23.09.2019

Явление дисперсии света объясняет. Белый свет. Разложение белого света в спектр. Зависимость показателя преломления от скорости распространения излучения (дисперсия света)


Cтраница 1


Явление дисперсии в различных оптических системах играет как положительную, так и отрицательную роль. В линзах фотоаппаратов, микроскопов и телескопов дисперсия света вызывает хроматическую аберрацию и сильно ухудшает изображение; с ней приходится бороться.  

Явление дисперсии всегда сопровождает резонансное поглощение энергии СВЧ-поля - в действительности дисперсия сопутствует поглощению в любой области спектра.  

Явление дисперсии зависит от термической обработки звуко-провода. Исключительно важной операцией при обработке никелевых звукопроводов является отжиг в течение 15 - 30 мин при температуре 800 - 900е С.  

Явление дисперсии состоит в изменении скорости распространения звука при изменении его частоты. Некоторые из степеней свободы молекул возбуждаются медленнее других, поэтому теплоемкость газа может зависеть от скорости его нагревания. Если же в газе происходит распространение звука, то, при небольшой частоте колебания, за время прохождения звуковой волны все степени свободы молекул успевают возбудиться. Устанавливается равновесие, при котором теплоемкость газа имеет максимальное значение. Если частота звука велика, то за время прохождения звуковой волны не все степени свободы успевают возбудиться.  

Явление дисперсии наблюдается также для электронной и атомной поляризации. В области частот, соответствующих ИК-излуче-нию, исчезает атомная поляризация, а в области видимого и УФ - излучения - электронная.  

Явления дисперсии света, так же как и явления интерференции и дифракции в немонохроматическом свете, доказывают, что монохроматическая электромагнитная волна с определенной частотой (или длиной волны в вакууме), принадлежащая к диапазону видимых световых волн (IV. Строго монохроматический свет принципиально существовать не может. Это связано с процессами испускания света.  

Явления дисперсии оптического вращения и кругового дихроизма известны давно. Зависимость величины угла вращения плоскости поляризации линейно поляризованного света, проходящего через слой вещества, от длины волны света (дисперсия оптического вращения) была установлена еще в 1811 г. Араго. Явление избирательного поглощения веществом компоненты циркулярно поляризованного света, круговой дихроизм, было открыто Хай-дингером в 1847 г. На протяжении более чем 100 лет эти явления мало использовались в органической химии.  

На основе явления дисперсии построены все призменные спектральные приборы. Диспергирующим элементом таких приборов является одна или несколько призм.  

Опытное изучение явления дисперсии света впервые осуществил Ньютон в 1666 г., пропуская белый свет через призму. Следовательно, наиболее отклоняющиеся фиолетовые лучи обладают меньшей скоростью распространения в стекле, чем менее отклоняющиеся красные.  

Если в явлении дисперсии участвуют частицы (ионы) с разными массами и зарядами, то е и т тоже будут обеспечены индексами и будут входить под знак суммы.  

ОПРЕДЕЛЕНИЕ

Дисперсией света называют зависимость показателя преломления вещества (n) от частоты () или длины волны () света в вакууме (часто индекс 0 опускают):

Иногда дисперсию определяют как зависимость фазовой скорости (v) волн света от частоты.

Всем известное следствие дисперсии - это разложение белого света в спектр при прохождении сквозь призму. Первым свои наблюдения дисперсии света зафиксировал И. Ньютон. Дисперсия является следствием зависимости поляризованности атомов от частоты.

Графическая зависимость показателя преломления от частоты (или длины волны) - дисперсионная кривая.

Дисперсия возникает в результате колебаний электронов и ионов.

