22.09.2019

Темные пятна на солнце. О появлении и исчезновении пятен на солнце


Ни одно живое существо не будет иметь роста без солнечного света. Все зачахнет, особенно растения. Даже природные ископаемые - уголь, природный газ, нефть - являются разновидностью солнечной энергии, которая была отложена в запас. Об этом свидетельствует содержащийся в них углерод, накопленный растениями. По мнению ученых, любые изменения в выработке энергии Солнца неизбежно повлекут изменение климата Земли. Что мы знаем об этих изменениях? Что такое солнечные пятна, вспышки и чем чревато для нас их появление?

Источник жизни

Звезда по имени Солнце - наш источник тепла и энергии. Благодаря этому светилу на Земле поддерживается жизнь. О Солнце нам известно больше, чем о какой-либо другой звезде. Это понятно, ведь мы являемся частью Солнечной системы и находимся от неё всего в 150 млн км.

Для ученых большой интерес представляют солнечные пятна, которые возникают, развиваются и исчезают, а вместо исчезнувших появ-ляются новые. Иногда могут образовываться пятна-исполины. Например, в апре-ле 1947 года можно было наблюдать на Солнце сложное пятно площадью, превышающей земную поверхность в 350 раз! Его можно было наблюдать нево-оруженным глазом.

Изучение процессов на центральном светиле

Существуют большие обсерватории, имеющие в своем распоряжении специальные телескопы для изучения Солнца. Благодаря такому оборудованию астрономы могут узнать, какие процессы на Солнце происходят и как они отражаются на земной жизни. Кроме того, благодаря изучению солнечных процессов ученые могут узнать больше о других звездных объектах.

Энергия Солнца в поверхностном слое вырывается в виде света. Астрономы фиксируют существенное различие в солнечной активности, о чем свидетельствуют солнечные пятна, появляющиеся на светиле. Они представляют собой менее светлые и более холодные области солнечного диска в сравнении с общей яркостью фотосферы.

Солнечные образования

Крупные пятна довольно сложно устроены. Им характерна полутень, которая окружает темную область тени и имеет диаметр, больший более чем в два раза, чем размер самой тени. Если наблюдать солнечные пятна на краю диска нашего светила, то возникает такое впечатление, что это глубокая тарелка. Выглядит это так потому, что газ в пятнах прозрачнее, чем в окружающей атмосфере. Поэтому наш взгляд проникает глубже. Температура тени 3(4) х 10 3 К.

Астрономы выяснили, что основание типичного пятна находится на 1500 км ниже поверхности, окружающей его. Это открытие сделали ученые из университета Глазго в 2009 г. Возглавлял астрономическую группу Ф. Уотсон.

Температура солнечных образований

Интересно, что по величине солнечные пятна бывают как маленькими, с диаметром от 1000 до 2000 км, так и гигантскими. Размеры последних значительно превосходят показатели земного шара.

Само по себе пятно - это место, где в фотосферу выходят сильнейшие магнитные поля. Уменьшая энергетический поток, магнитные поля исходят из самих недр Солнца. Поэтому на поверхности, в местах где есть пятна на солнце, температура приблизительно на 1500 К меньше, чем в окружающей поверхности. Соответственно эти процессы делают эти места менее яркими.

Темные образования на Солнце образуют группы из больших и маленьких пятен, которые способны занимать внушительного размера области на диске светила. Однако картина образований нестабильна. Она постоянно меняется, так как пятна на Солнце тоже нестабильны. Они, как было сказано выше, возникают, изменяются в размерах и распадаются. Однако время жизни у групп темных образований довольно-таки продолжительное. Оно может длиться на протяжении 2-3-х солнечных оборотов. Сам период вращения Солнца длится приблизительно 27 суток.

Открытия

Когда Солнце опускается за горизонт, можно увидеть пятна самого большого размера. Так изучали солнечную поверхность астрономы Китая 2000 лет назад. В древности считалось, что пятна - это следствие процессов, происходящих на Земле. В XVII веке такое мнение было опровергнуто Галилео Галилеем. Благодаря использованию телескопа ему удалось сделать много важных открытий:

  • о появлении и исчезновении пятен;
  • об изменении размеров и темных образований;
  • форма, которую имеют черные пятна на Солнце, меняется при приближении их к границе видимого диска;
  • изучая перемещение по солнечному диску темных пятен, Галилео доказал вращение Солнца.

Среди всех мелких пятен обычно выделяются два крупных, которые образуют биполярную группу.

В 1859 году, 1 сентября, независимо друг от друга два английских астронома наблюдали за Солнцем в белом свете. Это были Р. Кэррингтон и Ш. Ходжсон. Они увидели нечто подобное молнии. Оно неожиданно сверкнуло среди одной группы солнечных пятен. Позже это явление было названо солнечной вспышкой.

