28.06.2020

Оптическая система глаза. Оптическая система глаза и преломление света (рефракция) Прохождение луча света


Отдельные части глаза (роговица, хрусталик, стекловидное тело) обладают способностью преломлять проходящие через них лучи. С точки зрения физики глаз представляет собой оптическую систему, способную собирать и преломлять лучи.

Преломляющую силу отдельных частей (линз в прибо ре) и всей оптической системы глаза измеряют в диоптриях.

Под одной диоптрией понимают преломляющую силу линзы, фокусное расстояние которой составляет 1 м. Если преломляющая сила увеличивается, фокусное расстояние уко рачивается. Отсюда следует, что линза, у которой фокусное расстояние равно 50 см, будет обладать преломляющей силой, равной 2 диоптриям (2 D).

Оптическая система глаза является весьма сложной. Достаточно указать, что только преломляющих сред имеется несколько, причем каждая среда имеет свою преломляющую силу и особенности строения. Все это крайне усложняет изучение оптической системы глаза.

Рис. Построение изображения в глазу (объяснение в тексте)

Глаз часто сравнивают с фотоаппаратом. Роль камеры играет полость глаза, затемненная сосудистой оболочкой; светочувствительным элементом является сетчатка. В камере имеется отверстие, в которое вставлена линза. Лучи света, попадая в отверстие, проходят через линзу, преломляются и падают на противоположную стенку.

Оптическая система глаза представляет собой преломляющую собирательную систему. Она преломляет проходящие через нее лучи и опять собирает их в одну точку. Таким образом возникает действительное изображение реального предмета. Однако изображение предмета на сетчатке получается обратное и уменьшенное.

Чтобы понять это явление, обратимся к схематическому глазу. Рис. дает представление о ходе лучей в глазу и получении обратного изображения предмета на сетчатке. Луч, отходящий от верхней точки предмета, обозначенной буквой а, проходя через линзу, преломляется, меняет направление и занимает на сетчатке положение нижней точки, обозначенной на рисунке а 1 Луч от нижней точки предмета в, преломляясь, падает на сетчатку как верхняя точка в 1 . Соответствующим же образом падают лучи от всех точек. Следовательно, на сетчатке получается действительное изображение предмета, но оно обратное и уменьшенное.

Так, расчеты показывают, что размер букв данной книги, если при чтении она находится на расстоянии 20 см от глаза, на сетчатке будет равен 0,2 мм. обстоятельство, что мы видим предметы не в их перевернутом изображении (вверх ногами), а в их естественном виде, вероятно, объясняется накопленным жизненным опытом.

Ребенок в первые месяцы после рождения путает верхнюю и нижнюю сторону предмета. Если такому ребенку показать горящую свечку, ребенок, стараясь схватить пламя, протянет руку не к верхнему, а к нижнему концу свечи. Контролируя в течение дальнейшей жизни показания глаза руками и другими органами чувств, человек начинает видеть предметы так, как они есть, несмотря на их обратное изображение на сетчатке.

Аккомодация глаза. Человек не может одновременно одинаково четко видеть предметы, находящиеся на разных расстояниях от глаза.

Для того чтобы хорошо видеть предмет, надо, чтобы лучи, отходящие от этого предмета, собирались на сетчатке. Только в том случае, когда лучи падают на сетчатку, мы видим ясное изображение предмета.

Приспособление глаза к получению отчетливых изображений предметов, находящихся на разных расстояниях, называется аккомодацией.

Для того чтобы в каждом случае получить четкое изобра жение, необходимо изменять расстояние между светопреломляющей линзой и задней стенкой камеры. Так устроен фотоаппарат. Чтобы получить четкое изображение на задней стенке камеры, отодвигают или приближают объектив. По такому принципу происходит аккомодация у рыб. У них хрусталик при помощи специального приспособления отодвигается или приближается к задней стенке глаза.

