28.06.2020

Пульсовые волны. Математическая модель расчета скорости пульсовой волны Клинический метод определения скорости пульсовой волны


Артериальным пульсом называют ритмические колебания стенки артерий, обусловленные выбросом крови из сердца в артериальную систему и изменением в ней давления во время левого желудочка.

Пульсовая волна возникает в устье аорты во время изгнания в него крови левым желудочком. Для размещения ударного объема крови объем, диаметр аорты и в ней увеличиваются. Во время диастолы желудочка, благодаря эластическим свойствам стенки аорты и оттоку крови из нее в периферические сосуды, ее объем и диаметр восстанавливаются до исходных размеров. Таким образом, во время происходит толчкообразное колебание аортальной стенки, возникает механическая пульсовая волна (рис. 1), которая распространяется с нее на крупные, затем на более мелкие артерии и достигает артериол.

Рис. 1. Механизм возникновения пульсовой волны в аорте и ее распространения по стенкам артериальных сосудов (а-в)

Поскольку артериальное (и в том числе пульсовое) давление снижается в сосудах по мере удаления от сердца, амплитуда пульсовых колебаний также уменьшается. На уровне артериол пульсовое давление падает до нуля и пульс в капиллярах и далее в венулах и большинстве венозных сосудов отсутствует. Кровь в этих сосудах течет равномерно.

Скорость пульсовой волны

Пульсовые колебания распространяются по стенке артериальных сосудов. Скорость распространения пульсовой волны зависит от эластичности (растяжимости), толщины стенки и диаметра сосудов. Более высокие скорости пульсовой волны наблюдаются в сосудах с утолщенной стенкой, небольшим диаметром и сниженной эластичностью. В аорте скорость распространения пульсовой волны равна 4-6 м/с, в артериях, имеющих малый диаметр и мышечный слой (например, в лучевой), она составляет около 12 м/с. С возрастом растяжимость сосудов снижается вследствие уплотнения их стенок, что сопровождается уменьшением амплитуды пульсовых колебаний стенки артерий и увеличением скорости распространения по ним пульсовой волны (рис. 2).

Таблица 1. Скорость распространении пульсовой волны

Скорость распространения пульсовой волны существенно превышает линейную скорость движения крови, которая в аорте составляет в условиях покоя 20-30 см/с. Пульсовая волна, возникнув в аорте, достигает дистальных артерий конечностей приблизительно за 0,2 с, т.е. намного быстрее, чем к ним поступит та порция крови, выброс которой левым желудочком вызвал пульсовую волну. При гипертензии вследствие увеличения напряжения и жесткости стенок артерий скорость распространения пульсовой волны по артериальным сосудам возрастает. Измерение скорости пульсовой волны можно использовать для опенки состояния стенки артериальных сосудов.

Рис. 2. Возрастные изменения пульсовой волны, вызванные снижением эластичности стенок артерий

Свойства пульса

Регистрация пульса имеет большое практическое значения для клиники и физиологии. Пульс дает возможность судить о частоте, силе и ритме сердечных сокращений.

Таблица 2. Свойства пульса

Частота пульса - количество пульсовых ударов за 1 мин. У взрослых людей в состоянии физического и эмоционального покоя нормальная частота пульса (частота сокращений сердца) составляет 60-80 уд/мин.

Для характеристики частоты пульса применяются термины: нормальный, редкий пульс или брадикардия (меньше 60 уд/мин), частый пульс или тахикардия (больше 80- 90 уд/мин). При этом надо учитывать возрастные нормы.

Ритм — показатель, отражающий периодичность следования пульсовых колебаний друг за другом и периодичность . Его определяют посредством сопоставления длительности интервалов между пульсовыми ударами в процессе пальпации пульса в течение минуты и более. У здорового человека пульсовые волны следуют друг за другом через равные промежутки времени и такой пульс называют ритмичным. Разница длительности интервалов при нормальном ритме не должна превышать 10% от их среднего значения. Если длительность интервалов между пульсовыми ударами различна, то пульс и сокращения сердца называют аритмичными. В норме может выявляться «дыхательная аритмия», при которой частота пульса изменяется синхронно с фазами дыхания: возрастает на вдохе и уменьшается при выдохе. Дыхательная аритмия чаще встречается у молодых людей и у лиц с лабильным тонусом автономной нервной системы.

Другие виды аритмичного пульса (экстрасистолия, мерцательная аритмия) свидетельствуют о и в сердце. Экстрасистолия характеризуется появлением внеочередного, более раннего пульсового колебания. Его амплитуда меньше, чем у предыдущих. За экстрасистолическим пульсовым колебанием может следовать более длительный интервал до следующего, очередного пульсового удара, так называемая «компенсаторная пауза». Этот пульсовый удар обычно характеризуется более высокой амплитудой колебания артериальной стенки вследствие более сильного сокращения миокарда.

Наполнение (амплитуда) пульса — субъективный показатель, оцениваемый пальпаторно по высоте подъема артериальной стенки и наибольшему растяжению артерии во время систолы сердца. Наполнение пульса зависит от величины пульсового давления, ударного объема крови, объема циркулирующей крови и эластичности стенок артерий. Принято различать варианты: пульс нормального, удовлетворительного, хорошего, слабого наполнения и как крайний вариант слабого наполнения — нитевидный пульс.

Пульс хорошего наполнения пальпаторно воспринимается как пульсовая волна высокой амплитуды, пальпируемая на некотором расстоянии от линии проекции артерии на кожу и ощущаемая не только при умеренном прижатии артерии, но и при слабом прикосновении к области ее пульсации. Нитевидный пульс воспринимается как слабая пульсация, пальпируемая по узкой линии проекции артерии на кожу, ощущение от которой исчезает при ослаблении контакта пальцев с поверхностью кожи.

Напряжение пульса - субъективный показатель, оцениваемый по величине силы надавливания на артерию, достаточной для исчезновения ее пульсации дистальнее места прижатия. Напряжение пульса зависит от величины среднего гемоди- намического давления и в определенной мере отражает уровень систолического давления. При нормальном артериальном давлении крови напряжение пульса оценивается как умеренное. Чем выше артериальное давление крови, тем труднее полностью сдавить артерию. При высоком давлении пульс оказывается напряженным или твердым. При низком артериальном давлении артерия сдавливается легко, пульс оценивается как мягкий.

Скорость пульса определяется по крутизне нарастания давления и достижения артериальной стенкой максимальной амплитуды пульсовых колебаний. Чем больше крутизна нарастания, тем за более короткий промежуток времени амплитуда пульсового колебания достигает своего максимального значения. Скорость пульса может определяться (субъективно) пальпаторно и объективно по данным анализа крутизны нарастания анакроты на сфигмограмме.

Скорость пульса зависит от скорости прироста давления в артериальной системе в течение систолы. Если во время систолы в аорту выбрасывается больше крови и давление в ней быстро возрастает, то будет наблюдаться более быстрое достижение наибольшей амплитуды растяжения артерии — крутизна анакроты возрастет. Чем больше крутизна анакроты (угол а между горизонтальной линией и анакротой ближе к 90°), тем выше скорость пульса. Такой пульс называется быстрым. При медленном приросте давления в артериальной системе во время систолы и низкой крутизне нарастания анакроты (малом угле а) пульс называют медленным. В нормальных условиях скорость пульса является промежуточной между быстрым и медленным пульсом.

Быстрый пульс свидетельствует об увеличении объема и скорости изгнания крови в аорту. В нормальных условиях такие свойства пульс может приобретать при повышении тонуса симпатической нервной системы. Постоянно имеющийся быстрый пульс может быть признаком патологии и, в частности, свидетельствовать о недостаточности аортального клапана. При стенозе устья аорты или уменьшении сократительной способности желудочков могут развиться признаки медленного пульса.

Колебания объема и давления крови в венах называют венным пульсом. Венный пульс определяется в крупных венах грудной полости и в ряде случаев (при горизонтальном положении тела) может быть зарегистрирован в шейных венах (особенно яремных). Зарегистрированная кривая венного пульса называется флебограммой. Венный пульс обусловлен влиянием сокращений предсердий и желудочков на кровоток в полых венах.

Исследование пульса

Исследование пульса позволяет оценить ряд важных характеристик состояния сердечно-сосудистой системы. Наличие артериального пульса у испытуемого является свидетельством сокращения миокарда, а свойства пульса отражают частоту, ритм, силу, длительность систолы и диастолы сердца, состояние аортальных клапанов, эластичность стенки артериального сосуда, ОЦК и АД. Пульсовые колебания стенок сосудов можно зарегистрировать графически (например, методом сфигмографии) или оценить пальпаторно практически на всех артериях, расположенных близко к поверхности тела.

Сфигмография — метод графической регистрации артериального пульса. Получаемую при этом кривую называют сфигмограммой.

Для регистрации сфигмограммы на область пульсации артерии устанавливают специальные датчики, улавливающие механические колебания подлежащих тканей, вызванные изменениями давления крови в артерии. За время одного сердечного цикла регистрируется пульсовая волна, на которой выделяют восходящий участок — анакроту, и нисходящий — катакроту.

Рис. Графическая регистрация артериального пульса (сфигмограмма): cd-анакрота; de — систолическое плато; dh — катакрота; f — инцизура; g — дикротическая волна

Анакрота отражает растяжение стенки артерии возрастающим в ней систолическим давлением крови в период времени от начала изгнания крови из желудочка до достижения максимума давления. Катакрота отражает восстановление исходного размера артерии за время от начала снижения в ней систолического давления до достижения в ней минимального диастолического давления.

На катакроте имеются инцизура (вырезка) и дикротический подъем. Инцизура возникает в результате быстрого снижения давления в артерии в начале диастолы желудочков (протодиастолический интервал). В это время при еще открытых полулунных клапанах аорты осуществляется расслабление левого желудочка, вызывающее быстрое снижение в нем давления крови, а под действием эластических волокон аорта начинает восстанавливать ее размеры. Часть крови из аорты перемещается к желудочку. При этом она оттесняет створки полулунных клапанов от стенки аорты и вызывает их закрытие. Отражаясь от захлопнувшихся клапанов, волна крови создаст на мгновение в аорте и других артериальных сосудах новое кратковременное повышение давления, что регистрируется на катакроте сфигмограммы дикротическим подъемом.

Пульсация сосудистой стенки несет информацию о состоянии и функционировании сердечно-сосудистой системы. Поэтому анализ сфигмограммы позволяет оценить ряд показателей, отражающих состояние сердечно-сосудистой системы. По ней можно рассчитать длительность , ритм сердца, частоту сокращений сердца. По моментам начала анакроты и появления инцизуры можно оценить продолжительность периода изгнания крови. По крутизне анакроты судят о скорости изгнания крови левым желудочком, состоянии аортальных клапанов и самой аорты. По крутизне анакроты оценивается скорость пульса. Момент регистрации инцизуры позволяет определить начало диастолы желудочков, а возникновение дикротического подъема — закрытие полулунных клапанов и начало изометрической фазы расслабления желудочков.

При синхронной регистрации сфигмограммы и фонокардиограммы на их записях начало анакроты совпадает по времени с возникновением I тона сердца, а дикротического подъема — с возникновением II гона сердца. Скорость прироста анакроты на сфигмограмме, отражающая прирост систолического давления, в нормальных условиях выше, чем скорость снижения катакроты, отражающая динамику понижения диастолического давления крови.

Амплитуда сфигмограммы, ее инцизура и дикротический подъем уменьшаются по мере удаления места сс регистрации от аорты к периферическим артериям. Это вызвано уменьшением величин артериального и пульсового давлений. В местах сосудов, где распространение пульсовой волны встречает повышенное сопротивление, возникают отраженные пульсовые волны. Первичные и вторичные волны, бегущие навстречу друг другу, складываются (подобно волнам на поверхности воды) и могут увеличивать или ослаблять друг друга.

Исследование пульса путем пальпации может проводиться на многих артериях, но особенно часто исследуют пульсацию лучевой артерии в области шиловидного отростка (запястья). Для этого врач обхватывает рукой кисть обследуемого в области лучезапястного сустава так, чтобы большой палец располагался на тыльной стороне, а остальные — на его передней латеральной поверхности. Нащупав лучевую артерию, тремя пальцами прижимают ее к подлежащей кости до появления ощущения под пальцами пульсовых толчков.

Пульсовая волна

Пульсовая волна - распространяющаяся по аорте и артериям волна повышенного (над атмосферным) давления, вызванная выбросом крови из левого же л удочка в период систолы.  

Пульсовая волна распространяется со скоростью Упм / с. За время систолы она пройдет путь, равный S Vntcм, что больше расстояния от сердца до конечностей. Это означает, что фронт пульсовой волны достигнет конечностей раньше, чем начнется спад давления в аорте.  

Пульсовая волна, иначе волна повышения давления, возникает в аорте в момент изгнания крови из желудочков. В это время давление в аорте резко повышается и стенка ее растягивается. Волна повышенного давления и вызванные этим растяжением колебания сосудистой стенки распространяются с определенной скоростью от аорты до артериол и капилляров, где пульсовая волна гаснет.  

Амплитуда пульсовой волны по мере продолжения ее на периферию уменьшается, течение крови становится более медленным. Преобразование центрального пульса в периферический обеспечивается взаимодействием двух факторов - демпфированием и сложением волн. Кровь, обладающая значительной вязкостью, ведет себя в сосуде (который можно сравнить с эластической камерой сжатия), подобно жидкостному амортизатору, сглаживающему небольшие внезапные изменения давления, и замедляет быстроту его подъемов и спадов.  

Скорость распространения пульсовой волны не зависит от скорости движения крови. Максимальная линейная скорость течения крови по артериям не превышает м / с, а скорость распространений пульсовой волны у людей молодого и среднего возраста при нормальном артериальном давлении и нормальной эластичности сосудов равна в аортем / с, а в периферических артериях м / с. С возрастом по мере понижения эластичности сосудов скорость распространения пульсовой волны, особенно в аорте, увеличивается.  

Для калибровки амплитуды пульсовых волн в пневматическую воспринимающую систему подается точно измеренный объем воздуха (300 или 500 мм3), возникающий при этом электрический калибровочный сигнал записывается.  

При слабых сердечных сокращениях пульсовая волна не достигает периферии тела, в том числе и далеко расположенных от сердца лучевых и бедренных артерий, где поэтому пульс может не прощупываться.  

Определить разность фаз в пульсовой волне между двумя точками артерии, расположенными на расстоянии 20 см друг от друга.  

Окончательное решение задачи о пульсовых волнах и о возникновении их при внезапной остановке тока жидкости в трубе принадлежит нашему знаменитому ученому Н. Е. Жуковскому, давшему полное решение задачи о пульсовых волнах в упругой трубке и о гидравлическом ударе, крайне важном для водопроводных сооружений и приводившем раньше к многочисленным авариям в водопроводных сетях, прежде чем не заменили так называемые самоварные краны, внезапно прерывающие течение воды, вентильными кранами, постепенно открывающими и закрывающими водяной ток.  

Для отыскания системы базисных функций кривых пульсовой волны последние записывались синхронно с электрокардиограммой. Было записано около 350 кривых пульсовой волны, которые затем были одновременно с ЭКГ введены в память ЭВМ.  

Постепенное повышение вакуума сопровождалось увеличением амплитуды пульсовой волны до уровня давлениямм рт. ст. Дальнейшее повышение вакуума сдавливало глаз настолько, что амплитуда пульсовой волны резко снижалась и при вакууме 100 мм рт. ст. превращалась в беспорядочные осцилляции.  

Диастолическое давление в глазничной артерии определяется по первой четкой пульсовой волне центральной артерии сетчатки, систолическое - по исчезновению пульсации.  

Пульсовая волна

Пульсовая волна - распространяющаяся по артериям волна повышенного давления, вызванная выбросом крови из левого желудочка сердца в период систолы. Распространяясь от аорты до капилляров, пульсовая волна затухает.

Поскольку аорта является главным кровеносным сосудом, то аортальная скорость пульсовой волны представляет наибольший интерес с медицинской точки зрения при обследовании пациентов.

Возникновение и распространение пульсовой волны по стенкам сосудов обусловлено упругостью аортальной стенки. Дело в том, что во время систолы левого желудочка сила, возникающая при растяжении аорты кровью, направлена не строго перпендикулярно к оси сосуда и может быть разложена на нормальную и тангенциальную составляющие. Непрерывность кровотока обеспечивается первой из них, тогда как вторая является источником артериального импульса, под которым понимают упругие колебания артериальной стенки.