Взрывы

Какие характеристики имеют вспышки на Солнце и как возникают? Коротко: это очень мощный взрыв на главном светиле. Благодаря ему быстро высвобождается огромнейшее количество энергии, которое накопилось солнечной атмосфере. Как известно, объем этой атмосферы ограничен. Наиболее часто вспышки возникают в областях, считающихся нейтральными. Они расположены между большими биполярными пятнами.

Как правило, вспышки на Солнце начинают развиваться с резкого и неожиданного увеличения яркости на факельной площадке. Это область более яркой и более горячей фотосферы. После этого возникает взрыв катастрофических масштабов. Во время взрыва плазма нагревается от 40 до 100 млн К. Эти проявления можно наблюдать в многократном усилении ультрафиолетового и рентгеновского излучения коротких волн Солнца. Помимо этого, наше светило издает мощный звук и выбрасывает ускоренные корпускулы.

Какие идут процессы и что происходит с Солнцем во время вспышек?

Иногда возникают такие мощные вспышки, которые генерируют солнечные космические лучи. Протоны космических лучей достигают половинной скорости света. Эти частицы - носители смертоносной энергии. Они могут беспрепятственно проникать сквозь корпус космического корабля и разрушать живые организмы на клеточном уровне. Поэтому солнечные космические представляют высокую опасность для экипажа, который настигла во время полета внезапная вспышка.

Так, Солнце излучает радиацию в виде частиц и электромагнитных волн. Общий поток излучения (видимого) остается постоянным всегда. Причем с точностью до долей процента. Слабые вспышки можно наблюдать всегда. Большие происходят раз в несколько месяцев. В годы максимальной солнечной активности большие вспышки наблюдаются несколько раз на месяц.

Изучая, что происходит с Солнцем во время вспышек, астрономы смогли измерить длительность этих процессов. Маленькая вспышка длится от 5 до 10 минут. Самые мощные - до несколько часов. За время вспышки, в пространство вокруг Солнца, выбрасывается плазма с массой до 10 млрд тонн. При этом выделяется энергия, имеющая эквивалент от десятков до сотен миллионов водородных бомб! Но мощность даже самых огромных вспышек не будет больше сотых долей процента от мощности полного солнечного излучения. Вот почему при вспышке не наблюдается заметного роста светимости Солнца.

Солнечные преобразования

5800 К - приблизительно такая температура на поверхности солнца, а в центре она достигает 16 млн К. На солнечной поверхности наблюдаются пузыри (зернистость). Их возможно рассмотреть только с помощью солнечного телескопа. С помощью процесса конвекции, происходящей в солнечной атмосфере, из нижних слоев тепловая энергия переносится в фотосферу и придает ей пенистое строение.

Не только температура на поверхности Солнца и в самом его центре различна, но и плотность с давлением. С глубиной все показатели увеличиваются. Так как в ядре температура очень высокая, там происходит реакция: водород преобразуется в гелий и при этом происходит выделение огромного количества тепла. Таким образом Солнце удерживается от сжатия под действием своей же силы тяжести.

Интересно, что наше светило - это одиночная типичная звезда. Масса и размер звезды Солнце в диаметре соответственно: 99,9 % массы объектов солнечной системы и 1,4 млн км. Жить Солнцу, как звезде, осталось 5 миллиардов лет. Оно будет постепенно нагреваться и увеличиваться в размерах. По идее, настанет момент, когда в центральном ядре весь водород израсходуется. Солнце станет в 3 раза больше сегодняшних размеров. В итоге оно остынет и превратится в белый карлик.

Возникновение

Возникновение солнечного пятна: магнитные линии проникают сквозь поверхность Солнца

Пятна возникают в результате возмущений отдельных участков магнитного поля Солнца. В начале этого процесса пучок магнитных линий «прорывается» сквозь фотосферу в область короны и тормозит конвекционное движение плазмы в грануляционных ячейках, препятствуя в этих местах переносу энергии из внутренних областей наружу. Первым в этом месте возникает факел, чуть позже и западнее – маленькая точка, называемая пора , размером несколько тысяч километров. В течение нескольких часов величина магнитной индукции растет (при начальных значениях 0,1 тесла), и размер и количество пор увеличивается. Они сливаются друг с другом и формируют одно или несколько пятен. В период наибольшей активности пятен величина магнитной индукции может достигать 0,4 тесла.

Срок существования пятен достигает нескольких месяцев, то есть отдельные пятна могут наблюдаться в течение нескольких оборотов Солнца вокруг себя. Именно этот факт (движение наблюдаемых пятен вдоль солнечного диска) послужил основой для доказательства вращения Солнца и позволил провести первые измерения периода обращения Солнца вокруг своей оси.

