23.09.2019

Молекулярная биология как наука лекция к.б.н. тазабаевой к.а. Важнейшие методы молекулярной биологии и генной инженерии


Лекция 1. Понятие молекулярной биологии и основные этапы её развития

Определение предмета молекулярная биология

Термин «молекулярная биология» принадлежит нобелевскому лауреату Фрэнсису Крику, которому «надоело в ответ на вопрос о его профессии объявлять себя смесью кристаллографа, биохимика, биофизика и генетика».

После атомной бомбежки Хиросимы и Нагасаки в 1945 г. началось бегство ученых из физики, а в 1947 г. нобелевский лауреат физик Эрвин Шредингер написал книгу «Что такое жизнь с точки зрения физика?», которая привлекла в биологию многих физиков и математиков.

Определение понятия

Молекулярная биология - это наука о механизмах хранения, воспроизведения, передачи и реализации генетической информации, о структуре и функциях нерегулярных биополимеров – нуклеиновых кислот и белков.

Начав с изучения биологических процессов на молекулярно-атомном уровне, молекулярная биология перешла к сложным надмолекулярным клеточным структурам, а в настоящее время успешно решает проблемы генетики, физиологии, эволюции и экологии.

Основные этапы развития молекулярной биологии

1. Первый романтический период 1935-1944 гг.

Макс Дельбрюк и Сальвадор Лурия занимались изучением репродукции фагов и вирусов, представляющих собой комплексы нуклеиновых кислот с белками.

В 1940 г. Джордж Бидл и Эдуард Татум сформулировали гипотезу - "Один ген -один фермент". Однако, что такое ген в физико-химическом плане тогда еще не знали.

2. Второй романтический период 1944-1953гг.

Была доказана генетическая роль ДНК. В 1953 г. появилась модель двойной спирали ДНК, за которую ее создатели Джеймс Уотсон, Френсис Крик и Морис Уилкинс были удостоены Нобелевской премии.

3. Догматический период 1953-1962 гг.

Сформулирована центральная догма молекулярной биологии:

Перенос генетической информации идет в направлении ДНК → РНК → белок.

В 1962 г. был расшифрован генетический код.

4. Академический период с 1962 г. по настоящее время, в котором с 1974 года выделяют генно-инженерный подпериод.

Oc новны e открытия

1944 г . Доказательство генетической роли ДНК. Освальд Эйвери, Колин Мак-Леод, Маклин Мак-Карти.

1953 г . Установление структуры ДНК. Джеймс Уотсон, Френсис Крик.

1961 г . Открытие генетической регуляции синтеза ферментов. Андре Львов, Франсуа Жакоб, Жак Моно.

1962 г . Расшифровка генетического кода. Маршалл Нирнберг, Генрих Маттеи, Северо Очоа.

1967 г . Синтез in vitro биологически активной ДНК. Артур Корнберг (неформальный лидер молекулярной биологии).

1970 г . Химический синтез гена. Гобинд Корана.

1970 г . Открытие фермента обратной транскриптазы и явления обратной транскрипции. Говард Темин, ДэвидБалтимор, Ренато Дульбеко.

1974 г . Открытие рестриктаз. Гамильтон Смит, Даниэль Натанс, Вернер Арбер.

1978 г . Открытие сплайсинга. Филипп Шарп.

1982 г . Открытие автосплайсинга. ТомасЧек.

Доказательства генетической роли нуклеиновых кислот

1 . 1928 г . Опыты Фредерика Гриффита.

Гриффит работал с пневмококками - бактериями, вызывающими пневмонию. Он брал два штамма пневмококков: капсульный и бескапсульный. Капсульный - патогенный (вирулентный), при инфицировании таким штаммом мыши погибают, бескапсульный - непатогенный. При введении мышам смеси убитых нагреванием (и, следовательно, потерявших вирулентность) капсульных пневмококков и живых бескапсульных невирулентных бактерий, животные погибали в результате размножения капсульных вирулентных форм. Обнаруженное явление Гриффит интерпретировал как трансформацию.

Определение:

Трансформация - это приобретение одним организмом некоторых признаков другого организма за счет захвата части его генетической информации.

В 1944 г. этот эксперимент был повторен Освальдом Эйвери, Колином Мак-Леодом и Маклином Мак-Карти в варианте смешивания бескапсульных пневмококков с взятыми от капсульных белками, полисахаридами или ДНК. В результате этого эксперимента была выявлена природа трансформирующего фактора.

Трансформирующими фактором оказалась ДНК.

2 . 1952 г. Эксперимент Альфреда Херши и Марты Чейз. Фаги (бактериофаги) - это вирусы, размножающиеся в бактериях. Е. coli - кишечная палочка (эубактерия).

Суть опыта: фаги, у которых белковая оболочка была мечена радиоактивной серой (S 35 ), а ДНК - радиоактивным фосфором (Р 32), инкубировали с бактериями. Затем бактерии отмывали.

В смывных водах не обнаруживали Р 32 , а в бактериях - S 35 . Следовательно, внутрь попала только ДНК. Через несколько минут из бактерии выходили десятки полноценных фагов, содержащих и белковую оболочку, и ДНК.

Отсюда следовал однозначный вывод о том, что именно ДНК выполняет генетическую функцию - несет информацию как о создании новых копий ДНК, тик и о синтезе фаговых белков.

3 . 1957 г. Опыты Френкеля - Конрата.

Френкель-Конрат работал с вирусом табачной мозаики (ВТМ). В этом вирусе содержится РНК, а не ДНК. Было известно, что разные штаммы вируса вызывают разную картину поражения листьев табака. После смены белковой оболочки "переодетые" вирусы вызывали картину поражения, характерную для того штамма, чья РНК была покрыта чужим белком.

Следовательно, не только ДНК, но и РНК может служить носителем генетической информации.

На сегодняшний день существуют сотни тысяч доказательств генетической роли нуклеиновых кислот. Приведенные три являются классическими.