Дисперсия света в призме

Если монохроматический пучок света попадает на призму, показатель преломления вещества которой равен n, под углом (рис.1), то после двойного преломления луч отклоняется от первоначального направления на угол :

Если углы А, - маленькие, следовательно малыми являются все остальные углы в формуле (2). В таком случае закон преломления можно записать не через синусы этих углов, а непосредственно через величины самих углов в радианах:

Зная, что , имеем:

Следовательно, угол отклонения лучей при помощи призмы прямо пропорционален величине преломляющего угла призмы:

и зависит от величины . А нам известно, что показатель преломления - функция длины волны. Получается, что лучи, имеющие разные длины волн после того, как пройдут через призму, отклонятся на разные углы. Становится понятным, почему пучок белого света разложится в спектр.

Дисперсия вещества

Величина (D), равная:

называется дисперсией вещества . Она показывает быстроту изменения показателя преломления в зависимости от длины волны.

Показатель преломления для прозрачных веществ при уменьшении длины волны монотонно увеличивается, значит, величина D по модулю растет с уменьшением длины волны. Данная дисперсия называется нормальной. Явление нормальной дисперсии положено в основу действия призменных спектрографов, которые могут использоваться для исследования спектрального состава света.

Примеры решения задач

ПРИМЕР 1

Задание В чем состоят основные различия в дифракционном и призматическом спектрах?
Решение Дифракционная решетка раскладывает свет по длинам волн. По полученным и измеренным углам на направления соответствующих максимумов можно рассчитать длину волны. В отличи от дифракционной решетки призма раскладывает свет по величинам показателя преломления, следовательно, для нахождения длины волны света необходимо иметь зависимость .

Кроме сказанного выше цвета в спектре, полученном в результате дифракции, и призматическом спектре расположены по-разному. Для дифракционной решетки было получено, что синус угла отклонения является пропорциональным длине волны. Значит, красные лучи дифракционная решетка отклоняет больше, чем фиолетовые. Призма раскладывает лучи по величинам показателя преломления, а он для всех прозрачных веществ при росте длины волны монотонно уменьшается. Получается, что красные лучи, обладающие меньшим показателем преломления, будут отклоняться призмой меньше, чем фиолетовые (рис.2).


ПРИМЕР 2

Задание Каким будет угол отклонения () луча стеклянной призмой, если он нормально падает на ее грань? Показатель преломления вещества призмы равен n=1,5. Преломляющий угол призмы составляет тридцать градусов ().
Решение При решении задачи можно воспользоваться рис. 1 в теоретической части статьи. Следует учесть, что . Из рис.1 следует, что

По закону преломления запишем:

Так как , получим, что . Из формулы (2.1) получим, что:

Дисперсия света - это зависимость показателя преломления n вещества от длины волны света (в вакууме)

или, что то же самое, зависимость фазовой скорости световых волн от частоты:

Дисперсией вещества называется производная от n по

Дисперсия - зависимость показателя преломления вещества от частоты волны – особенно ярко и красиво проявляет себя совместно с эффектом двойного лучепреломления (см. Видео 6.6 в предыдущем параграфе), наблюдаемом при прохождении света через анизотропные вещества. Дело в том, что показатели преломления обыкновенной и необыкновенной волн различно зависят от частоты волны. В результате цвет (частота) света прошедшего через анизотропное вещество помещенное между двумя поляризаторами зависит как от толщины слоя этого вещества, так и от угла между плоскостями пропускания поляризаторов.

Для всех прозрачных бесцветных веществ в видимой части спектра с уменьшением длины волны показатель преломления увеличивается, то есть дисперсия вещества отрицательна: . (рис. 6.7, области 1-2, 3-4)

Если вещество поглощает свет в каком-то диапазоне длин волн (частот), то в области поглощения дисперсия

оказывается положительной и называется аномальной (рис. 6.7, область 2–3).

Рис. 6.7. Зависимость квадрата показателя преломления (сплошная кривая) и коэффициента поглощения света веществом
(штриховая кривая) от длины волны
l вблизи одной из полос поглощения ()

Изучением нормальной дисперсии занимался ещё Ньютон. Разложение белого света в спектр при прохождении сквозь призму является следствием дисперсии света. При прохождении пучка белого света через стеклянную призму на экране возникает разноцветный спектр (рис. 6.8).