Для людей молодого и среднего возраста скорость распространения пульсовой волны в аорте равна 5,5-8,0 м/с. С возрастом уменьшается эластичность стенок артерий и скорость пульсовой волны увеличивается.

Скорость распространения пульсовой волны в аорте является достоверным методом определения жесткости сосудов. В стандартном её определении используется методика, основанная на измерении пульсовых волн датчиками, установленными в области сонной и бедренной артерий. Определение скорости распространения пульсовой волны и других параметров жесткости сосудов позволяет выявить начало развития тяжелых нарушений сердечно-сосудистой системы и правильно подобрать индивидуальную терапию.

СРПВ увеличивается при атеросклерозе аорты, гипертонической болезни, симптоматических гипертониях и при всех патологических состояниях, когда происходит уплотнение сосудистой стенки. Уменьшение СРПВ наблюдается при аортальной недостаточности, при открытом артериальном (боталловом) протоке.

Для регистрации пульсовых колебаний применяют оптические сфигмографы, механически воспринимающие и оптически записывающие колебания сосудистой стенки. К таким приборам относится мсханокардиограф с записью кривой на специальной фотобумаге Фоторегистрация дает неискаженные колебания, однако она трудоемка и требует применения дорогостоящих фотоматериалов. Большое распространение получили электросфигмографы, при которых применяются пьезокристаллы, конденсаторы, фотоэлементы, угольные датчики, тензометры и другие устройства. Для записи колебаний пользуются электрокардиографом с чернильно-перьевой, струйной или тепловой регистрацией колебаний. Сфигмограмма имеет разный рисунок в зависимости от применяемых датчиков, что затрудняет их сравнение и расшифровку. Более информативным является полиграфическая одновременная запись пульсации сонных, лучевых и других артерий, а также ЭКГ, баллистограммы и других функциональных изменений сердечно-сосудистой деятельности.

Для определения тонуса сосудов, эластичности стенок сосудов определяют скорость распространения пульсовой волны. Увеличение ригидности сосудов ведет к увеличению СРПВ. Для этой цели определяют разницу во времени появления пульсовых волн, так называемое запаздывание. Проводят одновременную запись сфигмограмм, располагая два датчика над поверхностными сосудами, расположенными проксимально (над аортой) и дистально по отношению к сердцу (на сонной, бедренной, лучевой, поверхностной височной, лобной, глазничной и других артериях). Определив время запаздывания и длину между двумя исследуемыми точками, определяют СРПВ (V) по формуле:

Пульсовая волна

пульсовой волной.

а б в г

X со скоростью u.

где р 0 х t - вре­мя; w - круговая частота колебаний; c - некоторая константа, определяющая затухание волны. Длину пульсовой волны можно найти из формулы

р а

х) (б).

(формула Моенса -Кортевега):

где Е - модуль упругости, r - плотность вещества сосуда, h - толщина стенки сосуда, d - диаметр сосуда.

Интересно сопоставить (9.15) с выражением для скорости рас­пространения звука в тонком стержне:

У человека с возрастом модуль упругости сосудов возрастает, поэтому, как следует из (9.15), становится больше и скорость пульсовой волны.

Скорость распространения пульсовой волны

В момент систолы некоторый объем крови поступает в аорту, давление в начальной части ее повышается, стенки растягиваются. Затем волна давления и сопутствующее ее растяжение сосудистой стенки распространяются дальше к периферии и определяются как пульсовая волна. Таким образом, при ритмическом выбрасывании крови сердцем в артериальных сосудах возникают последовательно распространяющиеся пульсовые волны. Пульсовые волны распространяются в сосудах с определенной скоростью, которая, однако, отнюдь не отражает линейной скорости движения крови. Эти процессы в принципе различны. Сали (Н. Sahli) характеризует пульс периферических артерий как «волнообразное движение, которое происходит вследствие распространения образующейся в аорте первичной волны по направлению к периферии».

Определение скорости распространения пульсовой волны, по мнению многих авторов, является наиболее достоверным методом изучения упруговязкого состояния сосудов.

Для определения скорости распространения пульсовой волны производится одновременная запись сфигмограмм с сонной, бедренной и лучевой артерий (рис. 10). Приемники (датчики) пульса устанавливаются: на сонной артерии- на уровне верхнего края щитовидного хряща, на бедренной артерии- в месте выхода ее из-под пупартовой связки, на лучевой артерии- в месте пальпации пульса. Правильность наложения датчиков пульса контролируется положением и отклонениями «зайчиков» на визуальном экране прибора.

Если одновременная запись всех трех пульсовых кривых по техническим причинам невозможна, то одномоментно записывают сначала пульс сонной и бедренной артерий, а затем сонной и лучевой артерий. Для расчета скорости распространения пульсовой волны нужно знать длину отрезка артерии между приемниками пульса. Измерения длины участка, по которому распространяется пульсовая волна в эластических сосудах (Lэ) (аорта- подвздошная артерия), производятся в следующем порядке (рис. 11):

Рис.11. Определение расстояний между приемниками пульса - «датчиками» (по В. П. Никитину).

Обозначения в тексте:

а- расстояние от верхнего края щитовидного хряща (местоположение приемника пульса на сонной артерии) до яремной вырезки, где проецируется верхний край дуги аорты;

b- расстояние от яремной вырезки до середины линии, соединяющей обе spina iliaca anterior (проекция деления аорты на подвздошные артерии, которая при нормальных размерах и правильной форме живота точно совпадает с пупком);

с- расстояние от пупка до местоположения приемника пульса на бедренной артерии.

Полученные размеры b и с складываются и из их суммы вычитается расстояние а:

Вычитание расстояния а необходимо в связи с тем, что пульсовая волна в сонной артерии распространяется в противоположном к аорте направлении. Ошибка в определении длины отрезка эластических сосудов не превышает 2,5-5,5 см и считается несущественной. Для определения длины пути при распространении пульсовой волны по сосудам мышечного типа (LМ) необходимо измерить следующие расстояния (см. рис. 11):

От середины яремной вырезки до передней поверхности головки плечевой кости (61);

От головки плечевой кости до места наложения приемника пульса на лучевой артерии (а. radialis)- с1.

Более точно измерение этого расстояния производится при отведенной под прямым углом руке - от середины яремной вырезки до местоналожения датчика пульса на лучевой артерии– d(b1+c1) (см. рис. 11).

Как и в первом случае, из этого расстояния необходимо вычесть отрезок а. Отсюда:

Рис.12. Определение времени запаздывания пульсовой волны по началу подъема восходящего колена кривых (по В. П. Никитину)

а- кривая бедренной артерии;

tэ- время запаздывания по эластическим артериям;

tм- время запаздывания по мышечным артериям;

Второй величиной, которую необходимо знать для определения скорости распространения пульсовой волны, является время запаздывания пульса на дистальном отрезке артерии по отношению к центральному пульсу (рис. 12). Время запаздывания (г) определяется обычно по расстоянию между началами подъема кривых центрального и периферического пульса или по расстоянию между местами изгиба на восходящей части сфигмограмм.

Время запаздывания от начала подъема кривой центрального пульса (сонной артерии- а. саrоtis) до начала подъема сфигмографической кривой бедренной артерии (а. femoralis)- время запаздывания распространения пульсовой волны по эластическим артериям (tэ)- Время запаздывания от начала подъема кривой а. саrоtis до начала подъема сфигмограммы с лучевой артерии (а.radialis)- время запаздывания по сосудам мышечного типа (tМ). Регистрация сфигмограммы для определения времени запаздывания должна производиться при скорости движения фотобумаги- 100 мм/с.

Для большей точности в подсчете времени запаздывания пульсовой волны регистрируется 3-5 пульсовых колебаний и берется среднее значение из полученных при измерении величин (t) Для вычисления скорости распространения пульсовой волны (С) теперь необходимо путь (L), пройденный пульсовой волной (расстояние между приемниками пульса), разделить на время запаздывания пульса (t)

Так, для артерий эластического типа:

для артерий мышечного типа:

Например, расстояние между датчиками пульса равно 40 см, а время запаздывания- 0,05 с, тогда скорость распространения пульсовой волны:

В норме у здоровых лиц скорость распространения пульсовой волны по эластическим сосудам колеблется в пределах 500-700 см/с, по сосудам мышечного типа- 500-800 см/с.

Упругое сопротивление и, следовательно, скорость распространения пульсовой волны зависят прежде всего от индивидуальных особенностей, морфологической структуры артерий и от возраста обследуемых.

Многие авторы отмечают, что скорость распространения пульсовой волны с возрастом увеличивается, при этом несколько в большей степени по сосудам эластического типа, чем мышечного. Такое направление возрастных изменений, возможно, зависит от понижения растяжимости стенок сосудов мышечного типа, что в какой-то мере может компенсироваться изменением функционального состояния ее мышечных элементов. Так, Н.Н. Савицкий приводит по данным Людвига (Ludwig, 1936) следующие нормы скорости распространения пульсовой волны в зависимости от возраста (см. таблицу).

Возрастные нормы скорости распространения пульсовой волны по сосудам эластического (Сэ) и мышечного (См) типов:

При сопоставлении средних значений Сэ и См, полученных В.П. Никитиным (1959) и К.А. Морозовым (1960), с данными Людвига (Ludwig, 1936) следует отметить, что они довольно близко совпадают.

Особенно повышается скорость распространения пульсовой волны по эластическим сосудам с развитием атеросклероза, о чем с очевидностью свидетельствует ряд анатомически прослеженных случаев (Ludwig, 1936).

Е.Б. Бабским и В.Л. Карпманом предложены формулы для определения индивидуально должных величин скорости распространения пульсовой волны в зависимости или с учетом возраста:

В этих уравнениях имеется одно переменное В- возраст, коэффициенты представляют собой эмпирические постоянные. В приложении (табл. 1) приведены индивидуально должные величины, высчитанные по этим формулам, для возраста от 16 до 75 лет. Скорость распространения пульсовой волны по эластическим сосудам зависит также от уровня среднего динамического давления. При повышении среднего давления скорость распространения пульсовой волны увеличивается, характеризуя усиление «напряженности» сосуда за счет пассивного растяжения его изнутри высоким артериальным давлением. При изучении упругого состояния крупных сосудов постоянно возникает необходимость определять не только скорости распространения пульсовой волны, но и уровень среднего давления.

Несоответствие между изменениями среднего давления и скоростью распространения пульсовой волны в известной степени связано с изменениями тонического сокращения гладкой мускулатуры артерий. Это несоответствие наблюдается при изучении функционального состояния артерий преимущественно мышечного типа. Тоническое напряжение мышечных элементов в этих сосудах меняется довольно быстро.

Для выявления «активного фактора» тонуса мускулатуры сосудистой стенки В.П. Никитин предложил определение соотношения между скоростью распространения пульсовой волны по сосудам мышечного (См) и скорости по сосудам эластического (Сэ) типов. В норме это соотношение (СМ/С9) составляет от 1,11 до 1,32. При усилении тонуса гладкой мускулатуры оно возрастает до 1,40-2,4; при понижении- уменьшается до 0,9-0,5. Уменьшение СМ/СЭ наблюдается при атеросклерозе, за счет увеличения скорости распространения пульсовой волны по эластическим артериям. При гипертонической болезни эти величины, в зависимости от стадии, различны.

Таким образом, при увеличении упругого сопротивления скорость передачи пульсовых колебаний нарастает и иногда достигает больших величин. Большая скорость распространения пульсовой волны является безусловным признаком увеличения упругого сопротивления артериальных стенок и уменьшения их растяжимости.

Скорость распространения пульсовой волны нарастает при органическом поражении артерий (увеличение Сэ при атеросклерозе, сифилитическом мезоаортите) или при усилении упругого сопротивления артерий за счет повышения тонуса их гладкой мускулатуры, растяжении стенок сосуда высоким артериальным давлением (увеличение См при гипертонической болезни, нейроциркуляторной дистонии гипертензивного типа). При нейроциркуляторной дистонии гипотонического типа уменьшение скорости распространения пульсовой волны по эластическим артериям связано в основном с низким уровнем среднего динамического давления.

На полученной полисфигмограмме по кривой центрального пульса (а. саrotis) определяется также время изгнания (5) - расстояние от начала подъема пульсовой кривой сонной артерии до начала падения ее главной систолической части.

Н.Н. Савицкий для более правильного определения времени изгнания рекомендует пользоваться следующим приемом (рис. 13). Проводим касательную прямую через пятку инцизуры а. саrotis вверх по катакроте, из точки отрыва ее от катакроты кривой опускаем перпендикуляр. Расстояние от начала подъема пульсовой кривой до этого перпендикуляра и будет временем изгнания.

Рис.13. Прием для определения времени изгнания (по Н.Н. Савицкому).

Проводим линию АВ, совпадающую с нисходящим коленом катакроты У места отхождененя ее от катакроты проводим линию СД, параллельную нулевой. Из точки пересечения опускаем перпендикуляр на нулевую линию. Время изгнания определяется расстоянием от начала подъема пульсовой кривой до места пересечения перпендикуляра с нулевой линией. Пунктиром показано определение времени изгнания по месту расположения инцизуры.

Рис.14. Определение времени изгнания (5) и времени полной инволюции сердца (Т) по кривой центрального пульса (по В.П. Никитину).

Время полной инволюции сердца (длительность сердечного цикла) Т определяется по расстоянию от начала подъема кривой центрального пульса (а. carotis) одного сердечного цикла до начала подъема кривой следующего цикла, т.е. расстояние между восходящими коленами двух пульсовых волн (рис. 14).

9.2. Пульсовая волна

При сокращении сердечной мышцы (систола) кровь выбрасыва­ется из сердца в аорту и отходящие от нее артерии. Если бы стенки этих сосудов были жесткими, то давление, возникающее в крови на выходе из сердца, со скоростью звука передалось бы к перифе­рии. Упругость стенок сосудов приводит к тому, что во время сис­толы кровь, выталкиваемая сердцем, растягивает аорту, артерии и артериолы, т. е. крупные сосуды воспринимают за время систолы больше крови, чем ее оттекает к периферии. Систолическое давле­ние человека в норме равно приблизительно 16 кПа. Во время рас­слабления сердца (диастола) растянутые кровеносные сосуды спа­дают и потенциальная энергия, сообщенная им сердцем через кровь, переходит в кинетическую энергию тока крови, при этом поддерживается диастолическое давление, приблизительно равное 11 кПа.

Распространяющуюся по аорте и артериям волну повышенного давления, вызванную выбросом крови из левого желудочка в пе­риод систолы, называют пульсовой волной.

Пульсовая волна распространяется со скоростью 5-10 м/с и даже более. Следовательно, за время систолы (около 0,3 с) она должна распространиться на расстояние 1,5-3 м, что больше расстояния от сердца к конечностям. Это означает, что начало пульсовой волны достигнет конечностей раньше, чем начнется спад давления в аорте. Профиль части артерии схематически показан на рис. 9.6: а - после прохождения пульсовой волны, б - в артерии начало пульсовой волны, в - в артерии пульсовая волна, г - начинается спад повышенного давления.

Пульсовой волне будет соответствовать пульсирование скорости кровотока в крупных артериях, однако скорость крови (максимальное значение 0,3-0,5 м/с) существенно меньше скорости распространения пульсовой волны.

Из модельного опыта и из общих представлений о работе сердца ясно, что пульсовая волна не является синусоидальной (гармонической). Как всякий периодический процесс, пульсовая волна может быть представлена суммой гармонических волн (см. § 5.4). Поэтому уделим внимание, как некоторой модели, гармонической пульсовой волне.