Рис. 2 ИЗМЕНЕНИЕ КРИВИЗНЫ ХРУСТАЛИКА ПРИ АККОМОДАЦИИ 1 - хрусталик; 2 - сумка хрусталика; 3 - ресничные отростки. Верхний рисунок - увеличение кривизны хрусталика. Ресничная связка расслаблена. Нижний рисунок - кривизна хрусталика уменьшена, ресничные связки натянуты.

Однако четкое изображение можно получить и в том случае, если изменяется преломляющая сила линзы, а это возможно при изменении ее кривизны.

По этому принципу происходит аккомодация у человека. При видении предметов, находящихся на разных расстояниях, кривизна хрусталика изменяется и благодаря этому точка, где сходятся лучи, приближается или удаляется, попадая каждый раз на сетчатку. Когда человек рассматривает близкие предметы, хрусталик делается более выпуклым, а при рассмотрении дальних предметов - более плоским.

Как же происходит изменение кривизны хрусталика? Хрусталик находится в специальной прозрачной сумке. От степени натяжения сумки зависит кривизна хрусталика. Хрусталик обладает эластичностью, поэтому, когда сумка натягивается, он становится плоским. При расслаблении же сумки хрусталик в силу своей -эластичности приобретает более выпуклую форму (рис.2). Изменение натяжения сумки происходит при помощи специальной круговой аккомодационной мышцы, к которой прикреплены связки капсулы.

При сокращении аккомодационных мышц связки сумки хрусталика ослабевают и хрусталик приобретает более выпуклую форму.

От степени сокращения этой мышцы зависит и степень изменения кривизны хрусталика.

Если находящийся на далеком расстоянии предмет постепенно приближать к глазу, то на расстоянии 65 м начинается аккомодация. По мере дальнейшего приближения предмета к глазу аккомодационные усилия возрастают и на расстоянии 10 см оказываются исчерпанными. Таким образом, точка ближнего видения будет находиться на расстоянии 10 см. С возрастом эластичность хрусталика постепенно уменьшается, а следовательно, меняется и способность к аккомодации. Ближайшая точка ясного видения у 10-летнего находится на расстоянии 7 см, у 20-летнего - на расстоянии 10 см, у 25-летнего - 12,5 см, у 35-летнего - 17 см, у 45-летнего - 33 см, у 60-летнего - 1 м, у 70-летнего - 5 м, у 75-летнего способность к аккомодации почти теряется и ближайшая точка ясного видения отодвигается в бесконечность.

, хрусталик и стекловидное тело . Их совокупность называется диоптрическим аппаратом . В нормальных условиях происходит рефракция (преломление) лучей света от зрительной мишени роговицей и хрусталиком, гак что лучи фокусируются на сетчатке . Преломляющая сила роговицы (основного рефракционного элемента глаза) равна 43 диоптриям . Выпуклость хрусталика может изменяться, и его преломляющая сила варьируется между 13 и 26 диоптриями. Благодаря этому хрусталик обеспечивает аккомодацию глазного яблока к объектам, находящимся на близком или далеком расстоянии. Когда, например, лучи света от удаленного объекта входят в нормальный глаз (с расслабленной цилиарной мышцей), мишень оказывается на сетчатке в фокусе. Если же глаз направлен па ближний объект, они фокусируются позади сетчатки (т.е. изображение на ней расплывается), пока не произойдет аккомодация. Цилиарная мышца сокращается, ослабляя натяжение волокон пояска; кривизна хрусталика увеличивается, и в результате изображение фокусируется па сетчатке.

Роговица и хрусталик вместе составляют выпуклую линзу. Лучи света от объекта проходят через узловую точку линзы и образуют па сетчатке перевернутое изображение, как в фотоаппарате. Сетчатку можно сравнить с фотопленкой, поскольку обе они фиксируют зрительные изображения. Однако сетчатка устроена гораздо сложнее. Она обрабатывает непрерывную последовательность изображений, а также посылает в мозг сообщения о перемещениях зрительных объектов, угрожающих признаках, периодической смене света и темноты и другие зрительные данные о внешней среде.