Пятна обычно формируются группами, однако иногда возникает одиночное пятно, живущее всего несколько дней, или два пятна, с направленными из одного в другое магнитными линиями.

Первое возникшее в такой двойной группе называется P-пятно (англ. preceding) старейшее – F-пятно (англ. following).

Только половина пятен живут больше двух дней, и всего десятая часть переживает 11-дневный порог

Группы пятен всегда вытягиваются параллельно солнечному экватору.

Свойства

Средняя температура поверхности Солнца около 6000 С (эффективная температура – 5770 К, температура излучения – 6050 К). Центральная, самая темная, область пятен имеет температуру всего около 4000 С, наружные области пятен, граничащие с нормальной поверхностью, - от 5000 до 5500 С. Несмотря на то, что температура пятен ниже, их вещество все равно излучает свет, хоть и в меньшей степени, чем остальная поверхность. Именно из-за этой разницы температур при наблюдении и возникает ощущение, что пятна темные, почти черные, хотя на самом деле они тоже светятся, однако их свечение теряется на фоне более яркого солнечного диска.

Пятна – области наибольшей активности на Солнце. В случае, если пятен много, то существует высокая вероятность того, что произойдет пересоединение магнитных линий – линии, проходящие внутри одной группы пятен, рекомбинируют с линиями из другой группы пятен, имеющими противоположную полярность. Видимым результатом этого процесса является солнечная вспышка. Всплеск излучения, достигая Земли, вызывает сильные возмущения ее магнитного поля, нарушает работу спутников и даже оказывает влияние на расположенные на планете объекты. Благодаря нарушениям магнитного поля увеличивается вероятность возникновения северных сияний в низких географических широтах. Ионосфера Земли также подвержена флуктуациям солнечной активности, что проявляется в изменении распространения коротких радиоволн.

В годы, когда пятен на солнце мало, размер Солнца уменьшается на 0,1%. Годы в промежутке между 1645 и 1715 (минимум Маундера), известны глобальным похолоданием, и называют малым ледниковым периодом.

Классификация

Пятна классифицируют в зависимости от срока жизни, размера, расположения.

Стадии развития

Локальное усиление магнитного поля, как было сказано выше, тормозит движение плазмы в конвекционных ячейках, тем самым замедляя вынос тепла на поверхность Солнца. Охлаждение затронутых этим процессом гранул (примерно на 1000 С) приводит к их потемнению и формированию единичного пятна. Некоторые из них исчезают через несколько дней. Другие развиваются в биполярные группы из двух пятен, магнитные линии в которых имеют противоположную полярность. Из них могут сформироваться группы из множества пятен, которые в случае дальнейшего увеличения области полутени объединяют до сотни пятен, достигая размеров в сотни тысяч километров. После этого происходит медленное (в течение нескольких недель или месяцев) снижение активности пятен и уменьшение их размеров до маленьких двойных или одинарных точек.

Самые крупные группы пятен всегда имеют связанную группу в другом полушарии (северном или южном). Магнитные линии в таких случаях выходят из пятен в одном полушарии и входят в пятна в другом.

Цикличность

Реконструкция солнечной активности за 11000 лет

Солнечный цикл связан с частотой появления пятен, их активностью и сроком жизни. Один цикл охватывает примерно 11 лет. В периоды минимума активности пятен на Солнце очень мало или нет вообще, в то время как в период максимума их может наблюдаться несколько сотен. В конце каждого цикла полярность солнечного магнитного поля меняется на противоположную, поэтому правильнее говорить о 22-летнем солнечном цикле.

Длительность цикла

11 лет – приблизительный промежуток времени. Хотя в среднем он длится 11,04 года, бывают циклы длиной от 9 до 14 лет. Средние значения также меняются на протяжении столетий. Так, в 20 веке средняя длина цикла составила 10,2 года. Минимум Маундера (наряду с другими минимумами активности) говорят, что возможно увеличение цикла до порядка в сотню лет. По анализам изотопа Be 10 в гренландских льдах получены данные, что за последние 10000 лет было более 20 таких долгих минимумов.

Длина цикла непостоянна. Швейцарский астроном Макс Вальдмайер утверждал, что переход от минимума к максимуму солнечной активности происходит тем быстрее, чем больше максимальное количество солнечных пятен, зарегистрированное в этом цикле.

Начало и конец цикла

Пространственно-временное распределение магнитного поля по поверхности Солнца.

В прошлом началом цикла считался момент, когда солнечная активность пребывала в точке своего минимума. Благодаря современным методам измерений стало возможно определять изменение полярности солнечного магнитного поля, поэтому сейчас за начало цикла принимают момент изменения полярности пятен.