Рис. 6.8. Прохождение белого света через призму: вследствие различия значений показателя преломления стекла для разных
длин волн пучок разлагается на монохроматические составляющие - на экране возникает спектр

Наибольшую длину волны и наименьший показатель преломления имеет красный свет, поэтому красные лучи отклоняются призмой меньше других. Рядом с ними будут лучи оранжевого, потом желтого, зеленого, голубого, синего и, наконец, фиолетового света. Произошло разложение падающего на призму сложного белого света на монохроматические составляющие (спектр).

Ярким примером дисперсии является радуга. Радуга наблюдается, если солнце находится за спиной наблюдателя. Красные и фиолетовые лучи преломляются сферическими капельками воды и отражаются от их внутренней поверхности. Красные лучи преломляются меньше и попадают в глаз наблюдателя от капелек, находящихся на большей высоте. Поэтому верхняя полоса радуги всегда оказывается красной (рис. 26.8).


Рис. 6.9. Возникновение радуги

Используя законы отражения и преломления света, можно рассчитать ход световых лучей при полном отражении и дисперсии в дождевых каплях. Оказывается, что лучи рассеиваются с наибольшей интенсивностью в направлении, образующем угол около 42° с направлением солнечных лучей (рис. 6.10).


Рис. 6.10. Расположение радуги

Геометрическое место таких точек представляет собой окружность с центром в точке 0. Часть ее скрыта от наблюдателя Р под горизонтом, дуга над горизонтом и есть видимая радуга. Возможно также двойное отражение лучей в дождевых каплях, приводящее к радуге второго порядка, яркость которой, естественно, меньше яркости основной радуги. Для нее теория дает угол 51 °, то есть радуга второго порядка лежит вне основной. В ней порядок цветов заменен на обратный: внешняя дуга окрашена в фиолетовый цвет, а нижняя - в красный. Радуги третьего и высших порядков наблюдаются редко.

Элементарная теория дисперсии. Зависимость показателя преломления вещества от длины электромагнитной волны (частоты) объясняется на основе теории вынужденных колебаний. Строго говоря, движение электронов в атоме (молекуле) подчиняется законам квантовой механики. Однако для качественного понимания оптических явлений можно ограничиться представлением об электронах, связанных в атоме (молекуле) упругой силой. При отклонении от равновесного положения такие электроны начинают колебаться, постепенно теряя энергию на излучение электромагнитных волн или передавая свою энергию узлам решетки и нагревая вещество. В результате этого колебания будут затухающими.

При прохождении через вещество электромагнитная волна воздействует на каждый электрон с силой Лоренца:

где v - скорость колеблющегося электрона. В электромагнитной волне отношение напряженностей магнитного и электрического полей равно

Поэтому нетрудно оценить отношение электрической и магнитной сил, действующих на электрон:

Электроны в веществе движутся со скоростями, много меньшими скорости света в вакууме:

где - амплитуда напряженности электрического поля в световой волне, - фаза волны, определяемая положением рассматриваемого электрона. Для упрощения вычислений пренебрежем затуханием и запишем уравнение движения электрона в виде

где, - собственная частота колебаний электрона в атоме. Решение такого дифференциального неоднородного уравнения мы уже рассматривали ранее и получили

Следовательно, смещение электрона из положения равновесия пропорционально напряженности электрического поля. Смещениями ядер из положения равновесия можно пренебречь, так как массы ядер весьма велики по сравнению с массой электрона.