Предположим, что гармоническая волна [см. (5.48)] распрост­раняется по сосуду вдоль оси X со скоростью . Вязкость крови и упруговязкие свойства стенок сосуда уменьшают амплитуду вол­ны. Можно считать (см., например, § 5.1), что затухание волны будет экспоненциальным. На основании этого можно записать следующее уравнение для пульсовой волны:

где р 0 - амплитуда давления в пульсовой волне; х - расстояние до произвольной точки от источника колебаний (сердца); t - вре­мя;  - круговая частота колебаний;  - некоторая константа, определяющая затухание волны. Длину пульсовой волны можно найти из формулы

Волна давления представляет некоторое «избыточное» давле­ние. Поэтому с учетом «основного» давления р а (атмосферное давление или давление в среде, окружающей сосуд) можно измене­ние давления записать следующим образом:

Как видно из (9.14), по мере продвижения крови (по мере уве­личения х) колебания давления сглаживаются. Схематично на рис. 9.7 показано колебание давления в аорте вблизи сердца (а) и в артериолах (б). Графики даны в предположении модели гармо­нической пульсовой волны.

На рис. 9.8 приведены экспериментальные графики, показы­вающие изменение среднего значения давления и скорости и кр кровотока в зависимости от типа кровеносных сосудов. Гидроста­тическое давление крови не учитывается. Давление - избыточ­ное над атмосферным. Заштрихованная область соответствует ко­лебанию давления (пульсовая волна).

Скорость пульсовой волны в крупных сосудах следующим об­разом зависит от их параметров (формула Моенса -Кортевега):

где Е - модуль упругости,  - плотность вещества сосуда, h - толщина стенки сосуда, d - диаметр сосуда.

Для продолжения скачивания необходимо собрать картинку:

Артериальный пульс

Артериальный пульс

Артериальным пульсом называют ритмические колебания стенки артерий, обусловленные выбросом крови из сердца в артериальную систему и изменением в ней давления во время систолы и диастолы левого желудочка.

Пульсовая волна возникает в устье аорты во время изгнания в него крови левым желудочком. Для размещения ударного объема крови объем, диаметр аорты и систолическое давление в ней увеличиваются. Во время диастолы желудочка, благодаря эластическим свойствам стенки аорты и оттоку крови из нее в периферические сосуды, ее объем и диаметр восстанавливаются до исходных размеров. Таким образом, во время сердечного цикла происходит толчкообразное колебание аортальной стенки, возникает механическая пульсовая волна (рис. 1), которая распространяется с нее на крупные, затем на более мелкие артерии и достигает артериол.

Рис. 1. Механизм возникновения пульсовой волны в аорте и ее распространения по стенкам артериальных сосудов (а-в)

Поскольку артериальное (и в том числе пульсовое) давление снижается в сосудах по мере удаления от сердца, амплитуда пульсовых колебаний также уменьшается. На уровне артериол пульсовое давление падает до нуля и пульс в капиллярах и далее в венулах и большинстве венозных сосудов отсутствует. Кровь в этих сосудах течет равномерно.

Скорость пульсовой волны

Пульсовые колебания распространяются по стенке артериальных сосудов. Скорость распространения пульсовой волны зависит от эластичности (растяжимости), толщины стенки и диаметра сосудов. Более высокие скорости пульсовой волны наблюдаются в сосудах с утолщенной стенкой, небольшим диаметром и сниженной эластичностью. В аорте скорость распространения пульсовой волны равна 4-6 м/с, в артериях, имеющих малый диаметр и мышечный слой (например, в лучевой), она составляет около 12 м/с. С возрастом растяжимость сосудов снижается вследствие уплотнения их стенок, что сопровождается уменьшением амплитуды пульсовых колебаний стенки артерий и увеличением скорости распространения по ним пульсовой волны (рис. 2).

Таблица 1. Скорость распространении пульсовой волны

Артерии мышечного типа

Скорость распространения пульсовой волны существенно превышает линейную скорость движения крови, которая в аорте составляет в условиях покоясм/с. Пульсовая волна, возникнув в аорте, достигает дистальных артерий конечностей приблизительно за 0,2 с, т.е. намного быстрее, чем к ним поступит та порция крови, выброс которой левым желудочком вызвал пульсовую волну. При гипертензии вследствие увеличения напряжения и жесткости стенок артерий скорость распространения пульсовой волны по артериальным сосудам возрастает. Измерение скорости пульсовой волны можно использовать для опенки состояния стенки артериальных сосудов.

Рис. 2. Возрастные изменения пульсовой волны, вызванные снижением эластичности стенок артерий

Свойства пульса

Регистрация пульса имеет большое практическое значения для клиники и физиологии. Пульс дает возможность судить о частоте, силе и ритме сердечных сокращений.

Таблица 2. Свойства пульса

Нормальный, частый или медленный

Ритмичный или аритмичный

Высокий или низкий

Скорый или медленный

Твердый или мягкий

Частота пульса - количество пульсовых ударов за 1 мин. У взрослых людей в состоянии физического и эмоционального покоя нормальная частота пульса (частота сокращений сердца) составляетуд/мин.

Для характеристики частоты пульса применяются термины: нормальный, редкий пульс или брадикардия (меньше 60 уд/мин), частый пульс или тахикардия (большеуд/мин). При этом надо учитывать возрастные нормы.

Ритм - показатель, отражающий периодичность следования пульсовых колебаний друг за другом и периодичность сокращения сердца. Его определяют посредством сопоставления длительности интервалов между пульсовыми ударами в процессе пальпации пульса в течение минуты и более. У здорового человека пульсовые волны следуют друг за другом через равные промежутки времени и такой пульс называют ритмичным. Разница длительности интервалов при нормальном ритме не должна превышать 10% от их среднего значения. Если длительность интервалов между пульсовыми ударами различна, то пульс и сокращения сердца называют аритмичными. В норме может выявляться «дыхательная аритмия», при которой частота пульса изменяется синхронно с фазами дыхания: возрастает на вдохе и уменьшается при выдохе. Дыхательная аритмия чаще встречается у молодых людей и у лиц с лабильным тонусом автономной нервной системы.

Другие виды аритмичного пульса (экстрасистолия, мерцательная аритмия) свидетельствуют о нарушениях возбудимости и проводимости в сердце. Экстрасистолия характеризуется появлением внеочередного, более раннего пульсового колебания. Его амплитуда меньше, чем у предыдущих. За экстрасистолическим пульсовым колебанием может следовать более длительный интервал до следующего, очередного пульсового удара, так называемая «компенсаторная пауза». Этот пульсовый удар обычно характеризуется более высокой амплитудой колебания артериальной стенки вследствие более сильного сокращения миокарда.

Наполнение (амплитуда) пульса - субъективный показатель, оцениваемый пальпаторно по высоте подъема артериальной стенки и наибольшему растяжению артерии во время систолы сердца. Наполнение пульса зависит от величины пульсового давления, ударного объема крови, объема циркулирующей крови и эластичности стенок артерий. Принято различать варианты: пульс нормального, удовлетворительного, хорошего, слабого наполнения и как крайний вариант слабого наполнения - нитевидный пульс.

Пульс хорошего наполнения пальпаторно воспринимается как пульсовая волна высокой амплитуды, пальпируемая на некотором расстоянии от линии проекции артерии на кожу и ощущаемая не только при умеренном прижатии артерии, но и при слабом прикосновении к области ее пульсации. Нитевидный пульс воспринимается как слабая пульсация, пальпируемая по узкой линии проекции артерии на кожу, ощущение от которой исчезает при ослаблении контакта пальцев с поверхностью кожи.

Напряжение пульса - субъективный показатель, оцениваемый по величине силы надавливания на артерию, достаточной для исчезновения ее пульсации дистальнее места прижатия. Напряжение пульса зависит от величины среднего гемоди- намического давления и в определенной мере отражает уровень систолического давления. При нормальном артериальном давлении крови напряжение пульса оценивается как умеренное. Чем выше артериальное давление крови, тем труднее полностью сдавить артерию. При высоком давлении пульс оказывается напряженным или твердым. При низком артериальном давлении артерия сдавливается легко, пульс оценивается как мягкий.

Скорость пульса определяется по крутизне нарастания давления и достижения артериальной стенкой максимальной амплитуды пульсовых колебаний. Чем больше крутизна нарастания, тем за более короткий промежуток времени амплитуда пульсового колебания достигает своего максимального значения. Скорость пульса может определяться (субъективно) пальпаторно и объективно по данным анализа крутизны нарастания анакроты на сфигмограмме.

Скорость пульса зависит от скорости прироста давления в артериальной системе в течение систолы. Если во время систолы в аорту выбрасывается больше крови и давление в ней быстро возрастает, то будет наблюдаться более быстрое достижение наибольшей амплитуды растяжения артерии - крутизна анакроты возрастет. Чем больше крутизна анакроты (угол а между горизонтальной линией и анакротой ближе к 90°), тем выше скорость пульса. Такой пульс называется быстрым. При медленном приросте давления в артериальной системе во время систолы и низкой крутизне нарастания анакроты (малом угле а) пульс называют медленным. В нормальных условиях скорость пульса является промежуточной между быстрым и медленным пульсом.

Быстрый пульс свидетельствует об увеличении объема и скорости изгнания крови в аорту. В нормальных условиях такие свойства пульс может приобретать при повышении тонуса симпатической нервной системы. Постоянно имеющийся быстрый пульс может быть признаком патологии и, в частности, свидетельствовать о недостаточности аортального клапана. При стенозе устья аорты или уменьшении сократительной способности желудочков могут развиться признаки медленного пульса.

Колебания объема и давления крови в венах называют венным пульсом. Венный пульс определяется в крупных венах грудной полости и в ряде случаев (при горизонтальном положении тела) может быть зарегистрирован в шейных венах (особенно яремных). Зарегистрированная кривая венного пульса называется флебограммой. Венный пульс обусловлен влиянием сокращений предсердий и желудочков на кровоток в полых венах.

Исследование пульса

Исследование пульса позволяет оценить ряд важных характеристик состояния сердечно-сосудистой системы. Наличие артериального пульса у испытуемого является свидетельством сокращения миокарда, а свойства пульса отражают частоту, ритм, силу, длительность систолы и диастолы сердца, состояние аортальных клапанов, эластичность стенки артериального сосуда, ОЦК и АД. Пульсовые колебания стенок сосудов можно зарегистрировать графически (например, методом сфигмографии) или оценить пальпаторно практически на всех артериях, расположенных близко к поверхности тела.

Сфигмография - метод графической регистрации артериального пульса. Получаемую при этом кривую называют сфигмограммой.

Для регистрации сфигмограммы на область пульсации артерии устанавливают специальные датчики, улавливающие механические колебания подлежащих тканей, вызванные изменениями давления крови в артерии. За время одного сердечного цикла регистрируется пульсовая волна, на которой выделяют восходящий участок - анакроту, и нисходящий - катакроту.

Рис. Графическая регистрация артериального пульса (сфигмограмма): cd-анакрота; de - систолическое плато; dh - катакрота; f - инцизура; g - дикротическая волна

Анакрота отражает растяжение стенки артерии возрастающим в ней систолическим давлением крови в период времени от начала изгнания крови из желудочка до достижения максимума давления. Катакрота отражает восстановление исходного размера артерии за время от начала снижения в ней систолического давления до достижения в ней минимального диастолического давления.

На катакроте имеются инцизура (вырезка) и дикротический подъем. Инцизура возникает в результате быстрого снижения давления в артерии в начале диастолы желудочков (протодиастолический интервал). В это время при еще открытых полулунных клапанах аорты осуществляется расслабление левого желудочка, вызывающее быстрое снижение в нем давления крови, а под действием эластических волокон аорта начинает восстанавливать ее размеры. Часть крови из аорты перемещается к желудочку. При этом она оттесняет створки полулунных клапанов от стенки аорты и вызывает их закрытие. Отражаясь от захлопнувшихся клапанов, волна крови создаст на мгновение в аорте и других артериальных сосудах новое кратковременное повышение давления, что регистрируется на катакроте сфигмограммы дикротическим подъемом.

Пульсация сосудистой стенки несет информацию о состоянии и функционировании сердечно-сосудистой системы. Поэтому анализ сфигмограммы позволяет оценить ряд показателей, отражающих состояние сердечно-сосудистой системы. По ней можно рассчитать длительность сердечного цикла, ритм сердца, частоту сокращений сердца. По моментам начала анакроты и появления инцизуры можно оценить продолжительность периода изгнания крови. По крутизне анакроты судят о скорости изгнания крови левым желудочком, состоянии аортальных клапанов и самой аорты. По крутизне анакроты оценивается скорость пульса. Момент регистрации инцизуры позволяет определить начало диастолы желудочков, а возникновение дикротического подъема - закрытие полулунных клапанов и начало изометрической фазы расслабления желудочков.

При синхронной регистрации сфигмограммы и фонокардиограммы на их записях начало анакроты совпадает по времени с возникновением I тона сердца, а дикротического подъема - с возникновением II гона сердца. Скорость прироста анакроты на сфигмограмме, отражающая прирост систолического давления, в нормальных условиях выше, чем скорость снижения катакроты, отражающая динамику понижения диастолического давления крови.

Амплитуда сфигмограммы, ее инцизура и дикротический подъем уменьшаются по мере удаления места сс регистрации от аорты к периферическим артериям. Это вызвано уменьшением величин артериального и пульсового давлений. В местах сосудов, где распространение пульсовой волны встречает повышенное сопротивление, возникают отраженные пульсовые волны. Первичные и вторичные волны, бегущие навстречу друг другу, складываются (подобно волнам на поверхности воды) и могут увеличивать или ослаблять друг друга.

Исследование пульса путем пальпации может проводиться на многих артериях, но особенно часто исследуют пульсацию лучевой артерии в области шиловидного отростка (запястья). Для этого врач обхватывает рукой кисть обследуемого в области лучезапястного сустава так, чтобы большой палец располагался на тыльной стороне, а остальные - на его передней латеральной поверхности. Нащупав лучевую артерию, тремя пальцами прижимают ее к подлежащей кости до появления ощущения под пальцами пульсовых толчков.

Артериальный пульс. Пульсовая волна, её скорость

ОБЗОРНЫЕ СТАТЬИ

УДК 611.13-07:612.15

СКОРОСТЬ РАСПРОСТРАНЕНИЯ ПУЛЬСОВОЙ ВОЛНЫ И ЭЛАСТИЧЕСКИЕ СВОЙСТВА МАГИСТРАЛЬНЫХ АРТЕРИЙ: ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИХ МЕХАНИЧЕСКИЕ СВОЙСТВА, ВОЗМОЖНОСТИ ДИАГНОСТИЧЕСКОЙ ОЦЕНКИ

О.В. Илюхин, Ю.М. Лопатин

Кафедра кардиологии с функциональной диагностикой ФУВ ВолГМУ

PULSE WAVE VELOCITY AND ELASTIC FEATURES OF MAGISTRAL ARTERIES: FACTORS, AFFECTING THEIR MECHANICAL PROPERTIES AND POSSIBILITIES OF THEIR DIAGNOSTIC EVALUATION

O.V. Ilyukhin, Yu.M. Lopatin

Abstract. The paper presents a digest of methods of evaluation of pulse wave velocity and their clinical significance.

Key words: pulse wave velocity, arteries, compliance

Основными свойствами сосудистой стенки, определяющими ее эластичность, являются податливость, растяжимость и жесткость. Податливость, или как используют в западной литературе термин "комплайнс", представляет собой изменение напряжения сосудистой стенки и зависимость объема крови от давления. Следовательно, напряжение стенки зависит в основном от соотношения эластических и коллагеновых волокон: если преобладают коллагеновые волокна, то артериальная стенка будет более жесткой, и наоборот, если эластические - более мягкой и податливой. Растяжимость сосуда зависит от способности диаметра сосуда изменяться в ответ на изменение внутрисосудистого давления. Обратной величиной растяжимости является жесткость. Растяжимость артериальной стенки может быть оценена по показателям скорости пульсовой волны (СПВ) .

С помощью СПВ в клинической практике и научной деятельности можно оценить сосудистый тонус, составить представление о состоянии регионарного кровотока, об органической или функциональной природе сосудистых изменений,

изучить фармакодинамику вазоактивных лекарственных средств . В клинической практике жесткость артерий определяется с помощью доп-плерографии и эхокардиографии (ЭхоКГ), которые позволяют определить не только скорость кровотока, но и толщину стенки, просвет сосуда, оценить характеристики сердечного выброса . Недостатком данной методики является исследование артерии на небольшом участке и использование дорогостоящего оборудования . Предлагается внедрение метода определения СПВ с помощью компьютеризированной фотоплетизмографии, который заключается в регистрации инфракрасным датчиком периферической пульсовой волны с указательного пальца и в цифровой обработке ее объемных характеристик.

