12.10.2019

Найти двугранный угол образованный пересечением заданных плоскостей. Угол между плоскостями. Перпендикулярность плоскостей



Эта статья посвящена углу между плоскостями и его нахождению. Сначала приведено определение угла между двумя плоскостями и дана графическая иллюстрация. После этого разобран принцип нахождения угла между двумя пересекающимися плоскостями методом координат, получена формула, позволяющая вычислять угол между пересекающимися плоскостями по известным координатам нормальных векторов этих плоскостей. В заключении показаны подробные решения характерных задач.

Навигация по странице.

Угол между плоскостями - определение.

Приведем рассуждения, которые позволят постепенно подойти к определению угла между двумя пересекающимися плоскостями.

Пусть нам даны две пересекающиеся плоскости и . Эти плоскости пересекаются по прямой, которую обозначим буквой c . Построим плоскость , проходящую через точку М прямой c и перпендикулярную к прямой c . При этом плоскость будет пересекать плоскости и . Обозначим прямую, по которой пересекаются плоскости и как a , а прямую, по которой пересекаются плоскости и как b . Очевидно, прямые a и b пересекаются в точке М .


Легко показать, что угол между пересекающимися прямыми a и b не зависит от расположения точки М на прямой c , через которую проходит плоскость .

Построим плоскость , перпендикулярную к прямой c и отличную от плоскости . Плоскость пересекают плоскости и по прямым, которые обозначим a 1 и b 1 соответственно.

Из способа построения плоскостей и следует, что прямые a и b перпендикулярны прямой c , и прямые a 1 и b 1 перпендикулярны прямой c . Так как прямые a и a 1 лежат в одной плоскости и перпендикулярны прямой c , то они параллельны. Аналогично, прямые b и b 1 лежат в одной плоскости и перпендикулярны прямой c , следовательно, они параллельны. Таким образом, можно выполнить параллельный перенос плоскости на плоскость , при котором прямая a 1 совпадет с прямой a , а прямая b с прямой b 1 . Следовательно, угол между двумя пересекающимися прямыми a 1 и b 1 равен углу между пересекающимися прямыми a и b .


Этим доказано, что угол между пересекающимися прямыми a и b , лежащими в пересекающихся плоскостях и , не зависит от выбора точки M , через которую проходит плоскость . Поэтому, логично этот угол принять за угол между двумя пересекающимися плоскостями.

Теперь можно озвучить определение угла между двумя пересекающимися плоскостями и .

Определение.

Угол между двумя пересекающимися по прямой c плоскостями и – это угол между двумя пересекающимися прямыми a и b , по которым плоскости и пересекаются с плоскостью , перпендикулярной к прямой c .


Определение угла между двумя плоскостями можно дать немного иначе. Если на прямой с , по которой пересекаются плоскости и , отметить точку М и через нее провести прямые а и b , перпендикулярные прямой c и лежащие в плоскостях и соответственно, то угол между прямыми а и b представляет собой угол между плоскостями и . Обычно на практике выполняют именно такие построения, чтобы получить угол между плоскостями.

Так как угол между пересекающимися прямыми не превосходит , то из озвученного определения следует, что градусная мера угла между двумя пересекающимися плоскостями выражается действительным числом из интервала . При этом, пересекающиеся плоскости называют перпендикулярными , если угол между ними равен девяноста градусам. Угол между параллельными плоскостями либо не определяют совсем, либо считают его равным нулю.

Нахождение угла между двумя пересекающимися плоскостями.

Обычно при нахождении угла между двумя пересекающимися плоскостями сначала приходится выполнять дополнительные построения, чтобы увидеть пересекающиеся прямые, угол между которыми равен искомому углу, и после этого связывать этот угол с исходными данными при помощи признаков равенства, признаков подобия, теоремы косинусов или определений синуса, косинуса и тангенса угла. В курсе геометрии средней школы встречаются подобные задачи.

Для примера приведем решение задачи С2 из ЕГЭ по математике за 2012 год (условие намерено изменено, но это не влияет на принцип решения). В ней как раз нужно было найти угол между двумя пересекающимися плоскостями.

Пример.

Решение.

Для начала сделаем чертеж.

Выполним дополнительные построения, чтобы «увидеть» угол между плоскостями.