Атом со смещенным электроном приобретает дипольный момент

(для простоты положим пока, что в атоме имеется только один «оптический» электрон, смещение которого вносит определяющий вклад в поляризацию). Если в единице объема содержится N атомов, то поляризованность среды (дипольный момент единицы объема) можно записать в виде

В реальных средах возможны разные типы колебаний зарядов (групп электронов или ионов), вносящих вклад в поляризацию. Эти типы колебаний могут иметь разные величины заряда е i и массы т i , а также различные собственные частоты (мы будем обозначать их индексом k), при этом число атомов в единице объема с данным типом колебаний N k пропорционально концентрации атомов N:

Безразмерный коэффициент пропорциональности f k характеризует эффективный вклад каждого типа колебаний в общую величину поляризации среды:

С другой стороны, как известно,

где - диэлектрическая восприимчивость вещества, которая связана с диэлектрической проницаемостью e соотношением

В результате получаем выражение для квадрата показателя преломления вещества:

Вблизи каждой из собственных частот функция , определяемая формулой (6.24), терпит разрыв. Такое поведение показателя преломления обусловлено тем, что мы пренебрегли затуханием. Аналогично, как мы видели ранее, пренебрежение затуханием приводит к бесконечному росту амплитуды вынужденных колебаний при резонансе. Учет затухания избавляет нас от бесконечностей, и функция имеет вид, изображенный на рис. 6.11.

Рис. 6.11. Зависимость диэлектрической проницаемости среды от частоты электромагнитной волны

Учитывая связь частоты с длиной электромагнитной волны в вакууме

можно получить зависимость показателя преломления вещества п от длины волны в области нормальной дисперсии (участки 1–2 и 3–4 на рис. 6.7):

Длины волн, соответствующие собственным частотам колебаний , - постоянные коэффициенты.

В области аномальной дисперсии () частота внешнего электро­маг­нитного поля близка к одной из собственных частот колебаний молекулярных диполей, то есть возникает резонанс. Именно в этих областях (например, участок 2–3 на рис. 6.7) наблюдается существенное поглощение электромагнитных волн; коэффициент поглощения света веществом показан штриховой линией на рис. 6.7.

Понятие о групповой скорости. С явлением дисперсии тесно связано понятие о групповой скорости. При распространении в среде с дисперсией реальных электромагнитных импульсов, например известных нам цугов волн, испускаемых отдельными атомными излучателями, происходит их «расплывание» - расширение протяженности в пространстве и длительности во времени. Это связано с тем, что такие импульсы представляют собой не монохроматическую синусоидальную волну, а так называемый волновой пакет, или группу волн - совокупность гармонических составляющих с разными частотами и с разными амплитудами, каждая из которых распространяется в среде со своей фазовой скоростью (6.13).

Если бы волновой пакет распространялся в вакууме, то его форма и пространственно-временная протяженность оставались бы неизменными, а скоростью распространения такого цуга волн была бы фазовая скорость света в вакууме

Из-за наличия дисперсии зависимость частоты электромагнитной волны от волнового числа k становится нелинейной, и скорость распространения цуга волн в среде, то есть скорость переноса энергии, определяется производной

где - волновое число для «центральной» волны в цуге (обладающей наибольшей амплитудой).

Мы не будем выводить эту формулу в общем виде, но на частном примере поясним ее физический смысл. В качестве модели волнового пакета примем сигнал, состоящий из двух плоских волн, распространяющихся в одном направлении с одинаковыми амплитудами и начальными фазами , но различающихся частотами, сдвинутыми относительно «центральной» частоты на небольшую величину . Соответствующие волновые числа сдвинуты относительно «центрального» волнового числа на небольшую величину . Эти волны описываются выражениями.

(или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года , хотя теоретически достаточно хорошо объяснена значительно позднее.

  • Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора . Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

Один из самых наглядных примеров дисперсии - разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является неодинаковая скорость распространения лучей света c различной длиной волны в прозрачном веществе - оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно чем больше частота волны, тем больше показатель преломления среды и меньше ее скорость света в ней:

Однако в некоторых веществах (например в парах йода) наблюдается эффект аномальной дисперсии , при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. Говоря строже, аномальная дисперсия широко распространена, например, она наблюдается практически у всех газов на частотах вблизи линий поглощения, однако у паров йода она достаточно удобна для наблюдения в оптическом диапазоне, где они очень сильно поглощают свет.

Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.

  • Белый свет разлагается на спектр и в результате прохождения через дифракционную решётку или отражения от нее (это не связано с явлением дисперсии, а объясняется природой дифракции). Дифракционный и призматический спектры несколько отличаются: призматический спектр сжат в красной части и растянут в фиолетовой и располагается в порядке убывания длины волны: от красного к фиолетовому; нормальный (дифракционный) спектр - равномерный во всех областях и располагается в порядке возрастания длин волн: от фиолетового к красному.

По аналогии с дисперсией света, также дисперсией называются и сходные явления зависимости распространения волн любой другой природы от длины волны (или частоты). По этой причине, например, термин закон дисперсии , применяемый как название количественного соотношения, связывающего частоту и волновое число , применяется не только к электромагнитной волне , но к любому волновому процессу.

Дисперсией объясняется факт появления радуги после дождя (точнее тот факт, что радуга разноцветная, а не белая).

Дисперсия является причиной хроматических аберраций - одних из аберраций оптических систем , в том числе фотографических и видео-объективов .

Коши пришел к формуле, выражающей зависимость показателя преломления среды от длины волны:

…,

Дисперсия света в природе и искусстве

Из-за дисперсии можно наблюдать разные цвета.

  • Радуга , чьи цвета обусловлены дисперсией, - один из ключевых образов культуры и искусства.
  • Благодаря дисперсии света, можно наблюдать цветную «игру света» на гранях бриллианта и других прозрачных гранёных предметах или материалах.
  • В той или иной степени радужные эффекты обнаруживаются достаточно часто при прохождении света через почти любые прозрачные предметы. В искусстве они могут специально усиливаться, подчеркиваться.
  • Разложение света в спектр (вследствие дисперсии) при преломлении в призме - довольно распространенная тема в изобразительном искусстве. Например, на обложке альбома Dark Side Of The Moon группы Pink Floyd изображено преломление света в призме с разложением в спектр.

См. также

Литература

  • Яштолд-Говорко В. А. Фотосъёмка и обработка. Съёмка, формулы, термины, рецепты. - Изд. 4-е, сокр. - М .: Искусство, 1977.

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Дисперсия света" в других словарях:

    Зависимость преломления показателя n в ва от частоты n (длины волны l) света или зависимость фазовой скорости световых волн от их частоты. Следствие Д. с. разложение в спектр пучка белого света при прохождении его сквозь призму (см. СПЕКТРЫ… … Физическая энциклопедия

    дисперсия света - Явления, обусловленные зависимостью скорости распространения света от частоты световых колебаний. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики… … Справочник технического переводчика

    дисперсия света - šviesos skaida statusas T sritis radioelektronika atitikmenys: angl. dispersion of light vok. Lichtdispersion, f; Zerteilung des Lichtes, f rus. дисперсия света, f pranc. dispersion de la lumière, f … Radioelektronikos terminų žodynas

    дисперсия света - šviesos dispersija statusas T sritis fizika atitikmenys: angl. dispersion of light vok. Lichtdispersion, f; Zerlegung des Lichtes, f rus. дисперсия света, f pranc. dispersion de la lumière, f … Fizikos terminų žodynas

    Зависимость показателя преломления n вещества от частоты ν (длины волны λ) света или зависимость фазовой скорости (См. Фазовая скорость) световых волн от частоты. Следствие Д. с. разложение в спектр пучка белого света при прохождении… … Большая советская энциклопедия

    Зависимость показателя преломления п в ва от частоты света v. В обл. частот света, для к рых в во прозрачно, п возрастает с увеличением v нормальная Д. с. В обл. частот, соответствующих полосам интенсивного поглощения света в вом, п убывает с… … Большой энциклопедический политехнический словарь

