11.10.2019

Скелетные мышцы выполняют функции. Строение скелетной мышцы и ее свойства


Скелетные мышцы построены из поперечнополосатой скелетной мышечной ткани. Они являются произвольными, т.е. их сокращение осуществляется сознательно и зависит от нашего желания. Всего в теле человека насчитывается 639 мышц, 317 из них - парные, 5 - непарные.

Скелетная мышца - это орган, имеющий характерную форму и строение, типичную архитектонику сосудов и нервов, построенный в основном из поперечнополосатой мышечной ткани, покрытый снаружи собственной фасцией, обладающий способностью к сокращению.

Принципы классификации мышц . В основу классификации скелетных мышц человеческого организма положены различные признаки: область тела, происхождение и форма мышц, функция, ана-

томо-топографические взаимоотношения, направление мышечных волокон, отношение мышцы к суставам. По отношению к областям человеческого тела различают мышцы туловища, головы, шеи и конечностей. Мышцы туловища в свою очередь разделяют на мышцы спины, груди и живота. Мышцы

верхней конечности соответственно имеющимся частям скелета делят на мышцы пояса верхней конечности, мышцы плеча, предплечья и кисти. Гомологичные отделы характерны для мышц нижней конечности - мышцы пояса нижней конечности (мышцы таза), мышцы бедра, голени и стопы.

По форме мышцы могут быть простыми и сложными. К простым мышцам относят длинные, короткие и широкие. Сложными считают многоглавые (двуглавые, трехглавые, четырехглавые), многосухожильные, двубрюшные мышцы. Сложными являются также мышцы определенной геометрической формы: круглые, квадратные, дельтовидные, трапециевидные, ромбовидные и т. д.

По функции различают мышцы-сгибатели и разгибатели; мышцы приводящие и отводящие; вращающие (ротаторы); сфинктеры (суживатели) и дилятаторы (расширители). Вращающие мышцы в

зависимости от направления движения подразделяют на пронаторы и супинаторы (вращающие внутрь и наружу). Также предусматривается подразделение их на синергисты и антагонисты. Синергисты - это мышцы, выполняющие одинаковую функцию и при этом усиливающие друг друга. Антагонисты - это мышцы, выполняющие противоположные функции, т.е. производящие противоположные друг другу движения.

По расположению - поверхностные и глубокие; наружные и внутренние; медиальные и латеральные.

По направлению мышечных волокон - с параллельным, косым, круговым и поперечным ходом мышечных волокон.

Строение мышц. Скелетная мышца как орган включает в себя собственно мышечную и сухожильную части, систему соединительнотканных оболочек, собственные сосуды и нервы. Средняя, утолщенная часть мышцы называется брюшком. На обоих концах мышцы в большинстве случаев находятся сухожилия, с помощью которых она прикрепляется к костям. Структурно-функциональной единицей собственно мышечной части является поперечнополосатое мышечное волокно .

В процессе мышечного сокращения актиновые нити втягиваются в промежутки между миозиновыми, изменяют свою конфигурацию, сцепляются друг с другом. Обеспечение энергией этих процессов происходит за счет расщепления в митохондриях молекул АТФ.

Функциональная единица мышцы - мион - совокупность поперечнополосатых мышечных волокон, иннервируемых одним двигательным нервным волокном. Вспомогательным аппаратом скелетных мышц являются фасции, фиброзные и костно-фиброзные каналы, синовиальные влагалища, синовиальные сумки, мышечные блоки и сесамовидные кости. Фасции представляют собой соединительнотканные оболочки, ограничивающие подкожную жировую клетчатку, покрывающие мышцы и некоторые внутренние органы.

Скелетные мышцы - активная часть опорно-двигатель­ного аппарата, включающего также кости, связки, сухожилия и их сочленения. С функциональной точки зрения к двигатель­ному аппарату можно отнести и мотонейроны, вызывающие возбуждение мышечных волокон. Аксон мотонейрона при вхо­де в скелетную мышцу ветвится, и каждая веточка участвует в формировании нервно-мышечного синапса на отдельном мы­шечном волокне.

Мотонейрон вместе с иннервируемыми им мышечными во­локнами называют нейромоторной (или двигательной) едини­цей (ДЕ). В глазных мышцах одна двигательная единица со­держит 13-20 мышечных волокон, в мышцах туловища - со 1 тни волокон, в камбаловидной мышце - 1500-2500 волокон. Мышечные волокна одной ДЕ имеют одинаковые морфофунк- циональные свойства.