Молекулярная биология пережила период бурного развития собственных методов исследования, которыми теперь отличается от биохимии. К ним, в частности, относятся методы генной инженерии , клонирования , искусственной экспрессии и нокаута генов . Поскольку ДНК является материальным носителем генетической информации, молекулярная биология значительно сблизилась с генетикой , и на стыке образовалась молекулярная генетика , являющаяся одновременно разделом генетики и молекулярной биологии. Так же, как молекулярная биология широко применяет вирусы как инструмент исследования, в вирусологии для решения своих задач используют методы молекулярной биологии. Для анализа генетической информации привлекается вычислительная техника, в связи с чем появились новые направления молекулярной генетики, которые иногда считают особыми дисциплинами: биоинформатика , геномика и протеомика .

История развития

Это основополагающее открытие было подготовлено длительным этапом исследований генетики и биохимии вирусов и бактерий .

В 1928 году Фредерик Гриффит впервые показал, что экстракт убитых нагреванием болезнетворных бактерий может передавать признак патогенности неопасным бактериям. Исследование трансформации бактерий в дальнейшем привело к очистке болезнетворного агента, которым, вопреки ожиданиям, оказался не белок , а нуклеиновая кислота . Сама по себе нуклеиновая кислота не опасна, она лишь переносит гены, определяющие патогенность и другие свойства микроорганизма.

В 50-х годах XX века было показано, что у бактерий существует примитивный половой процесс, они способны обмениваться внехромосомной ДНК, плазмидами . Открытие плазмид, как и трансформации , легло в основу распространённой в молекулярной биологии плазмидной технологии . Ещё одним важным для методологии открытием стало обнаружение в начале XX века вирусов бактерий, бактериофагов . Фаги тоже могут переносить генетический материал из одной бактериальной клетки в другую. Заражение бактерий фагами приводит к изменению состава бактериальной РНК . Если без фагов состав РНК сходен с составом ДНК бактерии, то после заражения РНК становится больше похожа на ДНК бактериофага. Тем самым было установлено, что структура РНК определяется структурой ДНК. В свою очередь, скорость синтеза белка в клетках зависит от количества РНК-белковых комплексов. Так была сформулирована центральная догма молекулярной биологии : ДНК ↔ РНК → белок.

Дальнейшее развитие молекулярной биологии сопровождалось как развитием её методологии, в частности, изобретением метода определения нуклеотидной последовательности ДНК (У. Гилберт и Ф. Сенгер , Нобелевская премия по химии 1980 года), так и новыми открытиями в области исследований строения и функционирования генов (см. История генетики). К началу XXI века были получены данные о первичной структуре всей ДНК человека и целого ряда других организмов, наиболее важных для медицины, сельского хозяйства и научных исследований, что привело к возникновению нескольких новых направлений в биологии: геномики, биоинформатики и др.

См. также

Литература

  • Сингер М., Берг П. Гены и геномы. - Москва, 1998.
  • Стент Г., Кэлиндар Р. Молекулярная генетика. - Москва, 1981.
  • Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning. - 1989.
  • Патрушев Л. И. Экспрессия генов. - М.: Наука, 2000. - 000 с., ил. ISBN 5-02-001890-2

Ссылки

  • Материалы по молекулярной биологии от Российской Академии Наук

Wikimedia Foundation . 2010 .

  • Ардатовский район Нижегородской области
  • Арзамасский район Нижегородской области

Смотреть что такое "Молекулярная биология" в других словарях:

    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ - изучает осн. свойства и проявления жизни на молекулярном уровне. Важнейшими направлениями в М. б. являются исследования структурно функциональной организации генетического аппарата клеток и механизма реализации наследственной информации… … Биологический энциклопедический словарь

    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ - исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и др. явления обусловлены … Большой Энциклопедический словарь

    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ Современная энциклопедия

    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ - МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, биологическое изучение строения и функционирования МОЛЕКУЛ, из которых состоят живые организмы. К основным сферам изучения относятся физические и химические свойства белков и НУКЛЕИНОВЫХ КИСЛОТ, таких как ДНК. см. также… … Научно-технический энциклопедический словарь

    молекулярная биология - раздел биол., который исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и… … Словарь микробиологии

    молекулярная биология - — Тематики биотехнологии EN molecular biology … Справочник технического переводчика

    Молекулярная биология - МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и… … Иллюстрированный энциклопедический словарь

    Молекулярная биология - наука, ставящая своей задачей познание природы явлений жизнедеятельности путём изучения биологических объектов и систем на уровне, приближающемся к молекулярному, а в ряде случаев и достигающем этого предела. Конечной целью при этом… … Большая советская энциклопедия

    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ - изучает явления жизни на уровне макромолекул (гл. обр. белков и нуклеиновых к т) в бесклеточных структурах (рибосомы и др.), в вирусах, а также в клетках. Цель М. б. установление роли и механизма функционирования этих макромолекул на основе… … Химическая энциклопедия

    молекулярная биология - исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и другие явления… … Энциклопедический словарь

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, детальное изучение живых клеток и их составных частей (органелл), прослеживающее роль отдельных идентифицируемых соединений в функционировании этих структур. К сфере молекулярной биологии относится исследование всех связанных с жизнью процессов, таких, как питание и выделение, дыхание, секреция, рост, репродукция, старение и смерть. Важнейшее достижение молекулярной биологии – расшифровка генетического кода и выяснение механизма использования клеткой информации, необходимой, например, для синтеза ферментов. Молекулярнобиологические исследования способствуют и более полному пониманию других процессов жизнедеятельности – фотосинтеза, клеточного дыхания и мышечной активности.

В молекулярной биологии предпочитают работать с относительно простыми системами, такими, как одноклеточные организмы (бактерии, некоторые водоросли), в которых число компонентов сравнительно невелико, а значит, и различить их легче. Но и при этом требуются весьма изощренные методы для того, чтобы точно локализовать отдельные вещества и отличить их от всех других.

На основе физико-химических подходов и инструментария разработаны сложные, чувствительные приборы и методы, приспособленные для работы с органическими соединениями живых систем. Метод радиоавтографии основан на включении в определенные вещества радиоактивных атомов, т.н. «радиоактивной метки», которая позволяет проследить – по испускаемому излучению – химические превращения этих веществ. При изучении низкомолекулярных веществ применяют методы, позволяющие объединить малые молекулы вещества в т.н. макромолекулы, достаточно крупные для того, чтобы их можно было наблюдать при большом увеличении трансмиссионного электронного микроскопа. По дифрации рентгеновских лучей определяют общую форму макромолекул, как это было сделано, например, с дезоксирибонуклеиновой кислотой (ДНК). Для разделения смеси веществ, различающихся по размерам и химическому составу, используют различия в скорости их передвижения в электрическом поле (метод электрофореза) или разную скорость диффузии в растворителе, протекающем через неподвижную фазу, например бумагу (метод хроматографии).