Циклы идентифицируются по порядковому номеру, начиная с первого, отмеченного в 1749 Johann Rudolf Wolfом. Текущий цикл (апрель 2009) имеет номер 24.

Данные о последних солнечных циклах
Номер цикла Год и месяц начала Год и месяц максимума Максимальное количество пятен
18 1944-02 1947-05 201
19 1954-04 1957-10 254
20 1964-10 1968-03 125
21 1976-06 1979-01 167
22 1986-09 1989-02 165
23 1996-09 2000-03 139
24 2008-01 2012-12 87.

В 19 веке и приблизительно до 1970 года существовала догадка, что существует периодичность изменения максимального количества солнечных пятен. Эти 80-летние циклы (с наименьшими максимумами пятен в 1800-1840 и 1890-1920 гг.) в настоящее время связывают с процессами конвекции. Другие гипотезы говорят о существовании еще больших, 400-летних циклов.

Литература

  • Физика космоса. Маленькая энциклопедия, М.: Советская Энциклопедия, 1986

Wikimedia Foundation . 2010 .

Смотреть что такое "Пятна на Солнце" в других словарях:

    См … Словарь синонимов

    Как солнце на небе, на одном солнце онучи сушили, пятна в солнце, пятна на солнце.. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. солнце солнцепек, (ближайшая к нам) звезда, паргелий,… … Словарь синонимов

    У этого термина существуют и другие значения, см. Солнце (значения). Солнце … Википедия

Солнечные пятна наблюдаются как области пониженной светимости на поверхности Солнца. Температура плазмы в центре солнечного пятна понижена до примерно 3700 K по сравнению с температурой 5700 K в окружающей фотосфере Солнца . Хотя отдельные солнечные пятна живут обычно не более нескольких дней, самые большие из них могут существовать на поверхности Солнца в течение нескольких недель. Солнечные пятна являются областями очень сильного магнитного поля , величина которого превышает величину магнитного поля Земли в тысячи раз. Чаще всего пятна формируются в виде двух близко расположенных групп, магнитное поле которых имеет разную полярность. Поле одной группы имеет положительную (или северную) полярность, а поле другой группы - отрицательную (или южную). Это поле наиболее сильное в самой темной части солнечного пятна - его тени. Линии поля здесь уходят в поверхность Солнца почти вертикально. В более светлой части пятна (его полутени) поле имеет меньшую величину, и его линии расположены более горизонтально. Солнечные пятна представляют огромный интерес для исследования, поскольку являются областями самых мощных солнечных вспышек , оказывающих наиболее сильное влияние на Землю.

Факелы

Гранулы - это малые (размером около 1000 км) элементы, похожие на ячейки неправильной формы, которые как сетка покрывают всю фотосферу Солнца , за исключением солнечных пятен . Эти поверхностные элементы являются верхней частью уходящих вглубь Солнца конвективных ячеек. В центре этих ячеек горячее вещество поднимается из внутренних слоев Солнца , затем растекается горизонтально по поверхности, охлаждается и опускается вниз на темных внешних границах ячейки. Отдельные гранулы живут совсем недолго, всего около 20 минут. В результате сетка грануляции постоянно меняет свой вид. Это изменение хорошо видно в фильме (470 kB MPEG) , полученом на Вакуумном Солнечном Телескопе в Швеции (Swedish Vacuum Solar Telescope). Потоки внутри гранул могут достигать сверхзвуковых скоростей более 7 км в секунду и производить звуковые "удары", которые приводят к формированию волн на поверхности Солнца .

Супергранулы

Супергранулы имеют конвективную природу, схожую с природой обычных гранул, но обладают заметно большими размерами (около 35,000 км). В отличие от гранул, которые видны на фотосфере обычным глазом, супергранулы чаще всего обнаруживают себя по эффекту Доплера, в соответствиии с которым излучение, поступающее от вещества, движущегося к нам, смещается по оси длин волн в голубую сторону, а излучение вещества, движущегося от нас, смещается в красную сторону. Супергранулы также покрывают всю поверхность Солнца и непрерывно эволюционируют. Отдельные супергранулы могут жить один или два дня и иметь среднюю скорость течения около 0.5 км в секунду. Конвективные потоки плазмы внутри супергранул сгребают линии магнитного поля к краям ячейки, где это поле формирует хромосферную сетку.