Функциями скелетных мышц являются: 1) передвижение тела в пространстве; 2) перемещение частей тела относитель­но друг друга, втом числе осуществление дыхательных движе­ний, обеспечивающих вентиляцию легких; 3) поддержание по­ложения и позы тела. Кроме того, поперечно-полосатые мыш­цы имеют значение в выработке тепла, поддерживающего температурный гомеостаз, и в депонировании некоторых пита­тельных веществ.

Физиологические свойства скелетных мышц выделяют:

1) возбудимость. Из-за высокой поляризации мембран поперечно-полосатых мышечных волокон (90 мВ) возбуди­мость их ниже, чем у нервных волокон. Амплитуда потенциала действия у них (130 мВ) больше, чем удругих возбудимых кле­ток. Это позволяет на практике достаточно легко регистриро­вать биоэлектрическую активность скелетных мышц. Дли­тельность потенциала действия составляет 3-5 мс. Этим определяется короткий период абсолютной рефрактерности мышечных волокон;

          проводимость. Скорость проведения возбуждения вдоль мембраны мышечного волокна составляет 3-5 м/с;

          сократимость. Представляет специфическое свойство мышечных волокон изменять свою длину и напряжение при развитии возбуждения.

Скелетные мышцы обладают также эластичностью и вязкостью.

Режимы и виды мышечных сокращений. Изотониче­ский режим - мышца укорачивается при отсутствии возрас­тания ее напряжения. Такое сокращение возможно только для изолированной (удаленной из организма) мышцы.

Изометрический режим - напряжение мышцы возрас­тает, а длина практически не уменьшается. Такое сокращение наблюдается при попытке поднять непосильный груз.

Ауксотонический режим мышца укорачивается и возрастает ее напряжение. Такое сокращение чаще всего на­блюдается при осуществлении трудовой деятельности челове­ка. Вместо термина "ауксотонический режим" часто применя­ется название концентрический режим.

Выделяют два вида мышечных сокращений: одиночное и те- таническое.

Одиночное мышечное сокращение проявляется в резуль­тате развития одиночной волны возбуждения в мышечных во­локнах. Этого можно достичь при воздействии на мышцу очень коротким (около 1 мс) стимулом. В развитии одиночного мы­шечного сокращения выделяют латентный период, фазу уко­рочения и фазу расслабления. Сокращение мышцы начинает проявляться через 10 мс от начала воздействия раздражителя. Этот временной интервал называют латентным периодом (рис.5.1). Затем последует развитие укорочения (длитель­ность около 50 мс) и расслабления (50-60 мс). Считается, что на весь цикл одиночного мышечного сокращения затрачивает­ся в среднем 0,1 с. Но следует иметь в виду, что длительность одиночного сокращения у разных мышц может сильно варьи­ровать. Она также зависит от функционального состояния мышцы. Скорость сокращения и особенно расслабления за­медляется при развитии утомления мышцы. К быстрым мыш­цам, имеющим короткий период одиночного сокращения, от­носятся мышцы языка и смыкающие веко.

Рис. 5.1. Временные соотношения разных проявлений возбуждения волокна скелетной мышцы: а - соотношение потенциала действия, выхода Са 2+ в саркоплазму и сокраще­ния: / - латентный период; 2 - укорочение; 3 - расслабление; б - соотношение потенциала действия, сокращения и уровня возбудимости

Под влиянием одиночного раздражителя вначале возникает потенциал действия и лишь затем начинает развиваться пери­од укорочения. Оно продолжается и после окончания реполя­ризации. Восстановление исходной поляризации сарколеммы свидетельствует и о восстановлении возбудимости. Следова­тельно, на фоне развивающегося сокращения в мышечных во­локнах можно вызвать новые волны возбуждения, сократи­тельный эффект от которых будет суммироваться.

Тетаническим сокращением или тетанусом называют сокращение мышцы, появляющееся в результате возникнове­ния в моторных единицах многочисленных волн возбуждения, сократительный эффект от которых суммируется по амплитуде и времени.