Хотя оптическая ось человеческого глаза проходит через узловую точку хрусталика и точку сетчатки между центральной ямкой и диском зрительного нерва ( рис. 35.2), глазодвигательная система ориентирует глазное яблоко на участок объекта, называемый точкой фиксации. От этой точки луч света идет через узловую точку и фокусируется в центральной ямке; таким образом, он проходит вдоль зрительной оси. Лучи от остальных участков объекта фокусируются в области сетчатки вокруг центральной ямки ( рис. 35.5).

Фокусирование лучей на сетчатке зависит не только от хрусталика, но и от радужки . Радужка выполняет роль диафрагмы фотоаппарата и регулирует не только количество света, поступающего в глаз, но, что еще важнее, глубину зрительного поля и сферическую аберрацию хрусталика. При уменьшении диаметра зрачка глубина зрительного поля возрастает и лучи света направляются через центральную часть зрачка, где сферическая аберрация минимальна. Изменения диаметра зрачка происходят автоматически (т.е. рефлекторно) при настройке (аккомодации) глаза на рассматривание близких предметов. Следовательно, во время чтения или другой деятельности глаз, связанной с различением мелких объектов, качество изображения улучшается с помощью оптической системы глаза.

На качество изображения влияет еще один фактор - рассеивание света. Оно минимизируется путем ограничения пучка света, а также его поглощения пигментом сосудистой оболочки и пигментным слоем сетчатки. В этом отношении глаз снова напоминает фотоаппарат. Там рассеивание света тоже предотвращается посредством ограничения пучка лучей и его поглощения черной краской, покрывающей внутреннюю поверхность камеры.

Фокусирование изображения нарушается, если размер зрачка не соответствует преломляющей силе диоптрического аппарата. При миопии (близорукости) изображения удаленных объектов фокусируются перед сетчаткой, не доходя до нее ( рис. 35.6). Дефект корректируется с помощью вогнутых линз. И наоборот, при гиперметропии (дальнозоркости) изображения далеких предметов фокусируются позади сетчатки. Чтобы устранить проблему, нужны выпуклые линзы ( рис. 35.6). Правда, изображение можно временно сфокусировать за счет аккомодации, но при этом утомляются цилиарные мышцы и глаза устают. При астигматизме возникает асимметрия между радиусами кривизны поверхностей роговицы или хрусталика (а иногда сетчатки) в разных плоскостях. Для коррекции используются линзы со специально подобранными радиусами кривизны.

Упругость хрусталика с возрастом постепенно снижается. Падает эффективность его аккомодации при рассматривании близких предметов ( пресбиопия). В молодом возрасте преломляющая сила хрусталика может меняться в широком диапазоне, вплоть до 14 диоптрий. К 40 годам этот диапазон уменьшается вдвое, а после 50 лет - до 2 диоптрий и ниже. Пресбиопия корректируется выпуклыми линзами.

Оглавление темы "Температурная чувствительность. Висцеральная чувствительность. Зрительная сенсорная система.":
1. Температурная чувствительность. Тепловые рецепторы. Холодовые рецепторы. Температурное восприятие.
2. Боль. Болевая чувствительность. Ноцицепторы. Пути болевой чувствительности. Оценка боли. Ворота боли. Опиатные пептиды.
3. Висцеральная чувствительность. Висцерорецепторы. Висцеральные механорецепторы. Висцеральные хеморецепторы. Висцеральная боль.
4. Зрительная сенсорная система. Зрительное восприятие. Проецирование световых лучей на сетчатку глаза. Оптическая система глаза. Рефракция.
5. Аккомодация. Ближайшая точка ясного видения. Диапазон аккомодации. Пресбиопия. Возрастная дальнозоркость.
6. Аномалии рефракции. Эмметропия. Близорукость (миопия). Дальнозоркость (гиперметропия). Астигматизм.
7. Зрачковый рефлекс. Проекция зрительного поля на сетчатку. Бинокулярное зрение. Конвергенция глаз. Дивергенция глаз. Поперечная диспарация. Ретинотопия.
8. Движения глаз. Следящие движения глаз. Быстрые движения глаз. Центральная ямка. Саккадамы.
9. Преобразование энергии света в сетчатке. Функции (задачи) сетчатки. Слепое пятно.
10. Скотопическая система сетчатки (ночное зрение). Фотопическая система сетчатки (дневное зрение). Колбочки и палочки сетчатки. Родопсин.