О том, что на Солнце бывают пятна, люди узнали уже очень давно. В древних русских и китайских летописях, а также в хрониках других народов не редко встречались упоминания о наблюдениях пятен на Солнце. В русских летописях отмечалось, что пятна были видны "Аки гвозди". Записи помогли подтвердить установленную уже позже (в 1841 году) закономерность периодического увеличения числа солнечных пятен. Чтобы заметить такой объект простым глазом (при соблюдении, конечно, мер предосторожности - сквозь густо закопченное стекло или засвеченную негативную фотопленку), необходимо, чтобы его размер на Солнце был не менее 50 - 100 тысяч километров, что в десятки раз превышает радиус Земли.

Солнце состоит из раскаленных газов, которые все время движутся и перемешиваются, и поэтому ничего постоянного и неизменного на солнечной поверхности нет. Самыми устойчивыми образованиями являются солнечные пятна. Но и их вид изо дня в день меняется, и они тоже, то появляются, то исчезают. В момент появления солнечное пятно обычно имеет небольшие размеры, оно может исчезнуть, но может и сильно увеличиться.

Главную роль в большинстве наблюдаемых на Солнце явлений играют магнитные поля. Солнечное магнитное поле имеет очень сложную структуру и непрерывно меняется. Совместные действия циркуляции солнечной плазмы в конвективной зоне и дифференциального вращения Солнца постоянно возбуждает процесс усиления слабых магнитных полей и возникновения новых. Видимо это обстоятельство и является причиной возникновения на Солнце пятен. Пятна то появляются, то исчезают. Их количество и размеры меняются. Но, примерно, каждые 11 лет число пятен становится наибольшим. Тогда говорят, что Солнце активно. С таким же периодом (~ 11 лет) происходит и переполюсовка магнитного поля Солнца. Естественно предположить, что эти явления связанны между собой.

Развитие активной области начинается с усиления магнитного поля в фотосфере, что приводит к появлению более ярких участков - факелов (температура фотосферы Солнца в среднем 6000К, в области факелов примерно на 300К выше). Дальнейшее усиление магнитного поля приводит к появлению пятен.

В начале 11-летнего цикла пятна в небольшом количестве начинают появляться на сравнительно высоких широтах (35 - 40 градусов), а за тем постепенно зона пятнообразования спускается к экватору, до широты плюс 10 - минус 10 градусов, но на самом экваторе пятен, как правило, не бывает.

Галилео Галилей одним из первых заметил, что пятна наблюдаются не всюду на Солнце, а, главным образом, на средних широтах, в пределах так называемых "королевских зон".

Сначала обычно появляются одиночные пятна, но затем из них возникает целая группа, в которой выделят два больших пятна - одно - на западном, другое - на восточном краю группы. В начале нашего века выяснилось, что полярности восточных и западных пятен всегда противоположны. Они образуют как бы два полюса одного магнита, а потому такую группу называют биполярной. Типичное солнечное пятно имеет размеры несколько десятков тысяч километров.

Галилей, зарисовывая пятна, отмечал вокруг некоторых из них серую каемку.

Действительно, пятно состоит из центральной, более темной части - тени и более светлой области - полутени.

Солнечные пятна иногда бывают видны на его диске даже невооруженным глазом. Кажущаяся чернота этих образований вызвана тем, что их температура примерно на 1500 градусов ниже температуры окружающей их фотосферы (и соответственно непрерывное излучение от них гораздо меньше). Одиночное развитое пятно состоит из темного овала - так называемой тени пятна, окруженного более светлой волокнистой полутенью. Неразвитые мелкие пятна без полутени называют порами. Зачастую пятна и поры образуют сложные группы.

Типичная группа пятен изначально возникает в виде одной или нескольких пор в области невозмущенной фотосферы. Большинство таких групп обычно исчезают через 1-2 суток. Но некоторые последовательно растут и развиваются, образовывая достаточно сложные структуры. Солнечные пятна могут быть больше в диаметре, чем Земля. Они часто объединяются в группы. Они формируются за несколько дней и обычно исчезают за неделю. Некоторые большие пятна, хотя, могут сохраняться в течение месяца. Большие группы солнечных пятен более активны, чем маленькие группы или отдельные пятна.

Солнце меняет состояние магнитосферы и атмосферы Земли. Магнитные поля и потоки частиц, которые идут от солнечных пятен, достигают Земли и влияют прежде всего на мозг, сердечно-сосудистую и кровеносную системы человека, на ее физическое, нервное и психологическое состояние. Высокий уровень солнечной активности, его быстрые изменения возбуждают человека, а поэтому и коллектив, класс, общество, особенно, когда есть общие интересы и понятная и воспринимаемая идея.

Поворачиваясь к Солнцу то одним, то другим своим полушарием, Земля получает энергию. Этот поток можно представить в виде бегущей волны: там, где падает свет -- ее гребень, где темно -- провал. Иными словами, энергия то прибывает, то убывает. Об этом в своем знаменитом естественном законе говорил еще Михаил Ломоносов.