Для начала определим прямую линию, по которой пересекаются плоскости АВС и BED 1 . Точка В – это одна из их общих точек. Найдем вторую общую точку этих плоскостей. Прямые DA и D 1 E лежат в одной плоскости АDD 1 , причем они не параллельны, а, значит, пересекаются. С другой стороны, прямая DA лежит в плоскости АВС , а прямая D 1 E – в плоскости BED 1 , следовательно, точка пересечения прямых DA и D 1 E будет общей точкой плоскостей АВС и BED 1 . Итак, продолжим прямые DA и D 1 E до их пересечения, обозначим точку их пересечения буквой F . Тогда BF – прямая, по которой пересекаются плоскости АВС и BED 1 .

Осталось построить две прямые, лежащие в плоскостях АВС и BED 1 соответственно, проходящие через одну точку на прямой BF и перпендикулярные прямой BF , - угол между этими прямыми по определению будет равен искомому углу между плоскостями АВС и BED 1 . Сделаем это.

Точка А является проекцией точки Е на плоскость АВС . Проведем прямую, пересекающую под прямым углом прямую ВF в точке М . Тогда прямая АМ является проекцией прямой ЕМ на плоскость АВС , и по теореме о трех перпендикулярах .

Таким образом, искомый угол между плоскостями АВС и BED 1 равен .

Синус, косинус или тангенс этого угла (а значит и сам угол) мы можем определить из прямоугольного треугольника АЕМ , если будем знать длины двух его сторон. Из условия легко найти длину АЕ : так как точка Е делит сторону АА 1 в отношении 4 к 3 , считая от точки А , а длина стороны АА 1 равна 7 , то АЕ=4 . Найдем еще длину АМ .

Для этого рассмотрим прямоугольный треугольник АВF с прямым углом А , где АМ является высотой. По условию АВ=2 . Длину стороны АF мы можем найти из подобия прямоугольных треугольников DD 1 F и AEF :

По теореме Пифагора из треугольника АВF находим . Длину АМ найдем через площадь треугольника АBF : c одной стороны площадь треугольника АВF равна , с другой стороны , откуда .

Таким образом, из прямоугольного треугольника АЕМ имеем .

Тогда искомый угол между плоскостями АВС и BED 1 равен (заметим, что ).

Ответ:

В некоторых случаях для нахождения угла между двумя пересекающимися плоскостями удобно задать Oxyz и воспользоваться методом координат. На нем и остановимся.

Поставим задачу: найти угол между двумя пересекающимися плоскостями и . Обозначим искомый угол как .

Будем считать, что в заданной прямоугольной системе координат Oxyz нам известны координаты нормальных векторов пересекающихся плоскостей и или имеется возможность их найти. Пусть - нормальный вектор плоскости , а - нормальный вектор плоскости . Покажем, как найти угол между пересекающимися плоскостями и через координаты нормальных векторов этих плоскостей.

Обозначим прямую, по которой пересекаются плоскости и , как c . Через точку М на прямой c проведем плоскость , перпендикулярную к прямой c . Плоскость пересекает плоскости и по прямым a и b соответственно, прямые a и b пересекаются в точке М . По определению угол между пересекающимися плоскостями и равен углу между пересекающимися прямыми a и b .

Отложим от точки М в плоскости нормальные векторы и плоскостей и . При этом вектор лежит на прямой, которая перпендикулярна прямой a , а вектор - на прямой, которая перпендикулярна прямой b . Таким образом, в плоскости вектор - нормальный вектор прямой a , - нормальный вектор прямой b .


В статье нахождение угла между пересекающимися прямыми мы получили формулу, которая позволяет вычислять косинус угла между пересекающимися прямыми по координатам нормальных векторов. Таким образом, косинус угла между прямыми a и b , а, следовательно, и косинус угла между пересекающимися плоскостями и находится по формуле , где и – нормальные векторы плоскостей и соответственно. Тогда вычисляется как .

Решим предыдущий пример методом координат.

Пример.

Дан прямоугольный параллелепипед АВСDA 1 B 1 C 1 D 1 , в котором АВ=2 , AD=3 , АА 1 =7 и точка E делит сторону АА 1 в отношении 4 к 3 , считая от точки А . Найдите угол между плоскостями АВС и ВЕD 1 .

