находится пиксель экрана, куда будет спроецирована некоторая точка объекта, а затем для этой точки находятся все пиксели текстуры, попадающие в нее. Выбор пикселей текстуры и их комбинация (усреднение) для получения финального цвета пикселя экрана и называется фильтрацией текстуры.

В процессе текстурирования каждому пикселю экрана ставится в соответствие координата внутри текстуры, причем эта координата не обязательно целочисленная. Более того, пикселю соответствует некоторая область в изображении текстуры, в которую могут попадать несколько пикселей из текстуры. Будем называть эту область образом пикселя в текстуре. Для ближних частей нашей доски пиксель экрана становится значительно меньше пикселя текстуры и как бы находится внутри него (образ содержится внутри пикселя текстуры). Для удаленных, наоборот, в каждый пиксель попадает большое количество точек текстуры (образ содержит в себе несколько точек текстуры). Образ пикселя может иметь различную форму и в общем случае представляет собой произвольный четырехугольник.

Рассмотрим различные методы фильтрации текстур и их вариации.

Ближайший сосед (nearest neighbor)

В этом, наиболее простом, методе в качестве цвета пикселя просто выбирается цвет ближайшего соответствующего пикселя текстуры. Этот метод самый быстрый, но и наименее качественный. По сути, это даже не специальный метод фильтрации, а просто способ выбрать хоть какой-то пиксель текстуры, соответствующий экранному пикселю. Он широко применялся до появления аппаратных ускорителей, вместе с широким распространением которых появилась возможность использовать более качественные методы.

Билинейная фильтрация (bilinear)

Билинейная фильтрация находит четыре пикселя текстуры, ближайшие к текущей точке экрана и результирующий цвет определяется как результат смешения цветов этих пикселей в некоторой пропорции.

Фильтрация методом ближайшего соседа и билинейная фильтрация работают достаточно хорошо когда, во-первых, степень уменьшения текстуры невелика, а во-вторых, когда мы видим текстуру под прямым углом, т.е. фронтально. С чем это связано?

Если рассмотреть, как описывалось выше, "образ" пикселя экрана в текстуре, то для случая сильного уменьшения он будет включать в себя очень много пикселей текстуры (вплоть до всех пикселей!). Кроме того, если мы смотрим на текстуру под углом, этот образ будет сильно вытянут. В обоих случаях описанные методы будут работать плохо, поскольку фильтр не будет "захватывать" соответствующие пиксели текстуры.

Для решения этих проблем применяют так называемый мип-мэппинг и анизотропную фильтрацию.

Мип-мэппинг

При значительном оптическом уменьшении точке экрана может соответствовать достаточно много пикселей текстуры. Это значит, что реализация даже самого хорошего фильтра будет требовать достаточно много времени для усреднения всех точек. Однако проблему можно решить, если создавать и хранить версии текстуры, в которых значения будут усреднены заранее. А на этапе визуализации для пикселя искать нужную версию исходной текстуры и брать значение из нее.

Термин mipmap произошел от латинского multum in parvo - многое в малом. При использовании этой технологии в памяти графического ускорителя в дополнение к изображению текстуры хранится набор ее уменьшенных копий, причем каждая новая ровно в два раза меньше предыдущей. Т.е. для текстуры размером 256x256 дополнительно хранятся изображения 128x128, 64x64 и т.д, вплоть до 1x1.

Далее для каждого пикселя выбирается подходящий уровень мипмапа (чем больше размер "образа" пикселя в текстуре, тем меньший мипмап берется). Далее значения в мипмапе могут усредняться билинейно или методом ближайшего соседа (как описано выше) и дополнительно происходит фильтрация между соседними уровнями мипмапа. Такая фильтрация называется трилинейной. Она дает весьма качественные результаты и широко используется на практике.


Рисунок 9. Уровни мипмапа

Однако проблема с "вытянутым" образом пикселя в текстуре остается. Как раз по этой причине наша доска на большом расстоянии выглядит очень нечеткой.

Анизотропная фильтрация

Анизотропная фильтрация - это процесс фильтрации текстуры, специально учитывающий случай вытянутого образа пикселя в текстуре. Фактически, вместо квадратного фильтра (как в билинейной фильтрации), используется вытянутый, что позволяет более качественно выбрать нужный цвет для экранного пикселя. Такая фильтрация используется вместе с мипмэппингом и дает весьма качественные результаты. Однако, существуют и недостатки: реализация анизотропной фильтрации достаточно сложна и при ее включении скорость рисования значительно падает. Анизотропная фильтрация поддерживается последними поколениями графических процессоров NVidia и ATI. Причем с различным уровнем анизотропии - чем больше этот уровень, чем более "вытянутые" образы пикселей можно корректно обрабатывать и тем лучше качество.