Различают зубчатый и гладкий тетанус. Для получения зуб­чатого тетануса надо стимулировать мышцу с такой частотой, чтобы каждое последующее воздействие наносилось после фа­зы укорочения, но до момента окончания расслабления. Гладкий тетанус получается при более частых раздражениях, когда по­следующие воздействия наносятся во время развития укороче­ния мышцы. Например, если фаза укорочения у мышцы состав­ляет 50 мс, а фаза расслабления - 60 мс, то для получения зуб­чатого тетануса необходимо раздражать эту мышцу с частотой 9-19 Гц, для получения гладкого - с частотой не менее 20 Гц.

Несмотря

Амплитуда сокращений

расслабилась

Пессимум

на длящееся раздражение, мышца

30 Гц

1 Гц 7 Гц

200 Гц

50 Гц

Частота раздражения

Рис. 5.2. Зависимость амплитуды сокращения от частоты раздражения (сила и длительность стимулов неизменны)

Для демонстрации различных видов тетануса обычно ис­пользуют регистрацию сокращений изолированной икронож­ной мышцы лягушки на кимографе. Пример такой кимограм- мы представлен на рис. 5.2. Амплитуда одиночного сокраще­ния минимальна, увеличивается при зубчатом тетанусе и ста­новится максимальной - при гладком. Одной из причин такого возрастания амплитуды является то, что при возникновении частых волн возбуждения в саркоплазме мышечных волокон накапливается Са 2+ стимулирующий взаимодействие сокра­тительных белков.

При постепенном увеличении частоты раздражения нарас­тание силы и амплитуды сокращения мышцы идет лишь до не­которого предела - оптимума ответной реакции. Частоту раздражения, вызывающую наибольший ответ мышцы, назы­вают оптимальной. Дальнейшее увеличение частоты раздра­жения сопровождается уменьшением амплитуды и силы со­кращения. Это явление называют пессимумом ответной ре­акции, а частоты раздражения, превышающие оптимальную величину, - пессимальными. Явления оптимума и пессимума были открыты Н.Е. Введенским.

При оценке функциональной активности мышц говорят об их тонусе и фазических сокращениях. Тонусом мышцы называ­ют состояние длительного непрерывного напряжения. При этом видимое укорочение мышцы может отсутствовать из-за того, что возбуждение возникает не во всех, а лишь в некоторых мо­торных единицах мышцы и они возбуждаются не синхронно. Фазическим сокращением мышцы называют кратковремен­ное укорочение мышцы, сменяющееся ее расслаблением.

Структурно -функциональная характеристика мышечно­го волокна. Структурной и функциональной единицей скелет­ной мышцы является мышечное волокно, представляющее со­бой вытянутую (длиной 0,5-40 см) многоядерную клетку. Тол­щина мышечных волокон составляет 10- 100 мкм. Диаметр их может увеличиваться при интенсивных тренировочных нагруз­ках, количество же мышечных волокон может нарастать лишь до 3-4-месячного возраста.

Мембрану мышечного волокна называют сарколеммой, цитоплазму - саркоплазмой. В саркоплазме располагаются ядра, многочисленные органеллы, саркоплазматический рети- кулум, в состав которого входят продольные трубочки и их утолщения - цистерны, в которых содержатся запасы Са 2+ Цистерны соседствуют с поперечными трубочками, пронизы­вающими волокно в поперечном направлении (рис. 5.3).

В саркоплазме вдоль мышечного волокна проходит около 2000 миофибрилл (толщиной около 1 мкм), которые включают нити, образованные сплетением молекул сократительных бел­ков: актина и миозина. Молекулы актина образуют тонкие нити (миофиламенты), которые лежат параллельно друг другу и про­низывают своеобразную мембрану, называемую Z-линией или полоской. Z-линии расположены перпендикулярно длинной оси миофибриллы и делят миофибриллу на участки длиной 2- 3 мкм. Эти участки называют саркомерами.

Цистерна Сарколемма

Поперечная трубочка

Саркомер

Трубочка с-п. рет^|

Jj3H сссс с_ з зззз tccc ;

; зззз сссс с

з зззз сссс с

j3333 СССС£

J3333 с с с с с_

J3333 сс с с с_

Саркомер сокращен

3 3333 сссс с

Саркомер расслаблен

Рис. 5.3. Строение саркомера мышечного волокна: Z-линии - ограничивают саркомер,/! - анизотропный (темный)диск, / - изотропный (светлый) диск, Н - зона (менее темная)

Саркомер является сократительной единицей миофибрил- лы- В центре саркомера строго упорядоченно друг над другом лежат толстые нити, сформированные молекулами миозина, flo краям саркомера аналогичным образом расположены тон­кие нити актина. Концы актиновых нитей заходят между кон­цами миозиновых нитей.