Решение.

Так как стороны прямоугольного параллелепипеда при одной вершине попарно перпендикулярны, то удобно ввести прямоугольную систему координат Oxyz так: начало совместить с вершиной С , а координатные оси Ox , Oy и Oz направить по сторонам CD , CB и CC 1 соответственно.

Угол между плоскостями АВС и BED 1 может быть найден через координаты нормальных векторов этих плоскостей по формуле , где и – нормальные векторы плоскостей АВС и BED 1 соответственно. Определим координаты нормальных векторов.

Использование метода координат при вычислении угла

между плоскостями

Наиболее общий метод нахождения угла между плоскостями - метод координат (иногда - с привлечением векторов). Его можно использовать тогда, когда испробованы все остальные. Но бывают ситуации, в которых метод координат имеет смысл применять сразу же, а именно тогда, когда система координат естественно связана с многогранником, указанным в условии задачи, т.е. явно просматриваются три попарно перпендикулярные прямые, на которых можно задать оси координат. Такими многогранниками являются прямоугольный параллелепипед и правильная четырехугольная пирамида. В первом случае система координат может быть задана выходящими из одной вершины ребрами (рис.1), во втором - высотой и диагоналями основания (рис. 2)

Применение метода координат состоит в следующем.

Вводится прямоугольная система координат в пространстве. Желательно ввести ее «естественным» образом - «привязать» к тройке попарно перпендикулярных прямых, имеющих общую точку.

Для каждой из плоскостей, угол между которыми ищется, составляется уравнение. Проще всего составить такое уравнение, зная координаты трех точек плоскости, не лежащих на одной прямой.

Уравнение плоскости в общем виде имеет вид Ах + By + Cz + D = 0.

Коэффициенты А, В, С в этом уравнении являются координатами нормального вектора плоскости (вектора, перпендикулярного плоскости). Определяем затем длины и скалярное произведение нормальных векторов к плоскостям, угол между которыми ищется. Если координаты этих векторов (А 1 , В 1 ; С 1 ) и (А 2 ; В 2 ; С 2 ), то искомый угол вычисляется по формуле

Замечание. Необходимо помнить, что угол между векторами (в отличие от угла между плоскостями) может быть тупым, и чтобы избежать возможной неопределенности, в числителе правой части формулы стоит модуль.

Решите методом координат такую задачу.

Задача 1. Дан куб ABCDA 1 B 1 C 1 D 1 . Точка К - середина ребра AD, точка L - середина ребра CD. Чему равен угол между плоскостями А 1 KL и A 1 AD?

Решение . Пусть начало системы координат находится в точке А, а оси координат идут вдоль лучей AD, АВ, АА 1 (рис. 3). Ребро куба примем равным 2 (удобно делить пополам). Тогда координаты точек A 1 , К, L таковы: А 1 (0; 0; 2), К(1; 0; 0), L(2; 1; 0).

Рис. 3

Запишем уравнение плоскости А 1 К L в общем виде. Затем подставим в него координаты выбранных точек этой плоскости. Получим систему трех уравнений с четырьмя неизвестными:

Выразим коэффициенты А, В, С через D и придем к уравнению

Разделив обе его части на D (почему D = 0?) и домножив затем на -2, получим уравнение плоскости A 1 KL: 2х - 2 у + z - 2 = 0. Тогда нормальный вектор к этой плоскости имеет координаты (2: -2; 1) . Уравнение плоскости A 1 AD таково: y=0, а координаты нормального вектора к ней, например, (0; 2: 0) . Согласно приведенной выше формуле для косинуса угла между плоскостями получаем:

Рассмотрим две плоскости р 1 и р 2 с нормальными векторами n 1 и n 2 . Угол φ между плоскостями р 1 и р 2 выражается через угол ψ = \(\widehat{(n_1; n_2)}\) следующим образом: если ψ < 90°, то φ = ψ (рис. 202, а); если ψ > 90°, то ψ = 180° - ψ (рис. 202,6).