С помощью соответствующих ферментов можно определить нуклеотидную последовательность генов, а по ней – аминокислотную последовательность синтезируемых белков. Если у животных разных видов близки нуклеотидные последовательности генов, кодирующих общие для них белки, например гемоглобин, можно заключить, что в прошлом эти животные имели общего предка. Если же различия в их генах велики, то ясно, что расхождение видов от общего предка произошло намного раньше. Такие молекулярно-биологические исследования открыли новый подход к изучению эволюции организмов.

Важный вклад в медицину должна внести идентификация вирусов по их составу. С ее помощью можно, например, установить, что вирус, вызывающий ту или иную болезнь у человека, гнездится естественным образом в каком-нибудь диком животном, от которого и передается человеку болезнь. Если у животных, которые служат в природе резервуаром данного вируса, симптомы болезни не обнаруживаются, то, видимо, здесь действует какой-то механизм иммунитета, и тогда возникает новая задача – изучить этот механизм, чтобы попытаться включить его в иммунную систему человека.

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ позднелат. molecula, уменьшительное от лат. moles масса; биология) - медико-биологическая наука, изучающая явления жизни на уровне биологических макромолекул - белков и нуклеиновых кислот, таких простых систем, как бесклеточные структуры, вирусы и, как предел, - на уровне клетки. Большая часть таких объектов является неживой или наделенной элементарными проявлениями жизни. Положение М. б. в системе биол, наук определяется представлениями о структурных уровнях живой материи, т. е. эволюционно сложившихся формах жизни, начинающихся с пребиотических ступеней и кончающихся сложными системами: малые органические молекулы - макромолекулы - клетка и субклеточные структуры - организм и т. д., соответственно к-рым строятся и уровни познания. Исторически М. б. сформировалась в результате исследования биологических макромолекул, в силу чего М. б. рассматривается как раздел биохимии (см.). М. б. является вместе с тем пограничной наукой, возникшей на стыке биохимии, биофизики (см.), органической химии (см.), цитологии (см.) и генетики (см.). Идея М. б. заключается в раскрытии элементарных механизмов основных процессов жизнедеятельности - наследственности (см.), изменчивости (см.), движения и др.- через исследование биол, макромолекул. Молекулярно-биол. представления нашли благодатную почву особенно в генетике - возникла молекулярная генетика (см.), и именно здесь были достигнуты результаты, к-рые способствовали развитию М. б. и признанию ее принципов. Представления М. б. имеют эвристическую (познавательную) ценность, т. к. на всех уровнях развития живой материи существуют и действуют биол, макромолекулы - белки (см.) и нуклеиновые кислоты (см.). По этой причине границы М. б. трудно определимы: она оказывается всепроникающей наукой.

Само название «молекулярная биология» принадлежит англ. кристаллографу Астбери (W. Т. Astbury). Формальной датой возникновения М. б. считают 1953 г., когда Дж. Уотсон и Ф. Крик установили структуру ДНК и высказали подтвердившееся позже предположение о механизме ее репликации, лежащей в основе наследственности. Но по крайней мере с 1944 г., начиная с работ Эйвери (О. Th. Avery), накапливались факты, указывавшие на генетическую роль ДНК; Н. К. Кольцов высказал идею о матричном синтезе в весьма ясной форме еще в 1928 г.; изучение молекулярных основ мышечного сокращения началось с работ В. А. Энгельгардта и М. Н. Любимовой, опубликованных в 1939-1942 гг. М. б. развивалась также в сфере эволюционного учения и систематики. В СССР инициатором изучения нуклеиновых к-т и исследований по молекулярным основам эволюции был А. Н. Белозерский.

Отличительная черта М. б. состоит в характере наблюдений, в ее методических приемах и построении эксперимента. М. б. заставила биологов по-новому взглянуть на материальную основу жизнедеятельности. Для молекулярно-биол. исследований характерно сопоставление биол, функций с хим. и физ. характеристиками (свойствами) биополимеров и в особенности с их пространственным строением.

Для понимания закономерностей строения нуклеиновых к-т и их поведения в клетке важнейшее значение имеет принцип комплементарности оснований в двухтяжевых структурах нуклеиновых к-т, установленный в 1953 г. Дж. Уотсоном и Ф. Криком, Признание значения пространственных отношений нашло свое выражение в представлении о комплементарности поверхностей макромолекул и молекулярных комплексов, составляющей необходимое условие проявления слабых сил, действующих лишь на коротких дистанциях и способствующих созданию морфол, разнообразия биол. структур, их функциональной подвижности. Эти слабые силы участвуют в образовании комплексов типа фермент - субстрат, антиген - антитело, гормон - рецептор и т. п., в явлениях самосборки биол, структур, напр, рибосом, в образовании пар азотистых оснований в молекулах нуклеиновых к-т и в тому подобных процессах.

М. б. направила внимание биологов на простые, стоящие у границ жизни объекты, ввела в арсенал биол, исследований идеи и точные методы химии и физики. Мутационный процесс получил истолкование на молекулярном уровне как выпадение, вставка и перемещение отрезков ДНК, замена пары азотистых оснований в функционально значимых отрезках генома (см. Мутация). Явления мутагенеза (см.) были, т. о., переведены на хим. язык. Благодаря методам М. б. были раскрыты молекулярные основы таких генетических процессов у прокариотов, как рекомбинация (см.), трансдукции (см.), трансформация (см.), трансфекция, сексдукция. Достигнуты значительные успехи в изучении строения хроматина и хромосом эукариотов; усовершенствование методов культивирования и гибридизации животных клеток создало возможность развития генетики соматических клеток (см.). Регуляция репликации ДНК нашла свое выражение в представлении о репликоне Ф. Жакоба и Бреннера (S. Brenner).