Одним из наиболее простых неинвазивных, хотя и забытых методов определения СПВ является механокардиографический способ регистрации сфигмограмм. С помощью сфигмографи-ческого метода возможно оценить состояние артерий за счет изменения диаметра поперечного сечения сосуда в различные моменты сердечного цикла. С каждым сокращением сердца давле-

ние в артериях возрастает, диаметр поперечного сечения сосуда увеличивается, затем все приходит к исходному состоянию. Весь этот цикл получил название артериального пульса, а запись его в динамике - сфигмограммы. Метод основан на синхронной регистрации сфигмограмм с двух и более точек сосудистой системы. Различают сфигмограммы центрального пульса (запись производится на крупных артериях, близко расположенных к сердцу, - подключичной, сонной) и периферического (регистрация осуществляется с более мелких артериальных сосудов).

С учетом морфологического строения артерий различают СПВ по сосудам эластического (на участке aa. carotis - femoralis) и мышечного (aa. carotis - radialis) типов. Обычно датчики накладывают над областью сонной, бедренной и лучевой артерий и производят синхронную запись, иногда параллельно регистрируют электрокадио-грамму. Морфология кривых, записанных с крупных и периферических сосудов, неодинакова. Более сложную структуру имеет кривая сонной артерии (рис.). Она начинается с небольшой по амплитуде волной "а" (предсистолическая волна), за которой следует крутой подъем (анакро-та "а-б"), соответствующий периоду быстрого изгнания крови из левого желудочка в аорту (запаздывание между открытием клапанов аорты и появлением пульса на сонной артерии равно »0,02 с), затем на некоторых кривых можно увидеть мелкие осцилляции. В дальнейшем кривая резко опускается книзу (дикротиче-ская волна "в-г"). Эта часть кривой отражает период медленного поступления крови в сосудистое русло (под меньшим давлением). В конце этой части кривой, соответствующей окончанию систолы, отчетливо регистрируется выемка (ин-цизура "б") - конец фазы изгнания. В ней можно отмерить короткий подъем ("б""), вызванный захлопыванием полулунных клапанов аорты, что соответствует моменту выравнивания давления в аорте и желудочке (по H.H. Савицкому).

экг 1 II il i / ÄS* / /

С<\ >Г 6 б fi

а рте ри! 1 Ч

о е. pei ^но i 1

Г.....т т 1

Рис. Морфология сфигмограмм

Затем кривая постепенно снижается (пологий спуск), на спуске в большинстве случаев видно небольшое возвышение. Эта часть кривой отражает диастолический период сердечной деятельности.

Морфология кривой периферического пульса менее сложна. В ней различают 2 колена: восходящее - анакрота "а" (обусловленное внезапным подъемом давления в исследуемой артерии) с добавочной дикротической волной "6", и нисходящее (см. рисунок). Синхронная запись сфигмограмм с сонной, бедренной и лучевой артерий вместе с данными протяженности сосудов позволяет определить скорость распространения пульсовой волны с помощью компьютерной программы или ручным способом .

СПВ - это динамическая величина, и она не может быть постоянной у одного и того же человека. Скорость распространения пульсовой волны зависит от морфологического строения сосуда (эластический или мышечный типы), его диаметра или поперечного сечения просвета, жесткости сосудистой стенки, состояния свертывающей и про-тивосвертывающей систем крови, нарушения ли-пидного и углеводного обменов, возраста, артериального давления (АД), частоты сердечных сокращений (ЧСС), антропометрических данных и ряда других показателей . Рассмотрим основные из них.

Эластичность сосудистой стенки непосредственно связана с ее морфологическим строением, причем имеют значения как количественные характеристики, так и особенности их структуры и физико-химических свойств . Упругие свойства сосудов определяются эластином, коллагеном и упорядоченно расположенными гладко-мышечными клетками. В крупных, магистральных артериях на долю эластина и коллагена приходится до 50 % сухого веса. Соотношение между ними в разных участках сосудистого русла различно . Содержание и соотношение структурных элементов во многом определяет биомеханику сосудистой стенки . Не менее важное значение, чем количественное содержание структурных элементов, имеет и их взаимное расположение .

На скорость распространения пульсовой волны оказывает влияние изменение просвета сосуда или его диаметр. Вазомоторная активность артерий изменяется в течение сердечного цикла. В 1961 г. Ь. Вате! е! а1. произвели одновременную запись диаметра аорты и артериального давления у собаки в ходе сердечного цикла. В 1979 г. при записи изменения внешнего диаметра общей сонной артерии в ходе сердечного цикла, был сделан вывод о существовании феномена гистерезиса для кривых зависимости диаметр - давление в ходе сердечного цикла, выраженность которого зависит от величины пульсового давления .

ВЕСТНИК ВолГМУ

Феноменология гистерезиса кривых диаметра для фаз нагрузки-разгрузки сосуда давлением обусловлена изменением упругих свойств сосудистой стенки, которые, в свою очередь, определяются деятельностью комплекса компонентов стенки сосуда - гладкой мускулатуры, эластина и коллагена . Эластин и коллаген являются пассивными компонентами стенки, их деятельность по ограничению растяжения артерии ограничена и носила бы постоянный однотипный характер, не обеспечивая рассмотренных особенностей перестройки свойств стенки сосуда. Быстрая перестройка механических свойств артериальной стенки за период одного сердечного цикла, очевидно, связана с работой функционально-лабильного компонента стенки - гладкой мускулатуры. Известно, что гладкая мускулатура за счет изменения своей активности способна значительно влиять на процесс, противостоящий растяжению, что проявляется изменением биомеханических характеристик сосуда. Процесс ва-зодилатации нарушается за счет изменений в сосудистой стенке в процессе старения, при атеросклерозе, сердечной недостаточности, гиперхоле-стеринемии, диабете, уремии, менопаузе .

На СПВ в большей степени оказывает влияние уровень систолического АД и пульсовое давление. Пульсовое давление ассоциируется с величиной массы миокарда левого желудочка и, следовательно, со степенью гипертрофии левого желудочка. Повышение систолического АД и пульсового давления имеет прямую зависимость с увеличением ригидности сосудов, что приводит к возрастанию СПВ. По мнению ряда авторов, пульсовое давление можно считать реальным показателем возраста артерий, который далеко не всегда соответствует биологическому возрасту человека . В меньшей степени на показатели эластичности артериальной стенки оказывает влияние уровень диастолического АД. Выявлена прямая корреляционная зависимость между средним АД (Ср.АД) и величиной СПВ, причем, по мнению авторов, значения Ср.АД в большей степени могут оказывать влияние на изменения показателей эластичности сосудистой стенки .

На скорость распространения пульсовой волны оказывает влияние жесткость сосудистой стенки. СПВ характеризует упругое напряжение сосудистых стенок и возрастает с увеличением жесткости артерий. Так, у лиц с растяжимыми артериями СПВ более низкая, и отраженная волна возвращается в восходящую аорту в период диастолы. При ригидных артериях СПВ возрастает, и отраженная волна возвращается раньше, во время систолы, что проявляется в увеличении систолического и пульсового давлений и постнагрузки на левый желудочек. По литературным данным, чем выше ригидность аорты, тем хуже

субэндокардиальный кровоток, что, в свою очередь, приводит к усилению субэндокардиальной ишемии миокарда .

Известно, что на жесткость артерий и СПВ оказывает влияние возраст, причем выявлена прямая корреляционная зависимость между этими показателями. В норме СПВ изменяется в течение жизни и в основном по артериям эластического типа, нежели мышечного за счет эволюционных изменений в стенках сосудов. С возрастом жесткость сосудистой стенки возрастает за счет увеличения содержания коллагеновых волокон, а податливость артериальной стенки снижается вследствие дегенерации ткани, отвечающей за эластичность сосудов. Предложено большое количество формул для определения индивидуально должных величин скорости распространения пульсовой волны в зависимости от возраста. Так, по литературным данным , полученным в разное время, СПВ в одинаковых возрастных промежутках имеет практически схожие показатели: в 20-44 года СПВ по артериям эластического типа составляет 6,6-8,0 м/с, а СПВ по артериям мышечного типа - 6,8-7,4 м/с; в 4570 лет - СПВ по артериям эластического типа составляет 8,5-9,7 м/с, а СПВ по артериям мышечного типа - 7,4-9,3 м/с.

Известно, что выполнение физических нагрузок также вызывает ряд изменений в показателях упругости сосудистой стенки. Исследования эластического сопротивления артериальной системы широко используются в спортивной медицине. При изучении функциональных изменений со стороны центральной гемодинамики (АД, периферическое сосудистое сопротивление, минутный, ударный объемы сердца) и реакции упругости артериальной стенки, которые оценивались как модуль упругости, у спортсменов при выполнении значительных физических нагрузок, отмечено, что при выполнении работы происходит существенное увеличение эластического сопротивления стенки артерий, была выявлена прямая зависимость модуля упругости от уровня пульсового давления и длительности диастолы. Увеличение сопротивления сосудистой стенки в данном случае является адаптационным механизмом артериального русла, который препятствует депонированию крови в результате усиления интенсивности кровотока.

Частота сердечных сокращений, согласно данным большинства исследований, не оказывает существенного влияния на СПВ, но, в частности у женщин, СПВ может дополнительно зависеть от частоты пульса, при этом по данным необходимо учитывать рост и окружность талии . Большинство авторов склоняются к мнению, что показатели упругости сосудов как у нормотен-зивных пациентов, так и гипертоников в значитель-

ной степени ассоциируются с АД и возрастом и не имеют четкой корреляции с величиной ЧСС .

На состояние артериальной стенки, и, в первую очередь, для сосудов мышечного типа, может оказывать влияние и функция эндотелия. R. Furchgott и J. Zawadzki (1980) впервые заговорили о самостоятельной роли эндотелия сосудов в регуляции сосудистого тонуса. Авторы обнаружили способность изолированной артерии к самостоятельному изменению своего мышечного тонуса в ответ на действие ацетилхолина без участия центральных (нейрогуморальных) механизмов. Главная роль в этом отводилась эндоте-лиальным клеткам, которые были охарактеризованы авторами как "сердечно-сосудистый эндокринный орган, осуществляющий в критических ситуациях связь между кровью и тканями" .

Известно, что эндотелий сосудов регулирует местные процессы гемостаза и миграции клеток крови в сосудистую стенку. В норме эндотелий синтезирует вещества, расслабляющие гладко-мышечные клетки сосудистой стенки, и, в первую очередь, оксид азота (NO) и его производные (эндотелиальные факторы релаксации - ЭФР), а также простациклин и эндотелий-зависимый фактор гиперполяризации . ЭФР-NO, образуемый эндотелием сосудов, повышает местную перфузию, стимулирует продукцию про-стагландинов, тем самым влияя на АД. Оксид азота выполняет важную функцию в регуляции коронарного кровотока: расширяет или сужает просвет сосудов в соответствии с потребностью. Увеличение тока крови, например при физической нагрузке, приводит к механическому раздражению эндотелия. Это механическое раздражение стимулирует синтез NO, который вызывает расслабление мышц сосудов и таким образом вызывая вазодилятацию. С возрастом эндотели-альный синтез окиси азота уменьшается, и в равной степени развивается усиленная реактивность эндотелия в отношении сосудосуживающих факторов. Кроме непосредственного действия на компоненты сосудистой стенки, NO оказывает действие и на активность форменных элементов крови, в частности эффективно ингибирует как агрегацию, так и адгезию тромбоцитов и лейкоцитов к эндотелию сосудов , активирует выделение ренина юкстагломерулярными клетками . Помимо этого, ЭФР-NO не только регулирует сосудистый тонус, но и предотвращает патологическое ремоделирование сосудистой стенки, прогрессирование атеросклероза .

С другой стороны, происходит синтез веществ с вазоконстрикторным действием - эндо-телиальных факторов констрикции: сверхокис-ленных анионов, вазоконстрикторных простанои-дов типа тромбоксана А2, а также эндотелина-1 и др. При длительном воздействии различных повреждающих факторов на сосудистый эндотелий происходит постепенное истощение его ком-

пенсаторной "дилатирующей" способности, и в последующем даже на обычные стимулы эндоте-лиальные клетки начинают реагировать вазокон-стрикцией и пролиферацией гладкомышечных клеток сосудистой стенки. Поэтому под эндоте-лиальной дисфункцией (ЭД) подразумевают дисбаланс между факторами, обеспечивающими эти взаимодействия .

Увеличение давления в сосуде при постоянной скорости кровотока ингибирует выделение ЭФР . Кроме того, установлено, что длительное действие артериального давления на стенку артерий способствует морфологической перестройке ее компонентов и приводит к извращенному сосудодвигательному ответу . В меньшей степени на состояние артериальной стенки оказывают влияние такие показатели, как вязкость крови, генетические особенности, этнические факторы, состояние ре-нин-ангиотензиновой системы, изменения электролитного состава крови и т. п. По мнению ряда авторов, эластические свойства артериальной стенки вне зависимости от патологии, главным образом, зависят от возраста и уровня систолического АД .

Изучение упруго-вязких свойств даже при помощи катетеризационных методов и в настоящее время является весьма сложной задачей. Это связано с тем, что у исследуемой модели (в литературе нередко называемой аортальной компрессионной камерой) нельзя применить линейные математические зависимости. Основные проблемы имеют принципиальный характер и связаны прежде всего с тем, что поступление крови из левого желудочка в сосудистое русло осуществляется в виде дискретных выбросов, которые и ответственны за волновые процессы в артериях . Как мы уже указывали выше, в широкой медицинской практике наибольшее распространение получили методы, основанные на регистрации сфигмограмм или осцилографии.

Осциллография или артериальная осциллография - метод исследования артериальных сосудов, позволяющий судить об эластичности сосудистых стенок, величине максимального, минимального и среднего АД. Метод основан на принципе регистрации колебательных процессов, происходящих в артериальных сосудах. Осциллография дает более точные сведения об АД и позволяет рассчитывать некоторые дополнительные показатели функционального состояния сосудистой стенки.

Для регистрации осциллограмм используют аппараты различных систем. Одним из первых осциллографов был прибор, сконструированный Л.И. Усковым в 1904 г. Основой этого и других современных аппаратов является датчик, обеспечивающий пропорциональность выходной величины давлению по обе стороны регистрирующей мембраны. Запись осциллограммы осуще-

ВЕСТНИК ВолГМУ

ствляется самописцем на градуированной (в мм рт.ст.) бумаге. При регистрации осциллограммы больной должен избегать всякого напряжения и движения.

Сфигмография используется значительно чаще и основана на изучении колебаний артериальной стенки, обусловленных выбросом ударного объема крови в артериальное русло. С каждым сокращением сердца увеличивается давление в артериях и имеет место прирост их поперечного сечения, затем происходит восстановление исходного состояния. Весь этот цикл превращений и получил название артериального пульса, а запись его в динамике - сфигмограммы. Различают сфигмограммы центрального пульса (запись производится на крупных артериях, близко расположенных к сердцу, - подключичной, сонной) и периферического (регистрация осуществляется с более мелких артериальных сосудов). В последние годы для регистрации сфигмограммы используют пьезоэлектрические датчики, что позволяет не только достаточно точно воспроизвести кривую пульса, но и измерить скорость распространения пульсовой волны.

Сфигмограмма имеет определенные опознавательные точки и при синхронной записи с ЭКГ и ФКГ позволяет анализировать фазы сердечного цикла раздельно для правого и левого желудочков. Технически записать сфигмограмму несложно. Обычно одновременно накладывают 2 и более пьезодатчиков или производят синхронную запись с электро- и фонокардиограммами .

В последние годы все большее внимание уделяется определению СПВ. В момент систолы некоторый объем крови поступает в аорту, давление в начальной части ее повышается, стенки растягиваются. Затем волна давления и сопутствующее ее растяжение сосудистой стенки распространяются дальше к периферии и определяются как пульсовая волна. Таким образом, при ритмическом выбрасывании крови сердцем в артериальных сосудах возникают последовательно распространяющиеся пульсовые волны. Пульсовые волны распространяются в сосудах с определенной скоростью, которая, однако, отнюдь не отражает линейной скорости движения крови .