    Зависимость абсолютного показателя преломления вещества от длины волны света … Астрономический словарь

    Для улучшения этой статьи желательно?: Добавить иллюстрации. Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. Проставить шаблон карточку, который существ … Википедия

    Зависимость фазовой скорости гармонических волн в среде от частоты их колебаний. дисперсия волн наблюдается для волн любой природы. Наличие дисперсии волн приводит к искажению формы сигнала (напр., звукового импульса) при распространении в среде … Большой Энциклопедический словарь

Пучок света, проходя через треугольную призму, отклоняется к грани, лежащей напротив преломляющегося угла призмы. Однако если это будет пучок именно белого света, то он, после того как пройдет через призму, не только отклонится, но и разложится на цветные пучки. Такое явление называется дисперсия света. Оно было впервые изучено в в серии замечательных опытов.

Источником света в опытах Ньютона служило небольшое круглое отверстие, расположенное в ставне окна, освещаемого лучами Солнца. Когда перед отверстием устанавливалась призма, то на стене вместо круглого пятна появлялась окрашенная полоска, названная Ньютоном спектром. Такой спектор состоит из семи главных цветов: красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового, которые постепенно переходили один в другой. Каждый из них занимает в спектре пространство различного размера. Наибольшую длину имеет фиолетовая полоса, наименьшую - красная.

Следующий опыт состоял в том, что из широкого пучка цветных лучей, полученных с помощью призмы, экраном с небольшим отверстием выделились узкие пучки определенной цветности и направлялись на вторую призму.

Призма отклоняя их, не изменяет цвета этих лучей. Такие лучи называются простые или монохроматическими (одноцветными).

Опыт показывает, что красные лучи ощущают меньшее отклонение по сравнению с фиолетовыми, т.е. лучи различной цветности неодинаково преломляются призмой.

Собирая пучки лучей, вышедшие из призмы, Ньютон получил на белом экране вместо окрашенной полосы белое изображение отверстия.

Из всех проведенных опытов Ньютон сделал такие выводы:

  • белый свет по своей природе является сложным светом, который состоит из цветных лучей;
  • у лучей света различной цветности различны и показатели преломления вещества; в результате этого, когда пучок белого света отклоняется призмой, он разлагается в спектр;
  • если соединенить цветные лучи спектра, то вновь получится белый свет.

Таким образом, дисперсия света - это явление, которое обусловлено зависимостью вещества от длины волны (или частоты).

Дисперсия света отмечается не только, когда свет проходит через призму, но и в различных других случаях преломления света. Так, в частности, преломление в каплях воды солнечного света сопровождается его разложением на разноцветные лучи, этим поясняется образование радуги.

Ньютон для получения спектра направлял на призму довольно широкий цилиндрический пучок солнечного света через круглое отверстие, сделанное в ставне.

Полученный таким способом спектр представляет собой ряд разноцветных изображений круглого отверстия, частично налагающихся друг на друга. Для получения более чистого спектра, при изучении такого явления как дисперсия света, Ньютон предложил пользоваться не круглым отверстием, а узкой щелью, параллельной преломляющему ребру призмы. При помощи линзы на экране получают четкое изображение щели, после чего за линзой устанавливается призма, которая дает спектр.

Наиболее чистые и яркие спектры получают при помощи специальных приборов - спектроскопов и спектрографов.

Поглощение света - это явление, при котором энергия световой волны уменьшается при еѐ прохождении через вещество. Это происходит вследствие превращения энергии волны света в энергию вторичного излучения или, другими словами, вещества, которое имеет другой спектральный состав и другие направления распространения.

Поглощение света сможет вызывать нагревание вещества, ионизацию или возбуждение молекул либо атомов, фотохимические реакции, а также другие процессы в веществе.