Центральная часть саркомера (ширина 1,6 мкм), в которой лежат мио- зиновые нити, под микроскопом выглядит темной. Этот темный участок прослеживается поперек всего мышечного волокна, так как саркомеры соседних миофибрилл располагаются строго симметрично друг над дру­гом. Темные участки саркомеров получили название А-дисков от слова "анизотропный" Эти участки обладают двойным лучепреломлением в поляризованном свете. Зоны по краям А-диска, где нити актина и миози­на перекрываются, кажутся темнее, чем в центре, где находятся только миозиновые нити. Этот центральный участок называют полоской Н.

Участки миофибриллы, в которых располагаются только актиновые нити, не обладают двойным лучепреломлением, они изотропны. Отсюда их название - I-диски. В центре I-диска проходит узкая темная линия, образованная Z-мембраной. Эта мембрана удерживает в упорядоченном состоянии актиновые нити двух соседних саркомеров.

В состав актиновой нити кроме молекул актина входят так­же белки тропомиозин и тропонин, влияющие на взаимодей­ствие нитей актина и миозина. В молекуле миозина выделяют участки, которые называют головкой, шейкой и хвостом. В каждой такой молекуле имеется один хвост и по две головки с шейками. На каждой головке имеется химический центр, ко­торый может присоединять АТФ и участок, позволяющий свя­зываться с актиновой нитью.

Молекулы миозина при формировании миозиновой нити сплетаются своими длинными хвостами, располагающимися в центре этой нити, а головки находятся ближе к ее концам (рис. 5.4). Шейка и головка образуют выступ, торчащий из мио­зиновых нитей. Эти выступы называют поперечными мостика­ми. Они подвижны, и благодаря таким мостикам миозиновые нити могут установить связь с актиновыми.

Когда к головке молекулы миозина присоединяется АТФ, то мостик на короткое время располагается под тупым углом относительно хвоста. В следующий момент происходит частич­ное расщепление АТФ и за счет этого головка приподнимает­ся, переходит в энергизированное положение, при котором она может связываться с актиновой нитью.

Молекулы актина образуют двойную спираль Тролонин

Центр связи с АТФ

Участок тонкой нити (вдоль цепочек актина располагаются молекулы тропомиозина, тролонин в узлах спирали)

Шейка

Хвост

Тропомиоэин т i

Молекула миозина при большом увеличении

Участок толстой нити (видны головки молекул миозина)

Нить актина

Головка

+Са 2+

Са 2+ "*Са 2+

АДФ- Ф

Са 2+ N

Расслабление

Цикл движений головки миозина при сокращении мышцы

миозина 0 +АТФ

Рис. 5.4. Структура нитей актина и миозина, движение головок миозина при сокращении и расслаблении мышцы. Объяснение в тексте: 1-4 - этапы цикла

Механизм сокращения мышечного волокна. Возбужде­ние волокна скелетной мышцы в условиях физиологической нормы вызывается только импульсами, приходящими от мото­нейронов. Нервный импульс активирует нервно-мышечный синапс, вызывает возникновение ПК.П, а потенциал концевой пластинки обеспечивает генерацию потенциала действия на сарколемме.

Потенциал действия распространяется как вдоль поверх­ностной мембраны мышечного волокна, так и вглубь по попе­речным трубочкам. При этом происходит деполяризация цис­терн саркоплазматического ретикулума и открытие Са 2+ -ка­налов. Поскольку в саркоплазме концентрация Са 2+ состав­ляет 1(Г 7 -1(Г б М, а в цистернах она приблизительно в 10 ООО раз большая, то при открытии Са 2+ -каналов кальций по градиенту концентрации выходит из цистерн в саркоплазму, диффундирует к миофиламентам и запускает процессы, обес­печивающие сокращение. Таким образом, выход ионов Са 2+

в саркоплазму является фактором, сопрягающим электриче­ские и механические явления в мышечном волокне. Ионы Са 2+ связываются с тропонином и это, при участии тропомио- зина, приводит к открытию (разблокировке) участков актино­вой нити, которые могут связываться с миозином. После этого энергизированные головки миозина образуют мостики с акти­ном, происходит окончательное расщепление АТФ, ранее за­хваченных и удерживаемых головками миозина. Получаемая от расщепления АТФ энергия идет на поворот головок миози­на в направлении к центру саркомера. При таком повороте головки миозина тянут за собой актиновые нити, продвигая их между миозиновыми. За одно грёбковое движение головка может продвинуть актиновую нить на-1 % от длины саркомера. Для максимального сокращения нужны повторные гребковые движения головок. Это имеет место при достаточной концен­трации АТФ и Са 2+ в саркоплазме. Для повторного движения головки миозина необходимо, чтобы к ней присоединилась новая молекула АТФ. Подсоединение АТФ вызывает разрыв связи головки миозина с актином и она на мгновение занимает исходное положение, из которого может переходить к взаимо­действию с новым участком актиновой нити и делать новое гребковое движение.