Для определения скорости распространения пульсовой волны производится одновременная регистрация сфигмограмм с сонной, бедренной и лучевой артерий. Приемники (датчики) пульса устанавливаются: на сонной артерии - на уровне верхнего края щитовидного хряща (лучше пальпировать пульсацию на участке шеи в месте, где трахея и кивательная мышца соприкасаются), на бедренной артерии - в месте выхода ее из-под пупартовой связки (лучше несколько ниже связки, для лучшей регистрации сигнала), на лучевой артерии - в месте пальпации пульса. Правильность наложения датчиков пульса производят

под визуальным контролем монитора .

Если одновременная запись всех трех пульсовых кривых по техническим причинам невозможна, то одномоментно записывают сначала пульс сонной и бедренной артерий, а затем сонной и лучевой артерий. Для расчета скорости распространения пульсовой волны нужно знать длину отрезка артерии между приемниками пульса.

При изучении СПВ каротидно-радиальный участок условно соответствует мышечному типу артерий и измеряется следующим образом: сумма расстояний от места постановки датчика на сонной артерии до головки плечевой кости и от головки плечевой кости до места наилучшей регистрации пульса на лучевой артерии. Длина артерии (О) эластического типа определялась суммой расстояний от яремной вырезки грудины до пупка и до места регистрации пульса на а. femoralis.

При ручной обработке сфигмограммы необходимо определение еще одного показателя -времени запаздывания пульса (/) на дистальном отрезке артерии по отношению к центральному пульсу, которое определяется обычно по расстоянию между началами подъема кривых центрального и периферического пульса или по расстоянию между местами изгиба на восходящей части сфигмограмм .

Для вычисления СПВ (С) теперь необходимо путь, пройденный пульсовой волной (расстояние между приемниками пульса), разделить на время запаздывания пульса: 0 = йА. В автоматических системах типа компьютерной приставки Со!эоп (СатрПог) определение временного показателя осуществляется соответствующей программой. Измерения повторяют и рассчитывают среднее время задержки не менее чем за 10 сердечных циклов. При проведении исследования с помощью данного прибора необходимо учитывать, что результаты можно считать объективными при коэффициенте репрезентативности не менее 0,890 и коэффициенте повторяемости 0,935 соответственно .

Внедрение в клиническую практику ЭхоКГ позволило проводить точную и достоверную оценку целого ряда показателей эластичности стенки магистральных артерий. Появилась возможность определения растяжимости, жесткости аорты, отраженной волны давления . Отраженная волна возникает в месте бифуркации аорты и на уровне сосудов, обладающих максимальным сосудистым сопротивлением. В норме ОВ возвращается в аорту в момент диастолы, чем в значительной степени способствует эффективной коронарной перфузии миокарда . При оценке состояния сосудистой стенки важным показателем является индекс, определяемый как отношение сечения медии/диаметр просвета. Известно, что повышение этого индекса харак-

терно для больных с АГ.

Разумеется, мы рассмотрели далеко не все методы и способы оценки эластических свойств магистральных артерий. В данной работе был сделан анализ наиболее используемых показателей в клинической практике. С нашей точки зрения наиболее применимой является методика компьютерного анализа с помощью автоматизированной приставки типа Colson (Complior), прибора, который хорошо зарекомендовал себя в ряде многоцентровых международных исследований.

ЛИТЕРАТУРА

1. Алмазов В.А., Беркович О.А., Ситников М.Ю. и др. // Кардиология. - 2001. - № б. - С. 26-29.

2. Беленков Ю.Н., Мареев В.Ю., Агеев Ф.Т. // Кардиология. - 2001. - № б. - С. 4-9.

3. Гогин Е.Е. Гипертоническая болезнь. - М, 1997. - 400 с.

4. Затейщиков Д.А., Минушкина Л.О., Кудряшо-ва О.Ю. и др. // Кардиология. - 1999. - № 6. - С. 14-17.

б. Затейщикова А.А., Затейщиков Д.А. // Кардиология. - 1998. - № 9. - С. 68-78.

6. Лебедев Н.А., Калакутский Л.И., Горлов А.П. и др. // Новые информационные технологии в медицине, биологии, фармакологии и экологии: матер. XI международной конференции. - Украина, Ялта. - 2003. - С. 58.

7. Казачкина С.С., Лупанов В.П., Балахонова Т.В. // Серд. недостаточность. - 2003. - Т. 4. - № 6. - С. 315-317.

8. Каро К., Медли Т., Шротер Р. и др. Механика кровообращения. - M.: Мир, 1981. - 624 с.

9. Карпман В.Л., Орел В.Р., Кочина Н.Г. и др. // Клинико-физиологические характеристики сердечнососудистой системы у спортсменов: сб., посвящ. 25-летию каф. спорт. медицины им. проф. В.Л. Карпмана / РГАФК. - М. - 1994. - С. 117-129.

10. Карпов Р.С., Дудко В.А. Атеросклероз. Патогенез, клиника, функциональная диагностика, лечение. -Томск, 1998. - 655 с.

11. Кочкина М.С., Затейщиков Д.А., Сидоренко В.А. // Кардиология. - 2005. - №1. - С. 63-71.

12. Липовецкий Б.М., Плавинская С.И., Ильина Г.Н. Возраст и фукнция сердечно-сосудистой системы человека. - Л.: Наука, 1988. - 91 с.

13. Минкин Р.Б. Болезни сердечно-сосудистой системы. - СПб, 1994. - 271 с.

14. Недогода С.В., Лопатин Ю.М. // Артериальная гипертензия. Экстра-выпуск. - 2002. - С. 13-15.

15. Недогода С.В., Лопатин Ю.М., Чаляби Т.А. и др. // Юж.-Рос. мед. жур. - 2002. - № 3. - С. 39-43.

16. Оганов Р.Г., Небиеридзе Д.В. // Кардиология. -2002. - Т. 42. - № 3. - С. 35-39.

17. Савицкий Н.Н. Биофизические основы кровообращения и клинические методы изучения гемодинамики. - М.: Медицина, 1974. - 312 с.

18. Тарасова О.С., Власова М.А., БоровикА.С. и др. // Методология флоуметрии. - 1998. - № 4. - С. 135-148.

19. Титов В.И., Чорбинская С.А., Белова Б.А. // Кардиология. - 2002. - Т. 42. - № 3. - С. 95-98.

20. Фофонов П.Н. Учеб. пособ. по механокардио-графии. - Л, 1977.

21. Albaladejo P., Copie X., Boutouyrie P., et al. // Hypertension - 2001. - Vol. 38. - P. 949-952.

22. Asmar R. Arterial stiffness and pulse wave velocity clinical applications. - Paris, 1999. - 1б7 p.

23. Asmar R., Benetos A., London G.M., et al. // Blood Pressure. - 1995. - Vol. 4. - P. 48-54.

24. Asmar R, Rudnichi A., Blacher J., et al. // Am. J. Hy-pertens. - 2001. - Vol. 14. - P. 91-97.

25. Bortel van L.M.A.B., Struijker-Boudier H.A.J., Safar M.E. // Hypertens. - 2001. - Vol. 38. - P. 914-928.

26. Burton A.C. // Physiol. Rev. - 1954. - Vol. 34. -P. 619-642.

27. Busse R, Bauer R.D., Schabert A., et al. // Basic. Res. Cardiol. - 1979. - Vol. 74. - P. 545-554.

28. Dobrin P.B., Rovick A.A. // Amer. J. Physiol. -1969. - Vol. 217. - P. 1644-51.

29. ENCORE Investigators. Effect nifedipine and cerivastatin on coronary endothelial function in patients with artery disease. The ENCORE I study (Evaluation of nifedipine and cerivastatin on recovery of coronary endothelial function) // Circulation. - 2003. - Vol. 107. -P. 422-428.

30. Furchgott R.F., Zawadfki J.V. // Nature. - 1980. -Vol. 288. - P. 373-376.

31. Furchgott R.F., Vanhoutte P.M. // FASEB J. -1989. - Vol. 3. - P. 2007-2018.

32. Hallok P. // Arch. Inter. Med. - 1934. - Vol. 54. -P. 770-98.

33. Hashimoto M., Miyamoto Y., Matsuda Y, et al. // J. Pharmacol. Sci. - 2003. - Vol. 93. - P. 405-408.

34. Leitinger N., Oguogho A., Rodrigues M., et al. // J. Physiol. Pharmacol. - 1995. - Vol. 46. - Suppl. 4. -P. 385-408.

35. Lusher T.F., Barton M. // Clin. Cardiol. - 1997. -Vol. 10. - Suppl. 11. - P. 3-10.

36. Millasseau S.C., Kelly R.P., Ritter J.M., et al. // Clinical Science. - 2002. - Vol. 103. - P. 371-377.

37. Oliver J. J., Webb D.J. // Arteriosclerosis, Thrombosis, and Vascular Biology. - 2003. - Vol. 23. - P. 554.

38. O"Rourke M.E. // Hypertension . - 1995. - Vol. 26. -P. 2-9.

39. Panza J.A., Quyyumi A.A., Brush J.E.J., et al. // N. Eng. J. Med. - 1990. - Vol. 323. - P. 22-27.

40. Quyyumi A.A. // Am. J. Med. - 1998. - Vol. 105. -P. 32-39.

41. Rubanyi G.M., Freay A.D., Kauser K., et al. // Blood Vessels. - 1990. - Vol. 27. - № 2. - P. 240-257.

42. Safar M.E., Laurent S, et al. // Angiology. - 1987. -Vol. 38. - P. 287-285.

43. Safar M.E., London G.M. // In Textbook of Hypertension. - Blackwell Scientific, London, 1994. - P. 85-102.

44. Schricker K., Ritthaler T., Kramer B.K., et al. // Acta Physiol. Scand. - 1993. - Vol. 149. - Suppl. 3. -P. 347-354.

45. Thomas G., Mostaghim R., Ramwell P. // Biochemical and biophysical research communications. -1986. - Vol. 141. - Suppl. 2. - P. 446-451.

46. Watanabe H., Obtsuka S., Kakibana M., et al. // J. Am. Col. Cardiol. - 1993. - Vol. 21. - P. 1497-1506.

47. Williams S.B., Cusco J.A., Roddy M.A., et al. // J. Am. Col. Cardiol. - 1996. - Vol. 27. - P. 567-574.

48. Vane J.R., Anggard E.E., Batting R.M. // New Engl. J. Med. - 1990. - Vol. 323. - P. 27-36.

49. Vanhoutte P.M., Mombouli J.V. // Prog. Cardiovase. Dis. - 1996. - Vol. 39. - P. 229-238.

50. Yanagisawa M., Kurihara H., Kimura S., et al. // J. Hypertens. -1988. -Vol. 6. - P. 188-191.

51. Zygmunt P.M., Plane F., Paulsson M., et al. // Br. J. Pharmacol. - 1998. - Vol. 124. - Suppl. 5. -P. 992-1000.

Этот показатель дает возможность характеризовать упругое напряжение сосудистых стенок и является одним из наиболее надежных показателей упруго- вязкого состояния сосудов. СПВР зависит от силы сокращения левого желудочка и величины артериального давления и, естественно, от состояния стенок артерий. СПВР оценивается при синхронной записи сфигмограмм с двух и более точек сосудистой системы. Она определяется по формуле:

где С – СРПВ; L – истинная длина сосуда;

t – время запаздывания пульса на периферии.

Этот показатель на различных участках сосудистой системы у одного и того же исследуемого может быть разным. СРПВ выше в артериях с плотной сосудистой стенкой и высоким давлением крови.

Классическая методика предусматривает одновременную запись сфигмограмм сонной и бедренной артерий и позволяет определить СРПВ по сосудам эластического типа (по аорте). Пульсовые датчики устанавливают в области отчетливой пульсации сонной артерии и в середине пупартовой связки. Расчет СРПВ производят по вышеописанной формуле. Длину аорты измеряют сантиметровой лентой по проекции сосуда на поверхность тела. Измеряют расстояние от датчика сонной артерии до яремной вырезки грудины, от этой точки до пупка и от пупка до места установки датчика на бедренной артерии. Полученная таким способом величина отражает СРПВ по существу в нисходящей аорте и в норме колеблется от 450 до 800 см/с. СРПВ в аорте существенно зависит от возраста: она тем выше, чем больше возраст. Отклонения на ±80 см/с считаются нормальными.

СРПВ увеличиваетя при атеросклерозе аорты, гипертонической болезни, уплотнении сосудистой стенки. СРПВ измеряется также в других областях сосудистой системы

Осциллография и осциллометрия

Методы исследования величины систолического, диастолического и среднего давления. Принцип метода состоит в том, что колебания артериальной стенки передаются на манжету, сжимающую конечность. В тот момент, когда давление в манжете снижается и становится несколько ниже систолического давления в плечевой артерии, начинают появляться первые осцилляции, которые и соответствуют максимальному (систолическому) давлению. Последующее понижение давления в манжете сопровождается увеличением осцилляций, а затем их уменьшением и осцилляции в последующем исчезают. Самые максимальные осцилляции соответствуют среднему артериальному давлению, а исчезновение их - диастолическому давлению.

Принцип определения давления в артериях как при осциллографии, так и при осциллометрии одинаковый. Разница заключается лишь в том, что в первом случае производится запись, а во втором – визуальное наблюдение. Артериальная осциллография также позволяет судить о тонусе сосудов, проходимости сосудистого русла (особенно при записи с симметричных участков конечностей), которая может быть нарушена при облитерирующем эндартериите, эмболии и т.д.

РЕОГРАФИЯ

Реография – бескровный метод исследования общего и органного кровообращения.

Метод основан на регистрации колебаний сопротивления живой ткани переменному току высокой частоты. При реографическом исследовании через участок тела человека пропускают переменный ток высокой частоты и малой силы. Ток создается генератором прибора и имеет частоту до 500 кГц, сила тока - не более 10 мА. Токи такой частоты и силы безвредны для организма, они не ощущаются исследуемым и не вызывают мышечных сокращений (вспомните лабильность тканей и наличие рефрактерности).

Живые ткани организма являются хорошими проводниками электрического тока. Электропроводность различных тканей неодинакова. Имеет значение содержание электролитов, белков, поляризационные свойства тканей. Наибольшей электропроводностью обладают кровь, спинномозговая жидкость, а наименьшей - кожа, кости.

Проходя через ткань, переменный ток встречает сопротивление (величина, обратная электропроводности). Электропроводность тканей обусловлена пульсирующим артериальным кровотоком и равномерным, почти не пульсирующим кровотоком в артериолах, капиллярах и венулах. Метод позволяет выделить компонент электрического сопротивления, обусловленного пульсовыми колебаниями кровенаполнения, который после усиления графически регистрируется. В этом и заключается сущность метода реографии. Реограмма отражает суммарное сопротивление всех тканей, находящихся в межэлектродном пространстве. Стало быть, эта кривая интегральная, но в генезе этой кривой решающая роль принадлежит пульсовым колебаниям кровенаполнения.

Метод реографии дает возможность исследовать гемодинамику любого органа, доступного исследованию и участка конечности. Реография позволяет дать характеристику артериального кровенаполнения, состояния тонуса артериальных сосудов, венозного оттока, микроциркуляции. Позволяет также оценить величину ударного и минутного объемов кровообращения. При использовании многоканального реографа и записи реограмм с различных участков тела можно судить о перераспределении крови в процессе исследования или при каких – либо воздействиях. Реограмма по своей форме напоминает сфигмограмму. Она состоит из восходящей части (анакроты) и катакроты (нисходящая часть). На последней располагаются 1–3 дополнительные волны. Анакрота отражает пульсовой прирост объема крови, вершина - приток и отток крови равны, катакрота соответствует венозному оттоку.

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

«Курский государственный технический университет»

Кафедра «Биомедицинская инженерия»

КУРСОВОЙ ПРОЕКТ

по дисциплине «Проектирование диагностической и терапевтической техники»

на тему «Устройство для измерения скорости распространения пульсовой волны кровотока»

Биомедицинская инженерия

Группа БМ-85М

Руководитель работы Кузьмин А.А.

Курск, 2009 г.