В области биосинтеза белка был установлен так наз. центральный постулат, характеризующий следующее движение генетической информации: ДНК -> информационная РНК -> белок. Согласно этому постулату, белок является своего рода информационным клапаном, препятствующим возвращению информации на уровень РНК и ДНК. В процессе развития М. б. в 1970 г. Темином (H. Temin) и Балтимором (D. Baltimore) было открыто явление обратной транскрипции (в природе синтез ДНК происходит у онкогенных РНК-содержащих вирусов с помощью специального фермента - обратной транскриптазы). Синтезы белков и нуклеиновых к-т происходят по типу матричных синтезов, для их протекания необходима матрица (шаблон) - исходная полимерная молекула, к-рая предопределя-ет последовательность нуклеотидов (аминокислот) в синтезируемой копии. Такими матрицами при репликации и транскрипции является ДНК и при трансляции - информационная РНК. Генетический код (см.) формулирует способ «записи» наследственной информации в информационной РНК, другими словами, он согласует последовательность нуклеотидов в нуклеиновых к-тах и аминокислот в белках. С биосинтезом белка связана транскрипция - синтез информационных РНК на матрице ДНК, катализируемый РНК-полимеразами; трансляция - синтез белка на связанной с рибосомой информационной РНК, протекающий по весьма сложному механизму, в к-ром участвуют десятки вспомогательных белков и транспортные РНК (см. Рибосомы). Регуляция белкового синтеза наиболее изучена на уровне транскрипции и сформулирована в представлении Ф. Жакоба и Моно (J. Monod) об опероне, белках-репрессорах, аллостерическом эффекте, позитивной и негативной регуляции. Разнородным по своему содержанию и еще менее завершенным, чем предыдущие, разделом М. б. является целый ряд проблем фундаментального и прикладного характера. К ним относится репарация повреждений генома, причиненных коротковолновой радиацией, мутагенами (см.) и другими влияниями. Большую самостоятельную область составляют исследования механизма действия ферментов, основанные на представлениях о трехмерной структуре белков и роли слабых хим. взаимодействий. М. б. выяснила многие детали строения и развития вирусов, в особенности бактериофагов. Изучение гемоглобинов у лиц, страдающих серповидно-клеточной анемией (см.) и другими гемоглобинопатиями (см.), положило начало изучению структурной основы «молекулярных болезней», врожденных «ошибок» метаболизма (см. Наследственные болезни). Самая поздняя ветвь М. б.- генная инженерия (см.) - разрабатывает методы конструирования наследственных структур в виде молекул рекомбинантных ДНК.

В молекулярно-биол. опытах находят применение различные способы хроматографии (см.) и ультрацентрифугирования (см.), рентгеноструктурный анализ (см.), электронная микроскопия (см.), молекулярная спектроскопия (электронный парамагнитный и ядерный магнитный резонанс). Начато использование синхротронного (магнитно-тормозного) излучения, дифракции нейтронов, мессбауэровской спектроскопии, лазерной техники. В экспериментах широко применяются модельные системы, получение мутаций. Использование радиоактивных и (в меньшей мере) тяжелых изотопов составляет в М. б. обычный аналитический метод, так же как применение математических методов и ЭВМ. Если раньше молекулярные биологи ориентировались гл. обр. на физ. методы, созданные для исследования полимеров небиол. происхождения, то сейчас наблюдается все усиливающаяся тенденция к использованию хим. методов.

Для развития М. б. в СССР большое значение имело постановление ЦК КПСС и Совета Министров СССР «О мерах по ускорению развития молекулярной биологии и молекулярной генетики и использованию их достижений в народном хозяйстве», опубликованное 20 мая 1974 г. Исследования координируются Межведомственным научно-техническим советом по проблемам молекулярной биологии и молекулярной генетики при ГКНТ Совета Министров СССР и АН СССР, Научным советом по проблемам молекулярной биологии АН СССР, аналогичными советами АН союзных республик и отраслевых академий. Издается журнал «Молекулярная биология» (с 1967 г.) и реферативный журнал с тем же названием. Исследования по М. б. ведутся в ин-тах АН СССР, АМН СССР, республиканских академий наук, Главмикробиопрома, в высших учебных заведениях страны. В социалистических странах работают многие лаборатории такого профиля. В Европе действуют Европейская молекулярно-биологическая организация (ЕМБО), Европейская молекулярно-биологическая лаборатория (ЕМБЛ) в Гейдельберге, Европейская молекулярно-биологическая конференция (ЕМБК). Работают крупные специализированные лаборатории в США, Франции, Великобритании, ФРГ и других странах.

Специальные периодические издания, посвященные проблемам М. б., за рубежом: «Journal of Molecular Biology», «Nucleic Acids Research», «Molecular Biology Reports», «Gene».

Обзоры по М. б. публикуются в серии «Молекулярная биология» ВИНИТИ, в «Progress in Nucleic Acids Research and Molecular Biology», «Progress in Biophysics and Molecular Biology», «Annual Rewiew of Biochemistry», изданиях «Cold Spring Harbor Symposia on Quantitative Biology».

Библиография: Ашмарин И. П. Молекулярная биология, Л., 1977; Белозерский А. Н. Молекулярная биология - новая ступень познания природы, М., 1970; Бреслер С. Е. Молекулярная биология, Л., 1973; Кольцов Н. К. Наследственные молекулы, Бюлл. Моск. об-ва испыт. природы, отд. биол., т. 70, в. 4, с. 75, 1965; Октябрь и наука, под ред. А.П. Александрова и др., с. 393, 417, М., 1977; Северин С. Е. Современные проблемы физико-химической биологии, в кн.: 250 лет Академии наук СССР, с. 332, М., 1977; Уотсон Дж. Молекулярная биология: гена, пер. с англ., М., 1978; Энгельгардт В. А. Молекулярная биология, в кн.: Развитие биол, в СССР, под ред. Б. Е. Быховского, с. 598, М., 1967.

Можно сказать, что молекулярная биология исследует проявления жизни на неживых структурах или системах с элементарными признаками жизнедеятельности (которыми могут быть отдельные биологические макромолекулы, их комплексы или органеллы), изучая, каким образом ключевые процессы, характеризующие живую материю, реализуются посредством химических взаимодействий и превращений.