Теория о волнообразном характере поступления энергии на Землю побудила основоположника гелиобиологии Александра Чижевского обратить внимание на связь между увеличением солнечной активности и земными катаклизмами. Первое наблюдение, сделанное ученым, датируется июнем 1915 года. На Севере блистали полярные сияния, наблюдавшиеся как в России, так и в Северной Америке, а "магнитные бури непрерывно нарушали движение телеграмм". Как раз в этот период ученый обращает внимание на то, что повышенная солнечная активность совпадает с кровопролитием на Земле. И действительно, сразу после появления больших пятен на Солнце на многих фронтах Первой мировой усилились военные действия.

Теперь астрономы говорят, что наше светило становится все более ярким и жарким. Это связано с тем, за последние 90 лет активность его магнитного поля увеличилась более чем вдвое, причем наибольший рост произошел за последние 30 лет. В Чикаго, на ежегодной конференции Американского астрономического общества, прозвучало предупреждение ученых о грозящих человечеству неприятностях. Как раз в тот момент, когда компьютеры по всей планете будут приспосабливаться к условиям работы в 2000 году, наше светило вступит в наиболее бурную фазу своей 11-летней циклической.Теперь ученые смогут безошибочно предсказывать солнечные вспышки, что даст возможность заблаговременно подготовиться к возможным сбоям в работе радио- и электросетей. Сейчас большинство солнечных обсерваторий подтвердило "штормовое предупреждение" на следующий год, т.к. пик солнечной активности наблюдается каждые 11 лет, а предыдущая буря наблюдалась в 1989 году.

Это может привести к тому, что на Земле выйдут из строя линии электропередач, изменятся орбиты спутников, которые обеспечивают работу систем связи, "направляют" самолеты и океанские лайнеры. Солнечное "буйство" обычно характеризуется мощными вспышками и появлением множества тех самых пятен.

Александр Чижевский еще в 20-х гг. обнаружил, что солнечная активность влияет на экстремальные земные события - эпидемии, войны, революции… Земля не только обращается вокруг Солнца - все живое на нашей планете пульсирует в ритмах солнцедеятельности, - установил он.

ПРЕДЧУВСТВИЕМ ИСТИНЫ назвал поэзию французский историк и социолог Ипполит Тард. В 1919 г. Чижевский написал стихотворение, в котором провидел свою судьбу. Посвящено оно было Галилео Галилею:

И вновь и вновь взошли

на Солнце пятна,

И омрачились трезвые умы,

И пал престол, и были неотвратны

Голодный мор и ужасы чумы

И жизни лик подернулся гримасой:

Метался компас, буйствовал народ,

А над Землей и над людскою массой

Свершало Солнце свой законный ход.

О ты, узревший солнечные пятна

С великолепной дерзостью своей,

Не ведал ты, как будут мне понятны

И близки твои скорби, Галилей!

В 1915-1916 гг., следя за происходящим на русско-германском фронте, Александр Чижевский сделал поразившее его современников открытие. Усиление солнечной активности, фиксируемое в телескоп, совпадало по времени с активизацией боевых действий. Заинтересовавшись, он провел статистическое исследование среди родных и знакомых на предмет возможной связи нервно-психических и физиологических реакций с появлением вспышек и пятен на Солнце. Математически обработав полученные таблички, он пришел к потрясающему выводу: Солнце влияет на всю нашу жизнь гораздо тоньше и глубже, чем это представлялось до этого. В кровавой и мутной замяти конца века мы видим наглядное подтверждение его идей. А в спецслужбах разных стран ныне целые отделы занимаются анализом солнечной активности... В главном, была доказана синхронность максимумов солнечной активности с периодами возникновения революций и войн, периоды усиленной деятельности солнечных пятен часто совпадали со всякими общественными смятениями.

Недавно несколько космических спутников зафиксировали выброс солнечных протуберанцев, характеризующийся необычно высоким уровнем рентгеновского излучения. Такие явления представляют серьезную угрозу для Земли и ее жителей. Вспышка такой мощности потенциально способна дестабилизировать работу энергетических сетей. К счастью, поток энергии не затронул Землю и никаких ожидаемых неприятностей не случилось. Но само по себе событие является провозвестником так называемого "солнечного максимума", сопровождающегося выбросом гораздо большего количества энергии, способного вывести из строя коммуникации связи и силовые линии, трансформаторы, под угрозой будут находиться космонавты и космические спутники, находящиеся вне магнитного поля Земли и не защищенные атмосферой планеты. На сегодняшний день спутников NASA на орбите больше, чем когда-либо прежде. Существует угроза и для самолетов, выражающаяся в возможности прекращения радиосвязи, глушении радиосигналов.