Введение

Анализ проблемы

1 Определение скорости распространения пульсовой волны

2 Исследование особенностей сфигмограммы и скорости распространения пульсовой волны по крупным артериальным сосудам

3 Анализ существующих устройств для регистрации и измерения параметров пульсовой волны

Обоснование структурной схемы устройства

Выбор элементной базы и расчет основных элементов и узлов

Расчет блока питания и потребляемой мощности

Заключение

Список литературы

Введение

Одна из основных задач современной кардиологии - снижение сердечно-сосудистой заболеваемости и смертности. Среди стратегий ее решения - выявление групп высокого риска для проведения профилактических медикаментозных и немедикаментозных вмешательств. В качестве инструмента для оценки риска развития сердечно-сосудистых заболеваний (ССЗ) широко используют различные шкалы (SCORE, Фрамингемская шкала и др.). Однако практически все они предназначены для общей популяции и не могут быть использованы для пациентов с уже манифестировавшими ССЗ.

Возможность предсказания развития повторных сердечно-сосудистых осложнений (ССО) у пациентов с ишемической болезнью сердца (ИБС) может способствовать формированию эффективной стратегии ведения этой когорты больных. Поиск надежных способов оценки прогноза продолжается. Роттердамское исследование показало высокую связь повышенной скорости пульсовой волны (СПВ) - как маркера жесткости артерий - с наличием атеросклероза. Это стало предпосылкой к изучению данного параметра как предиктора прогноза для пациентов с ИБС.

1. Анализ проблемы

.1 Определение скорости распространения пульсовой волны

В момент систолы некоторый объем крови поступает в аорту, давление в начальной части ее повышается, стенки растягиваются. Затем волна давления и сопутствующее ее растяжение сосудистой стенки распространяются дальше к периферии и определяются как пульсовая волна. Таким образом, при ритмическом выбрасывании крови сердцем в артериальных сосудах возникают последовательно распространяющиеся пульсовые волны. Пульсовые волны распространяются в сосудах с определенной скоростью, которая, однако, отнюдь не отражает линейной скорости движения крови. Эти процессы в принципе различны. Сали (Н. Sahli) характеризует пульс периферических артерий как «волнообразное движение, которое происходит вследствие распространения образующейся в аорте первичной волны по направлению к периферии».

Определение скорости распространения пульсовой волны, по мнению многих авторов, является наиболее достоверным методом изучения упруговязкого состояния сосудов.

Сфигмограммы периферического пульса используются для определения скоростираспространения пульсовой волны. Для этого синхронно регистрируют сфигмограммы сонной, бедренной и лучевой артерий и определяют время запаздывания периферического пульса по отношению к центральному (Dt) (рис. 1).

Рис. 1. Определение скорости распространения пульсовой волны на отрезках: «сонная - бедренная артерии» и «сонная - лучевая артерии». Дельта-t1 и дельта-t2 - запаздывание пульсовой волны соответственно на уровне бедренной и лучевой артерий

Для определения скорости распространения пульсовой волны производится одновременная запись сфигмограмм с сонной, бедренной и лучевой артерий (рис. 2). Приемники (датчики) пульса устанавливаются: на сонной артерии- на уровне верхнего края щитовидного хряща, на бедренной артерии- в месте выхода ее из-под пупартовой связки, на лучевой артерии- в месте пальпации пульса. Правильность наложения датчиков пульса контролируется положением и отклонениями «зайчиков» на визуальном экране прибора.

Если одновременная запись всех трех пульсовых кривых по техническим причинам невозможна, то одномоментно записывают сначала пульс сонной и бедренной артерий, а затем сонной и лучевой артерий. Для расчета скорости распространения пульсовой волны нужно знать длину отрезка артерии между приемниками пульса. Измерения длины участка, по которому распространяется пульсовая волна в эластических сосудах (Lэ) (аорта- подвздошная артерия), производятся в следующем порядке (рис. 2):

Рис. 5. Определение расстояний между приемниками пульса - «датчиками» (по В. П. Никитину).

Обозначения в тексте:

а- расстояние от верхнего края щитовидного хряща (местоположение приемника пульса на сонной артерии) до яремной вырезки, где проецируется верхний край дуги аорты;расстояние от яремной вырезки до середины линии, соединяющей обе spina iliaca anterior (проекция деления аорты на подвздошные артерии, которая при нормальных размерах и правильной форме живота точно совпадает с пупком);

с- расстояние от пупка до местоположения приемника пульса на бедренной артерии.

Полученные размеры b и с складываются и из их суммы вычитается расстояние а:

b+с-а = LЭ.

Вычитание расстояния а необходимо в связи с тем, что пульсовая волна в сонной артерии распространяется в противоположном к аорте направлении. Ошибка в определении длины отрезка эластических сосудов не превышает 2,5-5,5 см и считается несущественной. Для определения длины пути при распространении пульсовой волны по сосудам мышечного типа (LМ) необходимо измерить следующие расстояния:

от середины яремной вырезки до передней поверхности головки плечевой кости (61);

от головки плечевой кости до места наложения приемника пульса на лучевой артерии (а. radialis)- с1.

Более точно измерение этого расстояния производится при отведенной под прямым углом руке - от середины яремной вырезки до местоналожения датчика пульса на лучевой артерии- d(b1+c1).

Как и в первом случае, из этого расстояния необходимо вычесть отрезок а. Отсюда:

С1 - а - Lи, но b + с1 = d

Рис.3. Определение времени запаздывания пульсовой волны по началу подъема восходящего колена кривых (по В. П. Никитину)

Обозначения:

а- кривая бедренной артерии;

б- кривая сонной артерии;

в- кривая лучевой артерии;э- время запаздывания по эластическим артериям;м- время запаздывания по мышечным артериям;инцизура

Второй величиной, которую необходимо знать для определения скорости распространения пульсовой волны, является время запаздывания пульса на дистальном отрезке артерии по отношению к центральному пульсу (рис. 3). Время запаздывания (г) определяется обычно по расстоянию между началами подъема кривых центрального и периферического пульса или по расстоянию между местами изгиба на восходящей части сфигмограмм.

Время запаздывания от начала подъема кривой центрального пульса (сонной артерии- а. саrоtis) до начала подъема сфигмографической кривой бедренной артерии (а. femoralis)- время запаздывания распространения пульсовой волны по эластическим артериям (tэ)- Время запаздывания от начала подъема кривой а. саrоtis до начала подъема сфигмограммы с лучевой артерии (а.radialis)- время запаздывания по сосудам мышечного типа (tМ). Регистрация сфигмограммы для определения времени запаздывания должна производиться при скорости движения фотобумаги- 100 мм/с.

Для большей точности в подсчете времени запаздывания пульсовой волны регистрируется 3-5 пульсовых колебаний и берется среднее значение из полученных при измерении величин (t) Для вычисления скорости распространения пульсовой волны (С) теперь необходимо путь (L), пройденный пульсовой волной (расстояние между приемниками пульса), разделить на время запаздывания пульса (t)

С=L(cм)/t(c).

Так, для артерий эластического типа:

Э=LЭ/TЭ,

для артерий мышечного типа:

СМ=LM/tM.

Например, расстояние между датчиками пульса равно 40 см, а время запаздывания- 0,05 с, тогда скорость распространения пульсовой волны:=40/0,05=800 cм/с

В норме у здоровых лиц скорость распространения пульсовой волны по эластическим сосудам колеблется в пределах 500-700 см/с, по сосудам мышечного типа- 500-800 см/с.

Упругое сопротивление и, следовательно, скорость распространения пульсовой волны зависят прежде всего от индивидуальных особенностей, морфологической структуры артерий и от возраста обследуемых.

Многие авторы отмечают, что скорость распространения пульсовой волны с возрастом увеличивается, при этом несколько в большей степени по сосудам эластического типа, чем мышечного. Такое направление возрастных изменений, возможно, зависит от понижения растяжимости стенок сосудов мышечного типа, что в какой-то мере может компенсироваться изменением функционального состояния ее мышечных элементов. Так, Н.Н. Савицкий приводит по данным Людвига (Ludwig, 1936) следующие нормы скорости распространения пульсовой волны в зависимости от возраста.

Возрастные нормы скорости распространения пульсовой волны по сосудам эластического (Сэ) и мышечного (См) типов:

При сопоставлении средних значений Сэ и См, полученных В.П. Никитиным (1959) и К.А. Морозовым (1960), с данными Людвига (Ludwig, 1936) следует отметить, что они довольно близко совпадают.

Е.Б. Бабским и В.Л. Карпманом предложены формулы для определения индивидуально должных величин скорости распространения пульсовой волны в зависимости или с учетом возраста:

Сэ =0,1*B2 + 4B + 380;

См = 8*B + 425.

В этих уравнениях имеется одно переменное В- возраст, коэффициенты представляют собой эмпирические постоянные.

Скорость распространения пульсовой волны по эластическим сосудам зависит также от уровня среднего динамического давления. При повышении среднего давления скорость распространения пульсовой волны увеличивается, характеризуя усиление «напряженности» сосуда за счет пассивного растяжения его изнутри высоким артериальным давлением. При изучении упругого состояния крупных сосудов постоянно возникает необходимость определять не только скорости распространения пульсовой волны, но и уровень среднего давления.

Несоответствие между изменениями среднего давления и скоростью распространения пульсовой волны в известной степени связано с изменениями тонического сокращения гладкой мускулатуры артерий. Это несоответствие наблюдается при изучении функционального состояния артерий преимущественно мышечного типа. Тоническое напряжение мышечных элементов в этих сосудах меняется довольно быстро.

Для выявления «активного фактора» тонуса мускулатуры сосудистой стенки В.П. Никитин предложил определение соотношения между скоростью распространения пульсовой волны по сосудам мышечного (См) и скорости по сосудам эластического (Сэ) типов. В норме это соотношение (СМ/С9) составляет от 1,11 до 1,32. При усилении тонуса гладкой мускулатуры оно возрастает до 1,40-2,4; при понижении- уменьшается до 0,9-0,5. Уменьшение СМ/СЭ наблюдается при атеросклерозе, за счет увеличения скорости распространения пульсовой волны по эластическим артериям. При гипертонической болезни эти величины, в зависимости от стадии, различны.

Таким образом, при увеличении упругого сопротивления скорость передачи пульсовых колебаний нарастает и иногда достигает больших величин. Большая скорость распространения пульсовой волны является безусловным признаком увеличения упругого сопротивления артериальных стенок и уменьшения их растяжимости.

В норме скорость распространения пульсовой волны, рассчитанная таким способом, составляет 450-800 см.с-1. Следует помнить, что она в несколько раз выше скорости кровотока, т. е. скорости перемещения порции крови по артериальной системе.

По скорости распространения пульсовой волны можно судить об эластичности артерий и величине их мышечного тонуса. Скорость распространения пульсовой волны увеличивается при атеросклерозе аорты, гипертонической болезни и симптоматических гипертензиях и уменьшается при аортальной недостаточности, открытом артериальном (боталловом) протоке, при снижении мышечного тонуса сосудов, а также при облитерации периферических артерий, их стенозах и уменьшении ударного объема и АД.

Скорость распространения пульсовой волны нарастает при органическом поражении артерий (увеличение Сэ при атеросклерозе, сифилитическом мезоаортите) или при усилении упругого сопротивления артерий за счет повышения тонуса их гладкой мускулатуры, растяжении стенок сосуда высоким артериальным давлением (увеличение См при гипертонической болезни, нейроциркуляторной дистонии гипертензивного типа). При нейроциркуляторной дистонии гипотонического типа уменьшение скорости распространения пульсовой волны по эластическим артериям связано в основном с низким уровнем среднего динамического давления.

На полученной полисфигмограмме по кривой центрального пульса (а. саrotis) определяется также время изгнания (5) - расстояние от начала подъема пульсовой кривой сонной артерии до начала падения ее главной систолической части.

Н.Н. Савицкий для более правильного определения времени изгнания рекомендует пользоваться следующим приемом (рис. 4). Проводим касательную прямую через пятку инцизуры а. саrotis вверх по катакроте, из точки отрыва ее от катакроты кривой опускаем перпендикуляр. Расстояние от начала подъема пульсовой кривой до этого перпендикуляра и будет временем изгнания.

Рис.4. Прием для определения времени изгнания (по Н.Н. Савицкому).

Проводим линию АВ, совпадающую с нисходящим коленом катакроты У места отхождененя ее от катакроты проводим линию СД, параллельную нулевой. Из точки пересечения опускаем перпендикуляр на нулевую линию. Время изгнания определяется расстоянием от начала подъема пульсовой кривой до места пересечения перпендикуляра с нулевой линией. Пунктиром показано определение времени изгнания по месту расположения инцизуры.

Рис.6. Определение времени изгнания (5) и времени полной инволюции сердца (Т) по кривой центрального пульса (по В.П. Никитину).

Время полной инволюции сердца (длительность сердечного цикла) Т определяется по расстоянию от начала подъема кривой центрального пульса (а. carotis) одного сердечного цикла до начала подъема кривой следующего цикла, т.е. расстояние между восходящими коленами двух пульсовых волн (рис. 6).

2 Исследование особенностей сфигмограммы и скорости распространения пульсовой волны по крупным артериальным сосудам

Характерным и ранним признаком субаортального стеноза является систолический шум, который выслушивается вдоль левого края грудины, в точке Боткина, распространяется на сосуды шеи, отделен от 1-го тона, иногда состоит из двух фаз, может сопровождаться систолическим дрожанием грудной клетки. Часто выслушивается систолический шум над верхушкой, который проводится в подмышечную область (шум регургитации). На ЭКГ регистрируются признаки гипертрофии левого желудочка и предсердий, отрицательные зубцы Т и смещение книзу интервала S - Т в левых грудных отведениях. Иногда в классических отведениях появляются глубокие зубцы Q как отражение гипертрофии межжелудочковой перегородки. I. Heublein с соавторами (1971) считают, что характерным электрокардиографическим признаком субаортального стеноза являются комплексы типа qrS в сочетании с положительным зубцом Т в левых грудных отведениях. Рентгенологически определяется умеренное увеличение левого желудочка и левого предсердия, усиление легочного рисунка за счет застоя, иногда расширение восходящей аорты.

В дифференциально-диагностическом отношении важны изменения сфигмограммы: характерен двойной ее контур с быстрым первым спуском анакроты за счет нарастающего сужения путей оттока. Нарастающее давление в левом желудочке проталкивает кровь в аорту,- появляется второй подъем кривой, менее крутой, чем первый, с последующим длительным спуском и дополнительными низкоамплитудными колебаниями (W. H. Carter с соавт., 1971).

Сфигмографическое исследование с синхронной записью пульса с сонной, лучевой и бедренной артерий проведено у 88 детей. Сфигмографическое исследование осуществлялось в горизонтальном положении ребенка с помощью того же трехканального электронного прибора «Визокард-Мультивектор», с применением пьезоэлектрических приемников пульса, одновременно с электрокардиограммой во II стандартном отведении. Запись проводилась сначала с сонной и лучевой, затем с сонной и бедренной артерий после 10-минутного отдыха одновременно с двух и более точек, что необходимо для определения скорости пульсовой волны, а также синхронно с другими кривыми, отражающими различные проявления сердечной деятельности (электрокардиограмма, фонокардиограмма).

Для изучения функционального состояния крупных артериальных сосудов пульсовые датчики устанавливались в трех разных точках: на сонной (переднешейная борозда - на уровне верхнего края щитовидного хряща), лучевой (в обычной точке прощупывания пульса) и на бедренной артериях (середина пупартовой связки). Регистрацию пульсовых кривых проводили только после соответствующего оптимального приспособления датчика, по достижении при данном усилении максимальной амплитуды сфигмограммы.

По времени запаздывания пульсовых кривых и по расстоянию между точками, с которых записываются пульсовые кривые, определяется скорость распространения пульсовой волны по сосудам мышечного (на участке сонная артерия - лучевая артерия) и по сосудам эластического типов (на участке сонная артерия - бедренная артерия). Запаздывание пульсовой волны измеряется по расстоянию между началом подъема каждой из сфигмограмм.

Для определения длины пути между сонной и лучевой артериями измеряется расстояние с помощью сантиметровой ленты от верхнего края щитовидного хряща (местоположение первого приемника пульса) до яремной ямки (проекция верхнего края дуги аорты). Затем на отведенной руке, составляющей с туловищем прямой угол, измеряется расстояние от яремной ямки до места регистрации пульса на лучевой артерии. Из общего расстояния между датчиками вычитается удвоенное расстояние между щитовидным хрящом и яремной ямкой (так как пульсовая волна в лучевой и сонной артериях распространяется в противоположных направлениях).