Выделение молекулярной биологии из биохимии в самостоятельную область науки продиктовано тем, что её главной задачей является изучение структуры и свойств биологических макромолекул, участвующих в различных процессах, выяснение механизмов их взаимодействия. Биохимия же занимается изучением собственно процессов жизнедеятельности, закономерностей их протекания в живом организме и превращений молекул, сопровождающих эти процессы. В конечном счёте, молекулярная биология пытается ответить на вопрос, зачем происходит тот или иной процесс, тогда как биохимия отвечает на вопросы где и как с точки зрения химии происходит рассматриваемый процесс.

История

Молекулярная биология как отдельное направление биохимии начала формироваться в 30-х годах прошлого столетия. Именно тогда для углублённого понимания феномена жизни возникла необходимость в целенаправленных исследованиях на молекулярном уровне процессов хранения и передачи наследственной информации в живых организмах. Тогда и определилась задача молекулярной биологии в изучении структуры, свойств и взаимодействия нуклеиновых кислот и белков. Термин «молекулярная биология» был впервые употреблен английским учёным Уильямом Астбери в контексте исследований, касавшихся выяснения зависимостей между молекулярной структурой и физическими и биологическими свойствами фибриллярных белков, таких, как коллаген, фибрин крови или сократительные белки мышц.

На заре возникновения молекулярной биологии РНК считалась компонентом растений и грибов, а ДНК рассматривалась как типичный компонент животных клеток. Первым исследователем, доказавшим, что ДНК содержится в растениях, был Андрей Николаевич Белозерский , выделивший в 1935 году ДНК гороха. Это открытие установило тот факт, что ДНК является универсальныой нуклеиновой кислотой, присутствующей в клетках растений и животных.

Серьёзным достижением стало установление Джорджем Бидлом и Эдуардом Татумом прямой причинно-следственной связи между генами и белками. В своих экспериментах они подвергали клетки нейроспоры (Neurospora crassa ) ретгеновскому облучению, вызывавшему мутации. Полученные результаты показали, что это приводило к изменению свойств специфических ферментов.

В 1940 году Альбер Клод выделил из цитоплазмы животных клеток цитоплазматические РНК-содержащие гранулы, которые были меньше митохондрий. Он назвал их микросомами. Впоследствии при исследовании структруы и свойств выделенных частиц была установлена их основополагающая роль в процессе биосинтеза белка. В 1958 году на первом симпозиуме, посвящённом этим частицам, было принято решение называть эти частицы рибосомами.

Ещё одним важным шагом в развитии молекулярной биологии стали опубликованные в 1944 г. данные эксперимента Освальда Эвери, Колина МакЛауда и Маклина МакКарти, показавшие, что причиной трансформации бактерий является ДНК. Это было первое экспериментальное доказательство роли ДНК в передаче наследственной информации, развенчавшее бытовавшее ранее представление о белковой природе генов.

В начале 50-х годов Фредерик Сэнгер показал, что белковая цепь является уникальной последовательностью аминокислотных остатков. В конце 50-х годов Макс Перуц и Джон Кендрю расшифровали пространственное строение первых белков. Уже в 2000 году были известны сотни тысяч природных аминокислотных последовательностей и тысячи пространственных структур белков.

Примерно в то же время исследования Эрвина Чаргаффа позволили ему сформулировать правила, описывающие соотношение азотистых оснований в ДНК (правила гласят, что независимо от видовых различий в ДНК количество гуанина равно количеству цитозина, а количество аденина равно количеству темина), что помогло в дальнейшем сделать величайший прорыв в молекулярной биологии и одно из величайших открытий в биологии вообще.

Это событие произошло в 1953 году, когда Джеймс Уотсон и Фрэнсис Крик , основываясь на работах Розалинды Франклин и Мориса Уилкинса по рентгено-структурному анализу ДНК, установили двухспиральную структуру молекулы ДНК. Это открытие позволило ответить на принципиальный вопрос о способности носителя наследственной информации к самовоспроизведению и понять механизм передачи такой информации. Этими же учеными был сформулирован принцип комплементарности азотистых оснований, имеющий ключевое значение для понимания механизма образования надмолекулярных структур. Это принцип, применяемый теперь для описания всех молекулярных комплексов, позволяет описывать и предсказывать условия возникновения слабых (невалентных) межмолекулярных взаимодействий, обуславливающих возможность формирования вторичной, третичной и т.д. структуры макромолекул, протекания самосборки надмолекулярных биологических систем, определяющих столь большое разнообразие молекулярных структур и их функциональных наборов. Тогда же, в 1953 году возник научный журнал Journal of Molecular Biology. Его возглавил Джон Кендрю, сферой научных интересов которого было исследование структуры глобулярных белков (Нобелевская премия 1962 года совместно с Максом Перуцем). Аналогичный русскоязычный журнал под названием «Молекулярная биология» был основан в СССР В. А. Энгельгардтом в 1966 году.

В 1958 году Фрэнсис Крик сформулировал т.н. центральнаю догму молекулярной биологии: представление о необратимости потока генетической информации от ДНК через РНК к белкам по схеме ДНК→ДНК (репликация, создание копии ДНК), ДНК→РНК (транскрипция , копирование генов), РНК→ белок (трансляция, декодирование информации о структуре белков). Эта догма в 1970 году была несколько поправлена с учётом накопленных знаний, поскольку было открыто явление обратной транскрипции независимо Ховардом Темином и Дэвидом Балтимором: был обнаружен фермент - ревертаза, отвечающий за осуществление обратной транскрипции - образования двуцепочечной ДНК на матрице одноцепочечной РНК, которое происходит у онкогенных вирусов. Следует отметить, что строгая необходимость потока генетической информации от нуклеиновых кислот к белкам до сих пор остаётся основой молекулярной биологии.