Очевидно, что в любом случае справедливо равенство

cos φ = |cos ψ|

Так как косинус угла между ненулевыми векторами равен скалярному произведению этих векторов, деленному на произведение их длин, имеем

$$ cos\psi=cos\widehat{(n_1; n_2)}=\frac{n_1\cdot n_2}{|n_1|\cdot |n_2|} $$

и, следовательно, косинус угла φ между плоскостями р 1 и р 2 может быть вычислен по формуле

$$ cos\phi=\frac{n_1\cdot n_2}{|n_1|\cdot |n_2|} (1)$$

Если плоскости заданы общими уравнениями

А 1 х + B 1 y + C 1 z + D 1 = 0 и А 2 х + B 2 y + C 2 z + D 2 = 0,

то за их нормальные векторы можно взять векторы n 1 = (A 1 ; B 1 ; С 1) и n 2 = (A 2 ; B 2 ; С 2).

Записав правую часть формулы (1) через координаты, получим

$$ cos\phi=\frac{|A_1 A_2 + B_1 B-2 + C_1 C_2|}{\sqrt{{A_1}^2+{B_1}^2+{C_1}^2}\sqrt{{A_2}^2+{B_2}^2+{C_2}^2}} $$

Задача 1. Вычислить угол между плоскостями

х - √2 y + z - 2 = 0 и х+ √2 y - z + 13 = 0.

В данном случае A 1 .=1, B 1 = - √2 , С 1 = 1, A 2 =1, B 2 = √2 , С 2 = - 1.

По формуле (2) получаем

$$ cos\phi=\frac{|1\cdot 1 - \sqrt2 \cdot \sqrt2 - 1 \cdot 1|}{\sqrt{1^2+(-\sqrt2)^2+1^2}\sqrt{1^2+(\sqrt2)^2+(-1)^2}}=\frac{1}{2} $$

Следовательно, угол между данными плоскостями равен 60°.

Плоскости с нормальными векторами n 1 и n 2:

а) параллельны тогда и только тогда, когда векторы n 1 и n 2 коллинеарны;

б) перпендикулярны, тогда и только тогда, когда векторы n 1 и n 2 перпендикулярны, т. е. когда n 1 n 2 = 0.

Отсюда получаем.необходимые и достаточные условия параллельности и перпендикулярности двух плоскостей, заданных общими уравнениями.

Для того чтобы плоскости

А 1 х + B 1 y + C 1 z + D 1 = 0 и А 2 х + B 2 y + C 2 z + D 2 = 0

были параллельны, необходимо и достаточно, чтобы выполнялись равенства

$$ \frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2} \;\; (3)$$

В случае, если какой-либо из коэффициентов A 2 , B 2 , С 2 равен нулю, подразумевается, что равен нулю и соответствующий коэффициент A 1 , B 1 , С 1

Невыполнение хотя бы одного из этих двух равенств означает, что плоскости не параллельны, т. е. пересекаются.

Для перпендикулярности плоскостей

А 1 х + B 1 y + C 1 z + D 1 = 0 и А 2 х + B 2 y + C 2 z + D 2 = 0

необходимо и достаточно, чтобы выполнялось равенство

А 1 А 2 + B 1 B 2 + C 1 C 2 = 0. (4)

Задача 2. Среди следующих пар плоскостей:

2х + 5у + 7z - 1 = 0 и 3х - 4у + 2z = 0,

у - 3z + 1 = 0 и 2у - 6z + 5 = 0,

4х + 2у - 4z + 1 = 0 и 2х + у + 2z + 3 = 0

указать параллельные или перпендикулярные. Для первой пары плоскостей

А 1 А 2 + B 1 B 2 + C 1 C 2 = 2 3 + 5 (- 4) + 7 2 = 0,

т. е. выполняется условие перпендикулярности. Плоскости перпендикулярны.

Для второй пары плоскостей

\(\frac{B_1}{B_2}=\frac{C_1}{C_2}\), так как \(\frac{1}{2}=\frac{-3}{-6} \)

а коэффициенты А 1 и А 2 равны нулю. Следовательно, плоскости второй пары параллельны. Для третьей пары

\(\frac{B_1}{B_2}\neq\frac{C_1}{C_2}\), так как \(\frac{2}{1}\neq\frac{-4}{2} \)

и А 1 А 2 + B 1 B 2 + C 1 C 2 = 4 2 + 2 1 - 4 2 =/= 0, т. е. плоскости третьей пары не параллельны и не перпендикулярны.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.