Для определения длины участка «сонная артерия - бедренная артерия» измеряется расстояние от верхнего края щитовидного хряща до яремной ямки, затем - от яремной ямки до пупка (проекция деления аорты на подвздошные артерии) и от пупка до середины пупартовой связки (место наложения третьего датчика пульса). Все полученные размеры складываются и из образовавшейся суммы вычитается удвоенное расстояние между щитовидным хрящом и яремной ямкой (Н. Н. Савицкий, 1956; В. Н. Никитин, 1958, и др.).

Изучение формы пульсовых кривых у детей с суставно-висцеральным течением ревматоидного артрита (I группа) показало, что кривые артериального пульса, имея общие черты, отличаются большим разнообразием индивидуальных особенностей. Обращает на себя внимание, что у многих детей в острый период заболевания кривые артериального пульса, особенно с сонной артерии, отличались неустойчивостью формы и амплитуды, их изменчивостью даже в различных сердечных циклах, следующих друг за другом. Очевидно, причина такой вариабельности - в лабильности гемодинамики, в неодинаковой силе сердечных сокращений, меняющейся величине ударного объема сердца, в неустойчивости сосудистого тонуса у больных ревматоидным артритом с выраженным токсико-аллергическим синдромом.

Отмечается также более частое, чем у здоровых детей, отсутствие на кривой каротидного пульса пресистолического колебания, которое зарегистрировано лишь у 55% больных детей (по данным М. К. Осколковой, у 80% здоровых). При обследовании детей, больных ревматизмом, М. К. Осколкова (1967) также констатировала отсутствие пресистолического колебания на кривой каротидного пульса. Эта особенность обусловлена, с одной стороны, ослаблением сократительной функции предсердий, с другой - изменениями систолического объема сердца и сосудистого тонуса, учитывая, что генез пресистолического зубца связан с перечисленными факторами.

Увеличение пресистолической волны наблюдалось всего лишь у 5 детей, у 3 из них, по данным клинико-инструментальных методов исследования, предполагалось формирование митрального и аортального пороков, а у 2 - преобладали симптомы миокардита.

Инцизура на кривой каротидного пульса у 84% детей была отчетливо выражена в верхней или средней трети нисходящей ветви сфигмограммы, у 11% детей она регистрировалась в нижней трети кривой и у 5% - была слабо выражена или отсутствовала. Дикротическая волна на катакроте пульса с лучевой артерии располагалась у большинства детей I группы в нижней ее трети, в отличие от здоровых детей, у которых, она, как правило, регистрируется в средней трети катакроты (М. К. Осколкова, 1967) и нередко была увеличена. Подобные изменения рассматриваются как признак снижения тонуса артериальных сосудов. В динамике наблюдения, при стихании основного процесса, с уменьшением интоксикации, отмечалось смещение дикротической волны ближе к вершине кривой и уменьшение ее амплитуды. Данный признак можно объяснить увеличением напряжения (тонуса) стенок артериальных сосудов при улучшении состояния детей (В. П. Никитин, 1950; М. К. Осколкова, 1957). Л. П. Прессман (1964), изучая состояние сердечно-сосудистой системы при инфекционных заболеваниях у взрослых, пришел к выводу, что величина дикротической волны у них находится в прямой зависимости от степени интоксикации. Сопоставление форм пульсовых кривых с характером поражения сердца не выявило достаточно типичных изменений сфигмограммы. При явлениях кардита у некоторых детей отмечалось лишь небольшое снижение амплитуды пульсовых кривых, иногда изменчивость их формы и величины в различных сердечных циклах. В течение болезни форма пульсовых кривых с центральных и периферических артерий нередко изменялась.

Характерным признаком недостаточности аортальных клапанов на СФГ сонной артерии является крутой подъем кривой, слабая выраженность или отсутствие инцизуры. Феномен исчезновения или уменьшения выраженности инцизуры является важным признаком вовлечения в патологический процесс аорты (М. Н. Абрикосова, 1963; М. К. Осколкова, 1967, и др.).

Блюмбергер (1958), М. А. Абрикосова (1963), М. К. Осколкова (1967) полагают, что большая или меньшая выраженность инцизуры на сфигмограмме с сонной артерии при поражении аорты зависит от степени деформации клапанного аппарата: при меньшем поражении - инцизура выражена, при большем - исчезает.

Кроме изучения морфологических особенностей сфигмограммы, высчитывалась скорость распространения пульсовых волн. Изучение скорости распространения пульсовой волны по сосудам эластического и мышечного типов больных с суставно-висцеральной формой ревматоидного артрита показало отчетливое уменьшение этого показателя по сравнению с нормальными величинами как в острый период, на фоне лечения, так и в период стихания.

Из таблицы следует, что у детей в возрасте от 3 до 6 лет при суставно-висцеральной форме заболевания средние данные исходных величин в острый период болезни по сосудам эластического типа были равны 456,8±13,5 см/сек., а по сосудам мышечного типа - 484,0±24,8 см/сек., не достигая нормальных величин даже в период стихания.

У детей в возрасте от 7 до 11 лет средние показатели скорости распространения пульсовой волны по сосудам эластического типа равнялись 470,0± ±22,0 см/сек., а по сосудам мышечного типа - 588,0± ±15,8 см/сек., то есть эти показатели были ниже, чем данные у здоровых детей и оставались сниженными и при стихании процесса с разницей, статистически достоверной (Р<0,05).

Наибольшее снижение показателей скорости распространения пульсовой волны наблюдалось у детей в возрасте от 12 до 15 лет. Средние показатели ее по сосудам эластического типа в острый период болезни были 504,7+10,5 см/сек., а по сосудам мышечного типа - 645,0-27,6 см/сек. Эти величины статистически достоверно снижены по сравнению с данными здоровых детей (Р< 0,005).

В период улучшения общего состояния наблюдалось незначительное повышение скорости распространения пульсовой волны по сосудам эластического типа, по сосудам же мышечного типа скорость оставалась значительно сниженной (соответственно 508,0±10,0 см/сек, и 528,7 ±10,7 см /сек.; Р<0,01). Столь стойкое нарушение функционального состояния крупных артериальных сосудов очевидно можно объяснить высокой степенью аллергизации, продолжающейся активностью ревматоидного артрита и большой длительностью заболевания.

У взрослых больных В. И. Трухляев (1968) констатировал повышение скорости распространения пульсовой волны по крупным артериальным сосудам. Эта разница по сравнению с данными, полученными у детей, лишний раз подчеркивает своеобразие пеактивности детского организма. Б. А. Гайгалене (1970) у взрослых обнаруживала асимметрию тонуса сосудов и изменение их реакции на холод.

Изучение характера кривых центрального и периферического пульса у больных с суставной формой ревматоидного артрита (II группа) обнаружило отсутствие пресистолической волны на сфигмограмме каротидного пульса у 8 (из 31) детей. У этих больных наблюдалась тахикардия, связанная, по-видимому, с токсико-аллергическим состоянием в острый период заболевания. У остальных 23 детей пресистолическая волна регистрировалась, варьируя лишь в амплитуде. Вершина пульсовых кривых у 20 детей имела округлые очертания, у 5 - заостренные и у 6 - форму «систолического плато». Вершину типа «систолическое плато» М. К. Осколкова чаще наблюдала у детей, больных ревматизмом. И. М. Руднев (1962) считает, что кривые типа «плато» с высоким осциллометрическим индексом указывают на понижение тонуса сосудов и на наличие сопротивления току крови на периферии. Если учесть, что у этих детей при капилляроскопии обнаруживалось спастико-атоническое состояние капилляров с преобладанием спастического компонента, а рентгенологически определялись признаки снижения тонуса сердечной мышцы, то, возможно, указанная форма сфигмограммы и отражала задержку в нарастании и спадении давления в центральных артериальных сосудах.

Инцизура на кривой каротидного пульса у 64,5% детей располагалась в верхней или средней трети нисходящей ветви сфигмограммы, а у 35,5%-в нижней ее трети. Инцизура и начальная диастолическая волна у большинства детей были хорошо выражены.

Дикротическая волна на сфигмограмме с лучевой артерии у 36% детей располагалась в средней трети ка-такроты. На сфигмограмме с бедренной артерии дикротическая волна чаще регистрировалась в нижней трети катакроты, а у 8% детей она не регистрировалась. В острый период заболевания амплитуда пульсовых кривых лучевой и бедренной артерий у 19 детей II группы была увеличена. Этот факт, возможно, связан с компенсаторной гиперфункцией миокарда и снижением тонуса крупных сосудов.

Анализ полученных данных скорости распространения пульсовой волны по сосудам эластического и мышечного типов у детей с суставной формой ревматоидного артрита так же, как и у детей I группы, указывал на уменьшение скорости распространения пульсовой волны во всех возрастных группах. Однако это уменьшение было несколько менее выражено, чем при суставно-висцеральной форме заболевания.

У детей дошкольного возраста (от 3 до б лет) скорость распространения пульсовой волны в острый период болезни была равна 512,0±19,9 см/сек, по сосудам эластического типа и 514,6±12,9 см/сек, по сосудам мышечного типа.

У детей младшего школьного возраста (от 7 до 11 лет) средние показатели скорости распространения пульсовой волны были равны для сосудов эластического типа 531,5±17,2 и мышечного типа - 611,8± 24,0 см/сек. В период стихания наблюдалось некоторое увеличение скорости распространения пульсовой волны по сосудам эластического и мышечного типов.

У детей старшего школьного возраста (от 12 до 15 лет) в острый период заболевания скорость распространения пульсовой волны по сосудам эластического типа равнялась 517,7±11,0 см/сек, и по сосудам мышечного типа - 665,7±25,7 см/сек. В период улучшения состояния наблюдалось некоторое увеличение данных показателей как по сосудам эластического, так и мышечного типов (соответственно 567,5±26,7 см/сек, и 776,8±50,4 см/сек.). Уменьшение скорости распространения пульсовой волны по сосудам эластического и мышечного типов, согласно данным литературы, свидетельствует о снижении тонуса артериальной стенки (Н. Н. Савицкий, 1963; В. П. Никитин, 1959, и др.). У детей с ревматоидным артритом оно может быть связано с патоморфологическими и гистохимическими изменениями сосудистой стенки в результате хронически протекающего системного васкулита (А. И. Струков, А. Г. Бегларян, 1963, и др.), а также с токсико-аллергическими влияниями на нейро-эндокринный регуляторный аппарат.

Дальнейшее уменьшение скорости распространения пульсовой волны по сосудам эластического и мышечного типа, наблюдавшееся у части детей в фазе стихания ревматоидного процесса, в конце лечения, возможно, обусловлено своеобразной следовой реакцией нервной и сердечно-сосудистой системы на патологический процесс. Возможно, имело какое-то значение применение разнообразных медикаментозных средств, в том числе и пирамидона, который, по наблюдениям И. М. Руднева (1960), вызывает понижение тонуса сосудов. Приведенные исследования подтверждают большую клиническую ценность сфигмографии в оценке функционального состояния крупных артериальных сосудов при динамическом исследовании их в разные фазы патологического процесса.

.3 Анализ существующих устройств для регистрации и измерения параметров пульсовой волны

Известен ряд неинвазивных способов, устройств и систем, исследующих деятельность организма человека, основанных на различных физических механизмах, связанных с образованием и распространением пульсовой волны. Основные физические методы исследований связаны с измерением изменения во времени следующих физических величин: электрических, например тока (напряжения) с помощью электрокардиограмм (ЭКГ); механических, например давления с помощью манометра или пьезодатчика; оптических, например освещенности с помощью оптоэлектронных преобразователей. Регистрация пульсовой волны с помощью ЭКГ или датчиков давления обычно требует фиксированного подключения специальных датчиков к нескольким местам на теле пациента, что ограничивает возможные применения данных устройств чисто медицинскими применениями, не допуская встраивания этих устройств в другие электронно-бытовые устройства и системы.

Известные одноэлементные устройства и способы оптической регистрации пульсовой волны во многих случаях позволяют регистрировать периферический пульс, например, при легком касании пальцем пользователя оптоэлектронного преобразователя. Однако в некоторых случаях, например, если у пользователя холодные руки или слишком слабый (сильный) прижим пальца к фотоприемнику, то не удается устойчиво регистрировать пульсовую волну у всех 100% пациентов.

Известны способ и устройство регистрации пульсовой волны, позволяющие устойчиво выявлять пульс с помощью двухканального оптоэлектронного преобразователя.

В этом способе регистрации пульсовой волны импульсные последовательности, пропорциональные оптической плотности рассеивания света в кровонесущей ткани, формируют двухканальным оптоэлектронным преобразователем с длинами волн инфракрасного диапазона, при этом импульсная последовательность центрального пульса обеспечивает жесткую синхронизацию режимов измерения, а результат измерения на индикаторе линейно связан с разностью фаз двух импульсных последовательностей.

Устройство содержит первый оптоэлектронный преобразователь, выход которого соединен с входом первого формирователя импульсной последовательности, выход которого соединен с первым входом ключевой логической схемы И-НЕ и первым входом формирователя команд управления. Выход второго оптоэлектронного преобразователя соединен с входом второго формирователя импульсной последовательности, выход которого соединен со вторым входом ключевой логической схемы И-НЕ. Первый выход формирователя команд управления соединен с третьим входом ключевой логической схемы И-НЕ, а второй и третий выходы подключены соответственно ко входам первого и второго оптоэлектронных преобразователей. На четвертый вход ключевой логической схемы И-НЕ подключен генератор измерительной частоты. Кнопка пуска подключена ко второму и третьему входам формирователя команд управления. Выход ключевой логической схемы И-НЕ соединен со входом счетчика частоты, выход которого подключен на вход регистра памяти. Соответственно выход регистра памяти подключен к индикатору.

Устройство состоит из двух датчиков и блока обработки и управления. Датчики устанавливаются на определенном расстоянии один от другого над исследуемой артерией, информация с датчиков поступает в блок обработки и управления. Блок обработки состоит из пикового детектора, фазового компаратора, задатчика расстояния между датчиками, аналогового коммутатора, аналого-цифрового преобразователя, микроЭВМ, репрограммируемого таймера, индикаторного устройства и цифроаналогового преобразователя. Получая от датчиков информацию о моментах прохождения пульсовой волны и амплитуде пульсовой волны, а также от задатчика расстояния то расстояние, которое проходит волна между датчиками, блок обработки производит вычисление скорости распространения пульсовой волны и артериального давления и фиксирует полученные результаты на носителе (бумаге, магнитной пленке). Отсутствие механизма пережатия у предлагаемого устройства позволит проводить длительные автоматические исследования артериального дваления у пациента с автоматической регистрацией результатов исследования. Устройство хорошо сопрягается с радиотелеметрическими системами и обеспечит дистанционный контроль величины артериального давления у водителей различного вида транспорта, операторов и др., что позволит своевременно предупреждать возникновение аварийных ситуаций.

Известен ИК-датчик, который используется при контроле частоты пульса человека. Непосредственно на базе ручных электронных часов реализуется схема включения ИК-датчика и обработки его электрических сигналов. Для устойчивой работы схемы обработки сигнал с ИК-датчика усиливается усилителем. ИК-датчик состоит из ИК-светодиода и ИК-фотоприемника, которые конструктивно расположены рядом друг с другом, но разделены оптически непрозрачной зоной/областью. При отсутствии отраженного от биоткани зондирующего ИК-сигнала прямого взаимного влияния ИК-светодиода на ИК-фотодиод нет. Данное положение является принципиальным. Поверхность такого ИК-датчика защищена от возможного загрязнения в процессе работы защитным стеклом. Если приложить палец к защитному стеклу, то такой ИК-датчик фиксирует степень изменения насыщения биоткани кровью (капиллярный уровень) синфазно с работой сердца. ИК-датчик непосредственно подключен к линейному усилителю. Дальнейшая схема пересчета позволяет косвенно определить по сигналу такого ИК-датчика искомую частоту пульса.

Недостатки устройства:

ИК-датчик работает достаточно неустойчиво при значительной солнечной активности, что «ослепляет ИК-датчик»;

степень прижимания тканей пальца к контактной зоне ИК-датчика влияют на степень отраженного сигнала, что может влиять на точность пересчета при определении частоты пульса;

колебания (дрожание руки) также влияет на искажение результатов ИК-датчика;

принципиально невозможно контролировать венозный уровень кровотока из-за фонового капиллярного уровня.