В 1957 году Александр Сергеевич Спирин совместно с Андреем Николаевичем Белозерским показали, что, при существенных различиях в нуклеотидном составе ДНК из разных организмов, состав суммарных РНК сходен. На основании этих данных они пришли к сенсационному заключению о том, что суммарная РНК клетки не может выступать в качестве переносчика генетической информации от ДНК к белкам, поскольку не соответствует ей по своему составу. Вместе с тем они заметили, что существует минорная фракция РНК, которая полностью соответствует по своему нуклеотидному составу ДНК и которая может быть истинным переносчиком генетической инфрмации от ДНК к белкам. В результате они предсказали существование относительно небольших молекул РНК, являющихся по строению аналогами отдельных участков ДНК и выполняющих роль посредников при передаче генетической информации, содержащейся в ДНК, в рибосому, где с использованием этой информации осуществляется синтез белковых молекул. В 1961 году (С. Бреннер , Ф. Жакоб , М. Месельсон с одной стороны и Ф. Гро, Франсуа Жакоб и Жак Моно первыми получили опытное подтверждение существования таких молекул - информационной (матричной) РНК. Тогда же они разработали концепцию и модель функциональной единицы ДНК - оперона, которая позволила объяснить, как именно осуществляется регуляция экспрессии генов у прокариот. Исследование механизмов биосинтеза белка и принципов структурной организации и работы молекулярных машин - рибосом - позволило сформулировать постулат, описывающий движение генетической информации, называемый центральной догмой молекулярной биологии: ДНК - иРНК - белок.

В 1961 году и в течение последующих нескольких лет Хайнрихом Маттэем и Маршаллом Ниренбергом, а затем Харом Кораной и Робертом Холли были проведены несколько работ по расшифровке генетического кода, в результате которых была установлена непосредственная взаимосвязь между структурой ДНК и синтезируемыми белками и определена последовательность нуклеотидов, определяющая набор аминокислот в белке. Также были получены данные об универсальности генетического кода. Открытия были отмечены нобелевской премией 1968 года.

Для развития современных представлений о функциях РНК решающим было открытие некодирующих РНК, сделанное по результатам работ Александра Сергеевича Спирина совместно с Андреем Николаевичем Белозерским 1958 года, Чарльзом Бреннером с соавторами и Солом Шпигельманом 1961 года. Этот вид РНК составляют основную часть клеточных РНК. К некодирующим в первую очередь относятся рибосомные РНК.

Серьёзное развитие получили способы культивирования и гибридизации животных клеток. В 1963 году Франсуа Жакобом и Сиднеема Бреннером были сформулированы представления о репликоне - последовательности неотъемлемо реплицирующихся генов, объясняющей важные аспекты регуляции репликации генов.

В 1967 году в лаборатории А. С. Спирина было впервые продемонстрировано, что форма компактно свёрнутой РНК определяет морфологию рибосомной частицы.

В 1968 году было сделано значительное фундаментальное открытие. Оказаки, обнаружив фрагменты ДНК отстающей цепи при исследовании процесса репликации, названные в честь неё фрагментами Оказаки, уточнила механизм репликации ДНК.

В 1970 году независимо Ховардом Темином и Дэвидом Балтимором было сделано значительное открытие: был обнаружен фермент - ревертаза, отвечающий за осуществление обратной транскрипции - образования двуцепочечной ДНК на матрице одноцепочечной РНК, которое происходит у онкогенных вирусов, содержащих РНК.

Ещё одним важным достижением молекулярной биологии стало объяснение механизма мутаций на молекулярном уровне. В результате серии исследований были установлены основные типы мутаций: дупликации, инверсии, делеции, транслокации и транспозиции. Это дало возможность рассматривать эволюционные изменения с точки зрения генных процессов, позволило разработать теорию молекулярных часов, которая применяется в филогении.

К началу 70-х годов были сформулированы основные принципы функционирования нуклеиновых кислот и белков в живом организме. Было установлено, что белки и нуклеиновые кислоты в организме синтезируются по матричному механизму, молекула-матрица несёт в себе зашифрованную информацию о последовательности аминокислот (в белке) или нуклеотидов (в нуклеиновой кислоте). При репликации (удвоении ДНК) или транскрипции (синтезе иРНК) такой матрицей служит ДНК, при трансляции (синтезе белка) или обратной транскрипции - иРНК.

Таким образом, были созданы теоретические предпосылки для развития прикладных направлений молекулярной биологии, в частности, генетической инженерии . В 1972 году Пол Берг , Герберт Боер и Стэнли Коэн разработали технологию молекулярного клонирования. Тогда ими впервые была получена в пробирке рекомбинантная ДНК. Эти выдающиеся эксперименты заложили основы генетической инженерии, а этот год считается датой рождения этого научного направления.

В 1977 году Фредерик Сэнгер, и независимо Аллан Максам и Уолтер Гилберт разработали различные методы определения первичной структуры (секвенирования) ДНК. Метод Сэнгера, так называемый метод обрыва цепи, является основой современного метода секвенирования. Принцип секвенирования основан на использовании меченых оснований, выступающих в качестве терминаторов в циклической реакции секвенирования. Этот метод получил широкое распространение благодаря возможности быстро проводить анализ.

1976 г. - Фредерик. Сэнгер расшифровал нуклеотидную последовательность ДНК фага φΧ174 длиной 5375 нуклеотидных пар.

1981 г. - серповидноклеточная анемия становится первой генетической болезнью, диагностируемой с помощью анализа ДНК.

1982-1983 открытие каталитической функции РНК в американских лабораториях Т. Чека и С. Олтмана изменило существовавшее представления об исключительной роли белков. По аналогии с каталитическими белками - энзимами, каталитические РНК были названы рибозимами.

1987 год Кери Мюллез открыл полимеразную цепную реакцию, благодаря которой возможно искусственно значительно увеличить количество молекул ДНК в растворе для дальнейшей работы. На сегодняшний день это один из наиболее важных методов молекулярной биологии, применяющийся при исследовании наследственных и вирусных заболеваний, при изучении генов и при генетическом установлении личности и установлении родства и т.п.

В 1990 году одновременно тремя группами учёных был опубликован метод, позволявший быстро получать в лаборатории синтетические функционально активные РНК (искусственные рибозимы или молекулы, взаимодействующие с различными лигандами - аптамеры). Этот метод получил название «эволюция в пробирке». А вскоре после этого, в 1991-1993 года в лаборатории А.Б. Четверина была экспериментально показана возможность существования, роста и амплификации молекул РНК в форме колоний на твёрдых средах.

В 1998 году практически одновременно Крейг Мелло и Эндрю Фаер описали наблюдавшийся ранее при генных экспериментах с бактериями и цветами механизм РНК-интерференции , при котором небольшая двухцепочечная молекула РНК приводит к специфичному подавлению экспрессии гена.