Солнечные максимумы плохо поддаются прогнозированию, известно только, что они повторяются примерно через каждые 11 лет. Ближайший должен случиться в середине 2000 года, и его продолжительность будет от года до двух лет. Так утверждает Дэвид Хатавей, гелиофизик Космического центра полетов Marshall, NASA.

Протуберанцы в течение солнечного максимума могут возникать ежедневно, но неизвестно, какой именно силой они будут обладать и затронут ли они нашу планету. В течение нескольких прошлых месяцев всплески солнечной активности и вызванные ими направленные на Землю потоки энергии были слишком слабы, чтобы причинить какой-либо ущерб. Помимо рентгеновского излучения, это явление несет и другие опасности: Солнце выбрасывает миллиард тонн ионизированного водорода, волна которого перемещается со скоростью миллион миль в час и способна достигнуть Земли за несколько дней. Еще большую проблему представляют собой энергетические волны протонов и альфа-частиц. Они перемещаются с гораздо большей скоростью и не оставляют времени для принятия контрмер, в отличие от волн ионизированного водорода, с пути которых можно успеть убрать спутники и самолеты.

В некоторых, самых экстремальных случаях все три волны могут достигнуть Земли внезапно и почти одновременно. Защиты нет, ученые пока не в силах точно предсказать такой выброс и тем более его последствия.

Вещества и, как следствие, снижением потока переноса тепловой энергии в этих областях.

Количество пятен на Солнце (и связанное с ним число Вольфа) - один из главных показателей солнечной магнитной активности .

История изучения

Первые сообщения о пятнах на Солнце относятся к наблюдениям 800 года до н. э. в Китае .

Зарисовки пятен из хроники Иоанна Вустерского

Впервые пятна были зарисованы в 1128 году в хронике Иоанна Вустерского .

Первое известное упоминание солнечных пятен в древнерусской литературе содержится в Никоновской летописи , в записях, относящихся ко второй половине XIV века :

бысть знамение на небеси, солнце бысть, аки кровь, и по нем места черны

бысть знамение в солнце, места черны по солнцу, аки гвозди, и мгла велика была

Первые исследования фокусировались на природе пятен и их поведении . Несмотря на то, что физическая природа пятен оставалась неясной вплоть до XX века , наблюдения продолжались. К XIX веку уже имелся достаточно продолжительный ряд наблюдений пятен , чтобы заметить периодические вариации в активности Солнца. В 1845 году Д. Генри и С. Александер (англ. S. Alexander ) из Принстонского университета провели наблюдения Солнца с помощью специального термометра (en:thermopile) и определили, что интенсивность излучения пятен, по сравнению с окружающими областями Солнца, понижена .

Возникновение

Пятна возникают в результате возмущений отдельных участков магнитного поля Солнца. В начале этого процесса трубки магнитного поля «прорываются» сквозь фотосферу в область короны, и сильное поле подавляет конвективное движение плазмы в гранулах , препятствуя в этих местах переносу энергии из внутренних областей наружу. Сначала в этом месте возникает факел , чуть позже и западнее - маленькая точка, называемая по́ра , размером несколько тысяч километров. В течение нескольких часов величина магнитной индукции растет (при начальных значениях 0,1 тесла), размер и количество пор увеличивается. Они сливаются друг с другом и формируют одно или несколько пятен. В период наибольшей активности пятен величина магнитной индукции может достигать 0,4 тесла.

Срок существования пятен достигает нескольких месяцев, то есть отдельные группы пятен могут наблюдаться в течение нескольких оборотов Солнца. Именно этот факт (движение наблюдаемых пятен по солнечному диску) послужил основой для доказательства вращения Солнца и позволил провести первые измерения периода обращения Солнца вокруг своей оси.

Пятна обычно образуются группами, однако иногда возникает одиночное пятно, живущее всего несколько дней, или биполярная группа: два пятна разной магнитной полярности, соединённые линиями магнитного поля. Западное пятно в такой биполярной группе называется «ведущим», «головным» или «P-пятном» (от англ. preceding ), восточное - «ведомым», «хвостовым» или «F-пятном» (от англ. following ).

Только половина пятен живёт больше двух дней, и всего десятая часть - более 11 дней.

В начале 11-летнего цикла солнечной активности пятна на Солнце появляются на высоких гелиографических широтах (порядка ±25-30°), а с ходом цикла пятна мигрируют к солнечному экватору, в конце цикла достигая широт ±5-10°. Эта закономерность носит название «закон Шпёрера ».

Группы пятен ориентируются приблизительно параллельно солнечному экватору, однако отмечается некоторый наклон оси группы относительно экватора, который имеет тенденцию к увеличению для групп, расположенных дальше от экватора (т. н. «закон Джоя »).