Наиболее близкой к этому устройству является конструкция ИК-датчика, которая также применяется при контроле частоты пульса человека. ИК-датчик конструктивно (рис.7) выполнен в прямоугольном каркасе (1) из оптически непрозрачного твердого материала, например текстолита, в котором на одной линии под острым углом α друг к другу сформированы два цилиндрических канала (2, 3). В первый из каналов вмонтирован ИК-светодиод (5), а во второй - ИК-фотодиод (6). Взаимный острый угол расположения каналов а таков, что оптически непрозрачная перегородка исключает прямое влияние ИК-светодиода (5) на ИК-фотодиод (6). Внешняя поверхность ИК-датчика защищена от возможного загрязнения защитной, оптически прозрачной для ИК длин волн пластиной (4), например, из полистирола. Реализация возможностей ИК-датчика (Е) достигается путем его подключения к линейному усилителю (А).

рис.7 конструкция ИК-датчика для измерения частоты пульса.

Недостатки данного устройства (прототипа) точно такие же, как и в аналоге.

Известны способы и устройства измерения пульсовой волны, в которых анализ пульсовой волны производится по ее амплитудно-частотным характеристикам, когда для целей постановки диагноза такие амплитудно-частотные характеристики сравнивают с соответствующими характеристиками, принятыми за норму [например: полезная модель RU 9577, опубл. 16.04.1999; патенты США: US 5381797, опубл. 17.01.1995; US 5961467, опубл. 05.10.1999; US 6767329, опубл. 27.07.2004]. Однако при таком подходе интерпретация сравниваемых характеристик носит в большей степени эмпирический характер, что затрудняет установить реальную связь параметров пульса с состоянием человека, например как это установлено в китайской традиционной медицине.

Известны способы и устройства измерения пульсовой волны для целей постановки диагноза, в которых анализ измеренной пульсовой волны производят путем ее разложения на составляющие.

Известен способ дифференциальной диагностики заболеваний легких путем регистрации и записи сфигмографического сигнала с лучевой артерии пациента [патент RU 2100009, опубл. 27.12.1997]. В сигнале выделяют характерные точки единичных колебаний, определяют амплитудные и временные параметры этих точек пульсовой волны, формируют динамические ряды, отражающие зависимость найденных параметров от номера периода, проводят спектральный анализ сформированных рядов, вычисляют критерий, по значению которого производят диагностику. Известный способ является узкоспециализированным.

Известны способ и аппарат для диагностики и мониторинга циркуляции крови [патент US 5730138, опубл. 24.03.1998], согласно которым измеряют форму волны кровяного давления (пульсовая волна) в артерии пациента, анализируют частотные составляющие пульсовой волны и сравнивают образцы каждой резонансной составляющей пульсовой волны с образцом нормальной пульсовой волны для определения возможного дисбаланса распределения крови пациента.

В соответствии с этим дисбалансом может быть проведен диагноз на основе принципов китайской традиционной медицины, согласно которому каждая гармоника в пульсовой волне соответствует определенному меридиану, включающему определенные органы.

Аппарат включает устройство анализа амплитуды и фазы резонансных частот на базе компьютера и датчик, прикладываемый к артерии. Однако понятие «нормальной» пульсовой волны является относительным, поэтому поставленный диагноз является малодостоверным. Также в данном техническом решении не проработан способ корректного выделения составляющих пульсовой волны.

Устройство работает следующим образом.

Устанавливаются пьезоэлектрические датчики над исследуемой артерией на определенном расстоянии L. Пульсовая волна вызывает поперечные колебания стенок артерии, эти колебания сжимают и отпускают пластины датчиков.

Полученный с датчиков сигнал усиливается и фильтруется для компенсации помех. Контактный элемент обеспечивает более плотную связь со стенкой артерии воспринимающей пластины, что увеличивает чувствительность датчиков к колебаниям стенки артерии.

Поскольку сигнал, принимаемый с датчиков довольно сложен, АЦП микроконтроллера не обладает достаточной частотой дискретизации для его обработки. Поэтому в схеме используется АЦП МАХ-1241.

Оцифрованные сигналы поступают в микроконтроллер, где происходит их обработка в соответствии с выбранным режимом работы и вычисление разности фаз. Разность фаз колебаний пульсовой волны в точности равна времени распространения пульсовой волны между датчиками. Вычисленное значение скорости распространения пульсовой волны отображается на ЖКИ.

В устройстве предусмотрена клавиатура для выбора режима работы в зависимости от исследуемой части тела и расстояния между датчиками.

Блок питания обеспечивает все функциональные узлы питающими напряжениями.

Структурная схема устройства показана на рисунке 8.

Рис.8 Структурная схема устройства

3. Выбор элементной базы и расчет основных элементов и узлов

пульсовой волна кровоток сфигмограмма

Усилитель

Показанная на рис. 9 схема представляет собой простейший и самый дешевый измерительный усилитель. Резисторы R2 и R6 действуют как делитель напряжения для неинвертирующего входа операционного усилителя (ОУ). Благодаря обратной связи через резисторы R1 и R5 и очень большому внутреннему коэффициенту усиления ОУ напряжение на инвертирующем входе усилителя поддерживается равным напряжению на неинвертирующем входе. Отношение Кз/МГ определяет коэффициент передачи усилителя. Когда R1/R5=R2/R6, усиление дифференциального сигнала намного больше усиления синфазного сигнала, и коэффициент ослабления синфазного напряжения (КОСС) будет максимальным.

Рис. 9 схема усилителя

Дифференциальный коэффициент усиления:

где Av - коэффициент усиления ОУ, Av→∞

Коэффициент усиления синфазного сигнала, обусловленный рассогласованием резисторов, равен:

Коэффициент усиления синфазного сигнала, обусловленный конечным значением КОСС операционного усилителя (КОССоу), равен:

Отметим, что КОССоу выражается отношением, а не в децибелах. Коэффициент оелаблсцил синфазного сигнала всей схемы:

Дифференциальное входное сопротивление:

Rвхдиф = R1+R3

Входное сопротивление для синфазного сигнала (при КОСС = ∞) составляет:

Выходное напряжение смещения (при R1=R2 и R5=R6) в нашем случае равно:

Для реализации коэффициента усиления равным 10, выбраны следующие значения сопротивлений R1=R2=10кОм R5=R6=100кОм

Полосовой фильтр

На рисунке 10 изображен полосовой фильтр, применяемый в устройстве

Рис.10 схема полосового фильтра

Передаточная функция

Параметры схемы

Полоса пропускания по уровню -3Дб

Несмотря на наличие пяти резисторов и двух конденсаторов, расчет элементов по приведенным формулам оказывается довольно простым. Настройка схемы сводится к операциям установки

коэффициента передачи - резистором R14,

резонансной частоты ω0 - резистором R19,

добротности Qf - резистором R21

Эта схема особенно хороша для построения фильтров с высокой добротностью Qf, поскольку она некритична к отклонениям значений элементов от номинальных, проста в настройке и не требует применения элементов с большим диапазоном номиналов. Эти преимущества достигаются за счет использования двух ОУ.

Согласно значениям сердечного ритма, полоса пропускания данного фильтра составляет 0,5-5Гц Для реализации этого рассчитаны следующие параметры: R13=R14=10кОм, R17= R17=100кОм, R17=20кОм, С7=0.4 мкФ С9=0.1мкФ

Для регистрации пульсовой волны используется акселерометр ADXL320

Рис.11 схема акселерометра

JCP - двухмерный датчик ускорения, с низкой ценой и малым потреблением. Измеряет ускорение в диапазоне ± 5G, вибрацию и гравитацию.

Технические особенности:

разрешение 2 мg при 60 Гц;

напряжение питания в диапазоне 2,4 … 5,25 В;

ток потребления 350 мА при напряжении питания 2,4 В;

стабильный уровень нулевого ускорения;

высокая чувствительность;

выравнивание по осям с точностью до 0,1 градуса;

BW корректировка при помощи одного конденсатора;

однополярное функционирование;

Структурная схема приведена на рисунке12.

Рис.12 схема акселерометра

Области применения: схемы движения и ориентации, интеллектуальные ручные устройства, мобильные телефоны, приборы для медицины и спорта, устройства безопасности.

Для оцифровки сигналов используется АЦП МАХ-1241

Рис.13 схема полосового фильтра

Для обработки полученной информации используется микроконтроллер PIC16F877. Для отображения информации используется ЖК-монитор LM016L.

Питание самодельных радиоэлектронных устройств, как правило, осуществляют от сети переменного тока или автономных источников питания (гальванических элементов и аккумуляторов). Одни устройства потребляют небольшой электрический ток и в этом случае можно обойтись батарейками, в других случаях емкости батареек недостаточно для длительной работы и приходится пользоваться блоками питания от сети.

Схема электрическая принципиальная источника питания показана на рисунке 13.

Рисунок 13 Принципиальная схема блока питания

Номинальное напряжение ОУ составляет ±5В. Ток потребления одного ОУ - 4мА. С учетом потребления микроконтроллера и ЖКИ, ведем расчет источника питания на ток 100 мА от каждого источника. Потребляемая мощность составит 1200 мВт.

Выбираем стандартный трансформатор ТПП248 ШЛМ20´20 мощностью 14,5Вт с двумя обмотками с выходным напряжением 20В и допустимым током 165мА. Максимальный ток первичной обмотки 100мА.

В качестве выпрямителя используем выпрямительный мост КЦ422В со следующими параметрами:

Uобр=200В; Iпр max=0,5A; Iобр max= 50мкА, fmax=1кГц.

Расчет емкости конденсатора фильтра однофазного мостового выпрямителя ведем по формуле

Мощность на выходе выпрямителя, - максимальный размах пульсаций выпрямленного напряжения, - частота сети.

Из стандартного ряда выбираем конденсатор К50-3Б 50В 390мкФ.

В качестве стабилизаторов используем стабилизатор положительного напряжения ИС 7815 с выходным напряжением 5±0,45В, Uвхmax=35В, Iвхmax=1,5А и стабилизатор отрицательного напряжения ИС 7815 с выходным напряжением -5±0,3В, -Uвхmax=35В, Iвхmax=1,5А.

Заключение

В процессе выполнения работы разработана принципиальная схема устройства, позволяющего проводить измерение скорости распространения пульсовой волны кровотока. Устройство может работать в четырех режимах, в зависимости от условий измерения.

Список используемой литературы

1.Левшина Е.С.,Новицкая П.В. Электрические измерения физических величин: (Измерительные преобразователи). Учеб. пособие для вузов. - Л.: Энергоатомиздат. Ленинград. отделение, 1983.-320 с.

.Пейтон А. Дж., Волш В. Аналоговая электроника на операционных усилителях. - М.: БИНОМ, 1994.

.Механцев Е.Б., Лысенко И.Е. Физические основы микросистемной техники. Учебное пособие.- Таганрог: Изд-во ТРТУ, 2004.- 54 с.

.Протопопов А.С. Усилители с обратной связью, дифференциальные и операционные усилители и их применение.- М.: САЙНС-ПРЕСС, 2003.- 64с.

.Дж. Фрайден Современные датчики. Справочник.- М.: Техносфера, 2005.- 592с.

Пат. 2336810 Российская Федерация, A61B 5/024 «Оптоэлектронный ИК-датчик пульсовой волны» [Текст]/ Ус Н.А.; заявитель и патентообладатель Ус Н.А.- №2007112233/14; заявл. 2007.04.02 ; опубл. 2008.10.27.

Пат. 2040207 Российская Федерация, A61B5/022 «Устройство для измерения артериального давления и емкостной датчик» [Текст]/ Сиволапов А.А.; Бровкович Э.Д.; заявитель и патентообладатель Сиволапов А.А.; Бровкович Э.Д.;- №93009423/14; заявл. 1993.02.18; опубл. 1995.07.25.

Пат. 2199943 Российская Федерация, A61B5/02, «Способ и устройство регистрации пульсовой волны и биометрическая система» [Текст]/ Минкин В.А.; Штам А.И.; заявитель и патентообладатель Минкин В.А.; Штам А.И. - №2001105097/14; заявл. 2001.02.16; опубл. 2003.03.10.

Пат. 93009423 Российская Федерация, A61B5/02 «Устройство для измерения скорости распространения пульсовой волны и среднего артериального давления» [Текст], Сиволапов А.А.; Бровкович Э.Д.; заявитель и патентообладатель Сиволапов А.А.; Бровкович Э.Д.;.- №2003122269/14; заявл. 1993.02.18; опубл. 1996.04.20.

Пат. 2281686 Российская Федерация, A61B 5/021 «Способ диагностики состояния артериального русла при помощи компьютерной сфигмографии» [Текст], Германов А.В.; Рябов А.Е.; Фатенков В.Н.;; заявитель и патентообладатель Германов А.В.; Рябов А.Е.; Фатенков В.Н.;- №2004113716/14 ; заявл. 2004.05.05 ; опубл. 2006.08.20.

Пат. 2038039 Российская Федерация, A61B5/0205 «Датчик пульсовой волны» [Текст], Романовская А.М.; Романовский В.Ф. ; заявитель и патентообладатель Романовская А.М.; Романовский В.Ф. - №4784700/14; заявл. 1989.12.19 ; опубл. 1995.06.27

М. К. Осколкова, Ю. Д. Сахарова. "Сердце и сосуды при ревматоидном артрите у детей" Изд-во "Медицина", Ташкент, 1974 г.

Инструментальные методы исследования сердечно-сосудистой системы: Справочник. М.: Медицина, 1986. 416 c.

Поединцев Г.М. О режиме движения крови по кровеносным сосудам // Развитие новых неинвазивных методов исследования в кардиологии. Воронеж, 1983. С. 16.

Поединцев Г.М. Некоторые принципы математического моделирования биологических систем и критерии оценки их адекватности // Медицинские информационные системы: Межведомственный тематический научный сборник. Таганрог: ТРТИ, 1988. Вып. 1(VIII). С. 113.

Струмските О.К. Математические способы определения минутного, ударного и фазовых объемов сердца по длительностям фаз сердечного цикла // Развитие новых неинвазивных методов исследования в кардиологии. Воронеж, 1983. С. 16.

Цыдыпов Ч.Ц., Бороноев В.В., Пупышев В.Н., Трубачеев Э.А. Проблемы объективизации пульсовой диагностики тибетской медицины // Межд. семинар по использованию компьютеров в тибетской медицине Тибетская медицина (история, методология изучения и перспективы использования). Улан-Удэ, 1989. С. 24.

Валтнерис А.Д., Яуя Я.А. Сфигмография как метод оценки изменений гемодинамики под влиянием физической нагрузки. Рига: Зинатне, 1988. 132 с.

Азаргаев Л.Н., Бороноев В.В., Шабанова Е.В. Сравнительный анализ сфигмограмм сонной и лучевой артерий // Физиология человека. 1997. Т. 23. № 5. С. 67.

Лищук В.А. Математическая теория кровообращения. М.: Медицина, 1991. 256 с.

Аветикян Ш.Т. Длительность интервалов подъем-инцизура артериального пульса в центральном и периферическом отделах сосудистой системы при различных положениях человека // Физиология человека. 1984. Т. 10. № 2. С. 24.

Бороноев В.В., Ринчинов О.С. Методы сплайн-аппроксимации в задаче амплитудно-временного анализа пульсовой волны // Изв. ВУЗов. Радиофизика. 1998. Т. XLI. № 8. С. 1043.

Куликов Ю.А. Объемные параметры центральной гемодинамики по данным анализа фазовой структуры сердечного цикла // Развитие новых неинвазивных методов исследования в кардиологии. Воронеж, 1983. C. 49.

Милягин В.А., Милягина И.В., Грекова М.В. и др. Новый автоматизированный метод определения скорости распространения пульсовой волны. Функцион. диагностика. 2004; 1: 33-9.

Агеев Ф.Т., Орлова Я.А., Кулев Б.Д. и др. Клинические и сосудистые эффекты бетаксолола у больных с артериальной гипертонией. Кардиология. 2006; 11: 38-43.

Приложение

Похожие работы на - Устройство для измерения скорости распространения пульсовой волны кровотока