Такую теорию механизма мышечного сокращения назвали теорией "скользящих нитей"

Для расслабления мышечного волокна необходимо, чтобы концентрация ионов Са 2+ в саркоплазме стала менее Ю -7 М/л. Это происходит за счет функционирования кальциевого насо­са, который перегоняет Са 2+ из саркоплазмы в ретикулум. Кроме того, для расслабления мышцы необходимо, чтобы бы­ли разорваны мостики между головками миозина и актином. Такой разрыв происходит при наличии в саркоплазме молекул АТФ и связывания их с головками миозина. После отсоедине­ния головок эластические силы растягивают саркомер и пере­мещают нити актина в исходное положение. Эластические си­лы формируются за счет: 1) эластической тяги спиралевидных клеточных белков, входящих в структуру саркомера; 2) элас­тических свойств мембран саркоплазматического ретикулума и сарколеммы; 3) эластичности соединительной ткани мышцы, сухожилий и действия сил гравитации.

Сила мышц. Силу мышцы определяют по максимальной Величине груза, который она может поднять, либо по макси­мальной силе (напряжению), которую она может развить в условиях изометрического сокращения.

Одиночное мышечное волокно способно развить напряже­ние 100-200 мг. В теле примерно 15-30 млн волокон. Если бы они действовали параллельно в одном направлении и одно­временно, то могли бы создать напряжение 20-30 т.

Сила мышц зависит от ряда морфофункциональных, фи­зиологических и физических факторов.

    Сила мышц возрастает с увеличением площади их гео­метрического и физиологического поперечного сечения. Для определения физиологического поперечного сечения мышцы находят сумму поперечных сечений всех волокон мышцы по линии, проведенной перпендикулярно к ходу каждого мышеч­ного волокна.

В мышце с параллельным ходом волокон (портняжная) геометрическое и физиологическое поперечные сечения рав­ны. В мышцах с косым ходом волокон (межреберные) физио­логическое сечение больше геометрического и это способ­ствует увеличению силы мышц. Еще больше возрастает фи­зиологическое сечение и сила у мышц с перистым расположе­нием (большинство мышц тела) мышечных волокон.

Чтобы иметь возможность сопоставить силу мышечных во­локон в мышцах с различным гистологическим строением, ввели понятие абсолютной силы мышцы.

Абсолютная сила мышцы - максимальная сила, развива­емая мышцей, в перерасчете на 1 см 2 физиологического попе­речного сечения. Абсолютная сила бицепса - 11,9 кг/см 2 , трехглавой мышцы плеча - 16,8 кг/см 2 , икроножной 5,9 кг/см 2 , гладкой - 1 кг/см 2

    Сила мышцы зависит от процентного соотношения раз­личных типов двигательных единиц, входящих в эту мышцу. Соотношение разных типов двигательных единиц в одной и той же мышце у людей неодинаково.

Выделяют следующие типы двигательных единиц: а) мед­ленные, неутомляемые (имеют красный цвет) - обладают ма­лой силой, но могут быть длительно в состоянии тонического сокращения без признаков утомления; б) быстрые, легко- утомляемые (имеют белый цвет) - их волокна обладают боль­шой силой сокращения; в) быстрые, устойчивые к утомлению - имеют относительно большую силу сокращения и в них мед­ленно развивается утомление.

У разных людей соотношение числа медленных и быстрых двигательных единиц в одной и той же мышце определено ге­нетически и может значительно различаться. Так, в четырех­главой мышце бедра человека относительное содержание мед- денных волокон может варьировать от 40 до 98%. Чем боль­ший процент медленных волокон в мышцах человека, тем бо­лее они приспособлены к длительной, но небольшой по мощности работе. Люди с высоким содержанием быстрых сильных моторных единиц способны развивать большую силу, но склонны к быстрому утомлению. Однако надо иметь в виду, что утомление зависит и от многих других факторов.