Зрительная сенсорная система. Зрительное восприятие. Проецирование световых лучей на сетчатку глаза. Оптическая система глаза. Рефракция.

Зрительное восприятие оставляет в памяти человека наибольшую часть его чувственных впечатлений об окружающем мире. Оно происходит в результате поглощения фоторецепторами сетчатки отраженной от окружающих предметов энергии световых лучей или электромагнитных волн в диапазоне от 400 до 700 нм. Энергия поглощенных квантов света (адекватный раздражитель) преобразуется сетчаткой в нервные импульсы, поступающие по зрительным нервам к латеральным коленчатым телам, а от них - в проекционную зрительную кору. В дальнейшей переработке зрительной информации у человека участвуют свыше тридцати отделов мозга, представляющих вторичные сенсорные и ассоциативные области коры.

Рис. 17.5. Оптическая система глаза и проекция световых лучей на сетчатку. Световые лучи, отраженные от рассматриваемой части наблюдаемого объекта (точка фиксации), преломляются оптическими средами глаза (роговица, передняя камера, хрусталик, стекловидное тело) и фокусируются в центральной ямке сетчатки. Проекция световых лучей на поверхность центральной ямки обеспечивает максимальную остроту зрения благодаря малым размерам рецептивных полей и отсутствию ганглиозных и биполярных клеток на пути прохождения световых лучей к фоторецепторам.

Проецирование световых лучей на сетчатку глаза

Прежде чем попасть на сетчатку, световые лучи последовательно проходят через роговицу, жидкость передней камеры глаза, хрусталик и стекловидное тело, вместе образующие оптическую систему глаза (рис. 17.5). На каждом из этапов этого пути свет преломляется и в результате на сетчатке возникает уменьшенное и перевернутое изображение наблюдаемого предмета, этот процесс называется рефракцией . Преломляющая сила оптической системы глаза составляет около 58,6 диоптрий при рассматривании удаленных предметов и возрастает до приблизительно 70,5 диоптрий при фокусировании на сетчатку световых лучей, отраженных от близко расположенных предметов (1 диоптрия соответствует преломляющей силе линзы с фокусным расстоянием 1 м).

Эмметропия – это термин, описывающий состояние зрения, при котором параллельные лучи, идущие от отдаленного объекта, фокусируются с помощью рефракции точно на сетчатке в условиях расслабленности глаза. Другими словами – это нормальное состояние рефракции, при котором человек четко видит удаленные предметы.

Эмметропия достигается, когда рефракционная сила роговицы и осевая длина глазного яблока сбалансированы, что позволяет световым лучам фокусироваться точно на сетчатке.

Что такое рефракция?

Рефракцией называют изменение направления светового луча, возникающее на границе двух сред. Именно благодаря этому физическому явлению человек имеет четкое зрение, поскольку оно приводит к фокусировке лучей света на сетчатке.

Как свет проходит через глаз?

Когда свет проходит через воду или линзу, он меняет свое направление. Некоторые структуры глаза имеют рефракционные способности, подобные воде и линзам, благодаря чему преломляют световые лучи так, что они сходятся в определенной точке, называемой фокусом. Это обеспечивает четкость зрения.