Открытие механизма РНК-интерференции имеет очень важное практическое значение для современной молекулярной биологии. Это явление широко используется в научных экспериментах в качестве инструмента для «выключения», то есть, подавления экспрессии отдельных генов. Особый интерес вызван тем, что этот способ позволяет осуществлять обратимое (временное) подавление активности изучаемых генов. Ведутся исследования возможности применения этого явления для лечения вирусных, опухолевых, дегенеративных и метаболических заболеваний. Следует отметить, что в 2002 году были открыты мутанты вирусы полиомиелита, способные избегать РНК-интерференции, поэтому требуется ещё кропотливая работа для разработки действительно эффективных методов лечения на основе этого явления.

В 1999-2001 годах несколькими группами исследователей определена с разрешением от 5,5 до 2,4 ангстрем структура бактериальной рибосомы.

Предмет

Достижения молекулярной биологии в познании живой природы трудно переоценить. Больших успехов удалось достичь благодаря удачной концепции исследований: сложные биологические процессы рассматриваются с позиции отдельных молекулярных систем, что позволяет применять точные физико-химические методы исследования. Это также привлекло в эту область науки много великих умов из смежных направлений: химии, физики, цитологии, вирусологии , что также благотворно повлияло на масштабы и скорость развития научных знаний в этой области. Столь значимые открытия, как определение структуры ДНК, расшифровка генетического кода, искусственная направленная модификация генома, позволили значительно глубже понять специфику процессов развития организмов и успешно решать многочисленные важнейшие фундаментальные и прикладные научные, медицинские и социальные задачи, которые ещё не так давно считались неразрешимыми.

Предметом изучения молекулярной биологии являются в основном белки, нуклеиновые кислоты и молекулярные комплексы (молекулярные машины) на их основе и процессы, в которых они участвуют.

Нуклеиновые кислоты представляют собой линейные полимеры, состоящие из нуклеотидных звеньев (соединений пятичленного сахара с фосфатной группой при пятом атоме цикла и одного из четырёх азотистых оснований), соединённых между собой сложноэфирной связью фосфатных групп. Таким образом, нуклеиновая кислота - это пентозофосфатный полимер с азотистыми основаниями в качестве боковых заместителей. Химический состав цепочки РНК отличается от ДНК тем, что первая состоит из пятичленного цикла углевода рибозы, тогда как вторая - из дегидрокслилированного производного рибозы - дезоксирибозы. При этом пространственно эти молекулы различаются кардинально, поскольку РНК - это гибкая одноцепочечная молекула, тогда как ДНК - это двуцепочечная молекула.

Белки - это линейные полимеры, представляющие собой цепочки альфа-аминокислот, соединённых между собой пептидной связью, откуда их второе название - полипептиды. В состав природных белков входит множество различных аминокислотных звеньев - у человека до 20 -, что определяет широкое разнообразие функциональных свойств этих молекул. Те или иные белки принимают участие почти в каждом процессе в организме и выполняют множество задач: играют роль клеточного строительного материала, обеспечивают транспорт веществ и ионов, катализируют химические реакции, - список этот очень длинный. Белки образуют устойчивые молекулярные конформации различного уровня организации (вторичные и третичные структуры) и молекулярные комплексы, что ещё больше расширяет их функционал. Эти молекулы могут обладать высокой специфичностью к выполнению каких-либо задач благодаря образованию сложной пространственной глобулярной структуры. Большое разнообразие белков обеспечивает постоянный интерес учёных к этому виду молекул.

Современные представления о предмете молекулярной биологии основаны на обобщении, выдвинутом впервые в 1958 году Фрэнсисом Криком как центральная догма молекулярной биологии. Суть её заключалась в утверждении, что генетическая информация в живых организмах проходит строго определённые этапы реализации: копирование из ДНК в ДНК входе наследования, из ДНК в РНК, а затем из РНК в белок, причём обратный переход не осуществим. Это утверждение было справедливо лишь от части, поэтому впоследствии центральная догма была поправлена с оглядкой на открывшиеся новые данные.

На данный момент известно несколько путей реализации генетического материала, представляющих различные последовательности осуществления трёх видов существования генетической информации: ДНК, РНК и белок. В девяти возможных путях реализации выделяют три группы: это три общих превращения (general), осуществляющиеся в норме в большинстве живых организмов; три особых превращения(special), осуществляющиеся в некоторых вирусах или в особых лабораторных условиях; три неизвестных превращения (unknown), осуществление которых, как считается, невозможно.

К общим превращениям относятся следующие пути реализации генетического кода: ДНК→ДНК (репликация), ДНК→РНК (транскрипция), РНК→белок (трансляция).

Для осуществления передачи наследственных признаков родителям необходимо передать потомкам полноценную молекулу ДНК. Процесс, благодаря которому на основе исходной ДНК может быть синтезирована её точная копия, а следовательно, может быть передан генетический материал, называется репликацией. Он осуществляется специальными белками, которые распутывают молекулу (выпрямляют её участок), расплетают двойную спираль и при помощи ДНК-полимеразы создают точную копию исходной молекулы ДНК.

Для обеспечения жизнедеятельности клетки ей необходимо постоянно обращаться к генетическому коду, заложенному в двойной спирали ДНК. Однако эта молекула слишком велика и неповоротлива для применения её в качестве непосредственного источника генетического материала для непрерывного синтеза белка. Поэтому в ходе реализации информации, заложенной в ДНК, есть посредническая стадия: синтез иРНК, представляющей собой небольшую одноцепочечную молекулу, комплементарную определённому отрезку ДНК, кодирующему некоторый белок. Процесс транскрипции обеспечивается РНК-полимеразой и факторами транскрипции. Полученная молекула затем может быть легко доставлена в отдел клетки, ответственный за синтез белка - рибосому.

После попадания и РНК в рибосому наступает заключительная стадия реализации генетической информации. При этом рибосома считывает с иРНК генетический код триплетами , называющимися кодонами и синтезирует на основе получаемой информации соответствующий белок.