Сравнение фильтраций

Итог следующий: для подавления артефактов алиасинга текстур аппаратно поддерживаются несколько методов фильтрации, различающиеся по своему качеству и скорости работы. Наиболее простой метод фильтрации - метод ближайшего соседа (который фактически не борется с артефактами, а просто заполняет пиксели). Сейчас чаще всего используется билинейная фильтрация вместе с мип-мэппингом или трилинейная фильтрация. В последнее время графические процессоры начали поддерживать наиболее качественный режим фильтрации - анизотропную фильтрацию.

Бамп-мэппинг (Bump mapping)

Бамп-мэппинг (bump mapping) - это тип графических спецэффектов, который призван создавать впечатление "шершавых" или бугристых поверхностей. В последнее время использование бамп-мэппинга стало чуть ли не стандартом игровых приложений.

Основная идея бамп-мэппинга - использование текстур для управления взаимодействием света с поверхностью объекта. Это позволяет добавлять мелкие детали без увеличения количества треугольников. В природе мы различаем мелкие неровности поверхностей по теням: любой бугорок будет с одной стороны светлым, а с другой - темным. Фактически, глаз может и не различать изменения в форме поверхности. Этот эффект и используется в технологии бамп-мэппинга. Одна или несколько дополнительных текстур накладываются на поверхность объекта и используются для вычисления освещенности точек объекта. Т.е. поверхность объекта не меняется вовсе, только создается иллюзия неровностей.

Существует несколько методов бамп-мэппинга, но прежде чем мы перейдем к их рассмотрению, необходимо выяснить, собственно как задать неровности на поверхности. Как уже говорилось выше, для этого используются дополнительные текстуры, причем они могут быть разных видов:

Карта нормалей. В этом случае каждый пиксель дополнительной текстуры хранит вектор, перпендикулярный поверхности (нормаль), закодированный в виде цвета. Нормали используются для вычисления освещенности.

Карта смещений. Карта смещений представляет собой текстуру в градациях серого, в каждом пикселе которой хранится смещение от оригинальной поверхности.

Эти текстуры готовятся дизайнерами трехмерных моделей вместе с геометрией и основными текстурами. Существуют и программы, позволяющие получать карты нормалей или смещений автоматически

Препроцессированный бамп-мэппинг (Pre-calculated bump mapping)

Текстуры, которые будут хранить информацию о поверхности объекта, создаются заранее, до этапа визуализации, путем затемнения некоторых точек текстуры (и, следовательно, самой поверхности) объекта и высветления других. Далее во время рисования используется обычная текстура.

Этот метод не требует никаких алгоритмических ухищрений во время рисования, но, к сожалению, изменений в освещении поверхностей при изменении положений источников света или движения объекта не происходит. А без этого действительно успешной симуляции неровной поверхности не создать. Подобные методы используются для статических частей сцены, часто для архитектуры уровней и т.п

Бамп-мэппинг с помощью тиснения (Emboss bump mapping)

Эта технология применялась на первых графических процессорах (NVidia TNT, TNT2, GeForce). Для объекта создается карта смещений. Рисование происходит в два этапа. На первом этапе карта смещений попиксельно складывается сама с собой. При этом вторая копия сдвигается на небольшое расстояние в направлении источника света. При этом получается следующий эффект: положительные значения разницы определяют освещенные пиксели, отрицательные - пиксели в тени. Эта информация используется для соответствующего изменения цвета пикселей основной текстуры.

Бамп-мэппинг с помощью тиснения не требует аппаратуры, поддерживающей пиксельные шейдеры, однако он плохо работает для относительно крупных неровностей поверхности. Также объекты не всегда выглядят убедительно, это сильно зависит от того, под каким углом смотреть на поверхность.

Пиксельный бамп-мэппинг (Pixel bump mapping)

Пиксельный бамп-мэппинг - на данный момент вершина развития подобных технологий. В этой технологии все вычисляется максимально честно. На вход пиксельному шейдеру дается карта нормалей, из которой берутся значения нормали для каждой точки объекта. Затем значение нормали сравнивается с направлением на источник света и вычисляется значение цвета.

Эта технология поддерживается в аппаратуре начиная с видеокарт уровня GeForce2.

Итак, мы увидели, каким образом можно использовать особенности человеческого восприятия мира для улучшения качества изображений, создаваемый 3D-играми. Счастливые обладатели последнего поколения видеокарт NVidia GeForce, ATI Radeon (впрочем, и не только последнего) могут самостоятельно поиграть с некоторыми их описанных эффектов, благо настройки устранения ступенчатости и анизотропной фильтрации доступны из опций драйверов. Эти и другие методы, оставшиеся за рамками данной статьи, успешно внедряются разработчиками игр в новые продукты. В общем, жизнь становится лучше. То-то еще будет!