Большая часть рефракции глазного яблока возникает при прохождении светом через изогнутую, прозрачную роговицу. Важную роль в фокусировке света на сетчатке также играет естественная линза глаза – хрусталик. Рефракционные способности также имеют водянистая влага и стекловидное тело.

Природа наделила человеческий глаз способностью фокусировать изображение предметов, находящихся на различных расстояниях. Эта способность называется и осуществляется с помощью изменения кривизны хрусталика. В эмметропическом глазу аккомодация нужна только при рассматривании приближенного предмета.

Как видит человеческий глаз?

Световые лучи, отраженные от предметов, проходят через оптическую систему глаза и преломляются, сходясь в фокусной точке. Для хорошего зрения эта фокусная точка должна находиться на сетчатке, которая состоит из светочувствительных клеток (фоторецепторов), которые улавливают свет и передают импульсы по зрительному нерву в головной мозг.

Эмметропизация

Эмметропизация – это развитие в глазном яблоке состояния эмметропии. Этот процесс управляется с помощью поступающих визуальных сигналов. Механизмы, координирующие эмметропизацию, до конца неизвестны. Человеческий глаз генетически запрограммирован достигать эмметропической рефракции в юности и поддерживать ее по мере старения организма. Предполагается, что отсутствие фокуса лучей на сетчатке приводит к росту глазного яблока, на которое также влияют генетические факторы и эмметропизация.

Эмметропизация является результатом пассивных и активных процессов. Пассивные процессы состоят в пропорциональном увеличении размеров глаз во время роста ребенка. Активный процесс включает механизм обратной связи, когда сетчатка дает сигнал об отсутствии правильной фокусировки света, что приводит к регулировке длины оси глазного яблока.

Изучение этих процессов может помочь в разработке новых способов коррекции нарушений рефракции и быть полезным для профилактики их развития.

Нарушение эмметропии

Когда отсутствует эмметропия в глазном яблоке, это называют аметропией. В этом состоянии фокус световых лучей при расслаблении аккомодации не находится на сетчатке. Аметропию также называют нарушениями рефракции, к которым принадлежат близорукость, дальнозоркость и астигматизм.

Способность глаза фокусировать свет точно на сетчатке, в основном, основана на трех анатомических особенностях, которые могут стать источником нарушений рефракции.

  • Длина глазного яблока. Если глаз имеет слишком длинную ось, свет фокусируется перед сетчаткой, что вызывает близорукость. Если ось глаза слишком короткая, световые лучи достигают сетчатки до того, как сфокусируются, что становится причиной дальнозоркости.
  • Изгиб роговицы. Если роговица не имеет идеально сферической поверхности, свет преломляется неправильно и фокусируется неравномерно, что вызывает астигматизм.
  • Изгиб хрусталика. Если хрусталик имеет слишком изогнутую форму, это становиться причиной близорукости. Если хрусталик слишком плоский, это может вызвать дальнозоркость.

Корригировать аметропическое зрение можно с помощью операций, направленных на коррекцию кривизны роговицы.

Если вы видите удаленные объекты не так хорошо, то рекомендуем почитать о , какие механизмы нарушаются при выявлении такой патологии.

Для более полного ознакомления с болезнями глаз и их лечением – воспользуйтесь удобным поиском по сайту или задайте вопрос специалисту.

Зрительное восприятие – многозвеньевой процесс, начинающийся с проекции изображения на сетчатку глаза и возбуждения фоторецепторов и заканчивающийся принятием высшими отделами зрительной сенсорной системы решения о наличии в поле зрения того или иного зрительного образа. В связи с необходимостью наводить глаза на рассматриваемый объект, вращая их, природа создала у большинства видов животных шарообразную форму глазного яблока. На пути к светочувствительной оболочке глаза – сетчатке – лучи света проходят через несколько светопроводящих сред – роговицу, влагу передней камеры, хрусталик и стекловидное тело, назначение которых преломлять их и фокусировать в области расположения рецепторов на сетчатке, обеспечивать четкое изображение на ней.