В ходе особых превращений генетический код реализуется по схеме РНК→РНК (репликация), РНК→ДНК (обратная транскрипция), ДНК→белок (прямая трансляция). Репликация такого вида реализуется во многих вирусах, где она осуществляется ферментом РНК-зависимой РНК-полимеразой. Аналогичные ферменты находятся и в клетках эукариот, где они связаны с процессом РНК-глушения (silencing). Обратная транскрипция обнаружена в ретровирусах, где она осуществляется под действием фермента обратной транскриптазы, а также в некоторых случаях в эукариотических клетках, например, при теломерном синтезе. Прямая трансляция осуществляется только в искусственных условиях в изолированной системе вне клетки.

Любой из трех возможных переходов генетической информации из белка в белок, РНК или ДНК считается невозможным. Случай воздействия прионов на белки, в результате которого образуется аналогичный прион, условно можно было бы отнести к виду реализации генетической информации белок→белок. Тем не менее, формально он таковым не является, поскольку не затрагивает аминокислотную последовательность в белке.

Любопытна история возникновения термина «центральная догма». Поскольку слово догма в общем случае означает утверждение, которое не подлежит сомнению, а само слово имеет явный религиозный подтекст, выбор его в качестве описания научного факта не совсем правомерен. По признанию самого Фрэнсиса Крика, это была его ошибка. Он хотел придать выдвигаемой теории большей значимости, выделить её на фоне остальных теорий и гипотез; для чего решил использовать это величественное, по его представлению, слово, не понимая его истинного смысла. Название это, однако, прижилось.

Молекулярная биология сегодня

Бурное развитие молекулярной биологии, постоянный интерес к достижениям в этой области со стороны общества и объективная важность исследований привели к возникновению большого числа крупных научно-исследовательских центров молекулярной биологии по всему миру. Среди крупнейших следует упомянуть следующие: лаборатория молекулярной биологии в Кембридже, Королевский институт в Лондоне - в Великобритании; институты молекулярной биологии в Париже, Марселе и Страсбурге, Пастеровский институт - во Франции; отделы молекулярной биологии в Гарвардском университете и Массачусетском технологическом институте, университете в Беркли, в Калифорнийском технологическом институте, в Рокфеллеровском университете, в институте здравоохранения в Бетесде - в США; институты Макса Планка, университеты в Гёттингене и Мюнхене, Центральный институт молекулярной биологии в Берлине, институты в Йене и Халле - в Германии; Каролинский институт в Стокгольме в Швеции.

В России ведущими центрами в этой области являются Институт молекулярной биологии им. В.А.Энгельгардта РАН, Институт молекулярной генетики РАН, Институт биологии гена РАН, Институт физико-химической биологии им. А. Н. Белозерского МГУ им. М.В.Ломоносова, Институт биохимии им. А.Н.Баха РАН и Институт белка РАН в Пущино.

Сегодня область интересов молекулярных биологов охватывает широкий спектр фундаментальных научных вопросов. По-прежнему ведущую роль занимает изучение структуры нуклеиновых кислот и биосинтеза белка, исследования строения и функций различных внутриклеточных структур, и клеточных поверхностей. Также важными направления исследований являются изучение механизмов рецепции и передачи сигналов, молекулярных механизмов транспорта соединений внутри клетки а также из клетки во внешнюю среду и обратно. Cреди основных направлений научного поиска в области прикладной молекулярной биологии одной из наиболее приоритетных является проблема возникновения и развития опухолей. Также очень важным направлением, изучением которого занимается раздел молекулярной биологии - молекулярная генетика, является изучение молекулярных основ возникновения наследственных заболеваний, и вирусных заболеваний, например, СПИДа, а также разработка способов их предупреждения и, возможно, лечения на генном уровне. Широкое применение нашли открытия и разработки молекулярных биологов в судебной медицине. Настоящая революция в области идентификации личности была сделана в 80-х годах учёными из России, США и Великобритании благодаря разработке и внедрению в повседневную практику метода «геномной дактилоскопии» - установления личности по ДНК. Исследования в этой области не прекращаются и по сей день, современные методы позволяют устанавливать личность с вероятностью ошибки одна миллиардная процента. Уже сейчас идёт активная разработка проекта генетического паспорта, что, как предполагается, позволит сильно снизить уровень преступности.

Методология

Сегодня молекулярная биология располагает обширным арсеналом методов, позволяющих решать самые передовые и самые сложные задачи, стоящие перед учёными.

Одним из самых распространённых методов в молекулярной биологии является гель-электрофорез , который решает задачи разделения смеси макромолекул по размеру или по заряду. Почти всегда после разделения макромолекул в геле применяется блоттинг , метод, позволяющий переносить макромолекулы из геля (сорбировать ) на поверхность мембраны для удобства дальнейшей работы с ними, в частности гибридизации . Гибридизация - формирование гибридной ДНК из двух цепей, имеющих различную природу, - метод, играющий важную роль в фундаментальных исследованиях. Он применяется для определения комплементарных отрезков в разных ДНК (ДНК разных видов), с его помощью происходит поиск новых генов, с его помощью была открыта РНК интерференция, а его принцип лёг в основу геномной дактилоскопии.

Большую роль в современной практике молекулярно-биологических исследований играет метод секвенирования - определения последовательности нуклеотидов в нуклеиновых кислотах и аминокислот в белках.

Современную молекулярную биологию невозможно представить без метода полимеразной цепной реакции (ПЦР). Благодаря этому методу осуществляется увеличение количества (амплификация) копий некоторой последовательности ДНК, чтобы позволяет получить из одной молекулы достаточное количество вещества для дальнейшей работы с ним. Аналогичный результат достигается технологией молекулярного клонирования, в которой требующаяся нуклеотидная последовательность внедряется в ДНК бактерии (живых систем), после чего размножение бактерий приводит к необходимому результату. Этот подход технически значительно сложнее, однако позволяет одновременно получать результат экспрессии исследуемой нуклеотидной последовательности.

Также в молекулярно-биологических исследованиях широко применяются методы ультрацентрифугирование (для разделения макромолекул (больших количеств), клеток, органелл), методы электронной и флуоресцентной микроскопии, спектрофотометрические методы, рентгеноструктурный анализ, авторадиография, и т.п.

Благодаря техническому прогрессу и научным изысканиям в области химии, физики, биологии и информатики современное оборудование позволяет выделять, изучать и изменять отдельные гены и процессы, в которые они вовлечены.