Свойства

Фотосфера Солнца в области, где располагается пятно, расположена примерно на 500-700 км глубже, чем верхняя граница окружающей фотосферы . Это явление носит название «вильсоновской депрессии ».

Пятна - области наибольшей активности на Солнце. В случае, если пятен много, то существует высокая вероятность того, что произойдет пересоединение магнитных линий - линии, проходящие внутри одной группы пятен, рекомбинируют с линиями из другой группы пятен, имеющими противоположную полярность. Видимым результатом этого процесса является солнечная вспышка . Всплеск излучения, достигая Земли, вызывает сильные возмущения её магнитного поля, нарушает работу спутников и даже оказывает влияние на расположенные на планете объекты. Из-за нарушений магнитного поля Земли увеличивается вероятность возникновения северных сияний в низких географических широтах. Ионосфера Земли также подвержена флуктуациям солнечной активности, что проявляется в изменении распространения коротких радиоволн.

Классификация

Пятна классифицируют в зависимости от срока жизни, размера, расположения.

Стадии развития

Локальное усиление магнитного поля, как было сказано выше, тормозит движение плазмы в конвекционных ячейках, тем самым замедляя вынос тепла на фотосферу Солнца. Охлаждение затронутых этим процессом гранул (примерно на 1000 °C) приводит к их потемнению и формированию единичного пятна. Некоторые из них исчезают через несколько дней. Другие развиваются в биполярные группы из двух пятен, магнитные линии в которых имеют противоположную полярность. Из них могут сформироваться группы из множества пятен, которые в случае дальнейшего увеличения области полутени объединяют до сотни пятен, достигая размеров в сотни тысяч километров. После этого происходит медленное (в течение нескольких недель или месяцев) снижение активности пятен и уменьшение их размеров до маленьких двойных или одинарных точек.

Самые крупные группы пятен всегда имеют связанную группу в другом полушарии (северном или южном). Магнитные линии в таких случаях выходят из пятен в одном полушарии и входят в пятна в другом.

Размеры групп пятен

Размеры группы пятен принято характеризовать её геометрической протяжённостью, а также количеством входящих в неё пятен и их полной площадью.

В группе может насчитываться от одного до полутора сотен и более пятен. Площади групп, которые удобно измерять в миллионных долях площади солнечной полусферы (м.с.п.), варьируются от нескольких м.с.п. до нескольких тысяч м.с.п.

Максимальную площадь за весь период непрерывных наблюдений групп пятен (с 1874 по 2012 годы) имела группа № 1488603 (по Гринвичскому каталогу), появившаяся на диске Солнца 30 марта 1947 года, в максимуме 18-го 11-летнего цикла солнечной активности . К 8 апреля её полная площадь достигла 6132 м.с.п. (1,87·10 10 км², что более чем в 36 раз превышает площадь земного шара). На фазе своего максимального развития эта группа состояла из более чем 170 отдельных солнечных пятен.

Цикличность

Солнечный цикл связан с частотой появления пятен, их активностью и сроком жизни. Один цикл охватывает примерно 11 лет. В периоды минимума активности пятен на Солнце очень мало или нет вообще, в то время как в период максимума их может наблюдаться несколько сотен. В конце каждого цикла полярность солнечного магнитного поля меняется на противоположную, поэтому правильнее говорить о 22-летнем солнечном цикле.

Длительность цикла

Хотя в среднем цикл солнечной активности длится около 11 лет, бывают циклы длиной от 9 до 14 лет. Средние значения также меняются на протяжении столетий. Так, в XX веке средняя длина цикла составила 10,2 года.

Форма цикла непостоянна. Швейцарский астроном Макс Вальдмайер утверждал, что переход от минимума к максимуму солнечной активности происходит тем быстрее, чем больше максимальное количество солнечных пятен, зарегистрированное в этом цикле (т. н. «правило Вальдмайера »).

Начало и конец цикла

В прошлом началом цикла считался момент, когда солнечная активность пребывала в точке своего минимума. Благодаря современным методам измерений стало возможно определять изменение полярности солнечного магнитного поля, поэтому сейчас за начало цикла принимают момент изменения полярности пятен. [ ]

Нумерация циклов была предложена Р. Вольфом . Первый цикл, согласно этой нумерации, начался в 1749 году. В 2009 году начался 24-й солнечный цикл.

  • Данные последней строки - прогноз

Существует периодичность изменения максимального количества солнечных пятен с характерным периодом около 100 лет («вековой цикл»). Последние минимумы этого цикла приходились примерно на 1800-1840 и 1890-1920 годы. Есть предположение о существовании циклов ещё большей длительности.