Камера глаза имеет 3 оболочки. Наружная непрозрачная оболочка – склера, переходит спереди в прозрачную роговицу. Средняя сосудистая оболочка в передней части глаза образует ресничное тело и радужную оболочку, обусловливающую цвет глаз. В середине радужки имеется отверстие – зрачок, регулирующий количество пропускаемых световых лучей. Диаметр зрачка регулируется зрачковым рефлексом, центр которого находится в среднем мозге. Внутренняя сетчатая оболочка (сетчатка) содержит фоторецепторы глаза (палочки и колбочки) и служит для преобразования световой энергии в нервное возбуждение.

Основными преломляющими средами глаза человека являются роговица (обладает наибольшей преломляющей силой) и хрусталик, который представляет собой двояковыпуклую линзу. В глазу преломление света проходит по общим законам физики. Лучи, идущие из бесконечности через центр роговицы и хрусталика (т.е. через главную оптическую ось глаза) перпендикулярно к их поверхности, не испытывают преломления. Все остальные лучи преломляются и сходятся внутри камеры глаза в одной точке – фокусе . Такой ход лучей обеспечивает четкое изображение на сетчатке, причем оно получается уменьшенным и обратным (рис. 26).

Рис. 26. Ход лучей и построение изображений в редуцированном глазу:

АВ – предмет; аb – его изображение; Dd – главная оптическая ось

Аккомодация. Для ясного видения предмета необходимо, чтобы лучи от его точек попадали на поверхность сетчатки, т.е. были здесь сфокусированы. Когда человек смотрит на далекие предметы, их изображение сфокусировано на сетчатке и они видны ясно. При этом близкие предметы видны неясно, их изображение на сетчатке расплывчато, т.к. лучи от них собираются за сетчаткой (рис. 27). Видеть одновременно одинаково ясно предметы, удаленные от глаза на разное расстояние, невозможно.

Рис. 27.Ход лучей от близкой и далекой точки:

От далекой точки А (параллельные лучи) изображение а получается на сетчатке при ненапряженном аккомодационном аппарате; при этом от близкой точки В изображениев образуется за сетчаткой

Приспособление глаза к четкому видению различно удаленных предметов называется аккомодацией. Этот процесс осуществляется за счет изменения кривизны хрусталика и, следовательно, его преломляющей способности. При рассматривании близких предметов хрусталик делается более выпуклым, благодаря чему лучи, расходящиеся от светящейся точки, сходятся на сетчатке. При рассмотрении далеких предметов хрусталик становится менее выпуклым, как бы растягиваясь (рис. 28). Механизм аккомодации сводится к сокращению ресничных мышц, которые изменяют выпуклость хрусталика .

Существует две главные аномалии преломления лучей (рефракции) в глазу: близорукость и дальнозоркость. Они обусловлены, как правило, ненормальной длиной глазного яблока. В норме продольная ось глаза соответствует преломляющей силе глаза. Однако у 35 % людей имеются нарушения этого соответствия.

В случае врожденной близорукости продольная ось глаза больше нормы и фокусировка лучей происходит перед сетчаткой, а изображение на сетчатке становится расплывчатым (рис. 29). Приобретенная близорукость связана с увеличением кривизны хрусталика, возникающая, в основном, при нарушении гигиены зрения. В дальнозорком глазу, наоборот, продольная ось глаза меньше нормы и фокус располагается за сетчаткой. В результате изображение на сетчатке тоже расплывчато. Приобретенная дальнозоркость возникает у пожилых людей из-за уменьшения выпуклости хрусталика и ухудшения аккомодации. В связи с возникновением старческой дальнозоркости ближняя точка ясного видения с возрастом отодвигается (от 7 см в 7 – 10 лет до 75 см в 60 лет и более).