    Сила мышцы увеличивается при умеренном ее растяже­нии. Это происходит из-за того, что при умеренном растяже­нии саркомера (до 2,2 мкм) увеличивается количество мости­ков, которые могут образоваться между актином и миозином. При растяжении мышцы в ней также развивается эластиче­ская тяга, направленная на укорочение. Эта тяга суммируется с силой, развиваемой движением головок миозина.

    Сила мышц регулируется нервной системой путем изме­нения частоты импульсаций, посылаемых к мышце, синхрони­зации возбуждения большого числа моторных единиц, выбора типов моторных единиц. Сила сокращений увеличивается: а) при возрастании количества возбуждаемых моторных еди­ниц, вовлекаемых в ответную реакцию; б) при увеличении час­тоты волн возбуждения в каждом из активируемых волокон; в) при синхронизации волн возбуждения в мышечных волок­нах; г) при активации сильных (белых) моторных единиц.

Сначала (при необходимости развития небольшого усилия) активируются медленные неутомляемые моторные единицы, затем быстрые, устойчивые к утомлению. А если надо развить силу более 20-25% от максимальной, то в сокращение вовле­каются быстрые легкоутомляемые моторные единицы.

При напряжении до 75% от максимально возможного практически все моторные единицы активированы и дальнейший прирост силы идет за счет увеличения частоты импульсов, приходящих к мышечным волокнам.

При слабых сокращениях частота импульсаций в аксонах мотонейро­нов составляет 5-10 имп/с, а при большой силе сокращения может до­ходить до 50 имп/с.

В детском возрасте прирост силы идет главным образом за счет увеличения толщины мышечных волокон, и это связано с увеличением количества миофибрилл. Увеличение числа во­локон незначительно.

При тренировке мышцу взрослых нарастание их силы свя­зано с увеличением числа миофибрилл, повышение же вынос­ливости обусловлено увеличением числа митохондрий и ин­тенсивности синтеза АТФ за счет аэробных процессов.

Существует взаимосвязь силы и скорости укорочения. Ско­рость сокращения мышцы тем выше, чем больше ее длина (за счет суммации сократительных эффектов саркомеров) и зави­сит от нагрузки на мышцу. При увеличении нагрузки скорость сокращения уменьшается. Тяжелый груз можно поднять толь­ко при медленном движении. Максимальная скорость сокра­щения, достигаемая при сокращении мышц человека, около 8 м/с.

Сила сокращения мышцы снижается при развитии утом­ления.

Утомление и его физиологические основы. Утомлением называют временное понижение работоспособности, обуслов­ленное предыдущей работой и исчезающее после периода отдыха.

Утомление проявляется снижением мышечной силы, ско­рости и точности движений, изменением показателей работы кардиореспираторной системы и вегетативных регуляций, ухудшением показателей функций центральной нервной сис­темы. О последнем свидетельствует снижение скорости про­стейших психических реакций, ослабление внимания, памяти, ухудшение показателей мышления, возрастание количества ошибочных действий.

Субъективно утомление может проявляться ощущением усталости, появлением боли в мышцах, сердцебиением, симп­томами одышки, желанием снизить нагрузку или прекратить работу. Симптомы усталости могут различаться в зависимости от вида работы, ее интенсивности и степени утомления. Если утомление вызвано умственной работой, то, как правило, бо­лее выражены симптомы снижения функциональных возмож­ностей психической деятельности. При очень тяжелой мышеч­ной работе на первый план могут выступать симптомы нару­шений на уровне нервно-мышечного аппарата.

Утомление, развивающееся в условиях обычной трудовой деятельности как при мышечной, так и при умственной работе, имеет во многом сходные механизмы развития. В обоих случа­ях процессы утомления раньше всего развиваются в нервных центрах. Одним из показателей этого является снижение ум­ственной работоспособности при физическом утомлении, а при умственном утомлении - снижение эффективности мы­шечной деятельности.

Отдыхом называют состояние покоя или выполнение но­вой деятельности, при которых устраняется утомление и вос­станавливается работоспособность. И.М. Сеченов показал, что восстановление работоспособности происходит быстрее, если при отдыхе после утомления одной группы мышц(напри- мер, левой руки), выполнять работу другой группой мышц (правой рукой). Это явление он назвал "активным отдыхом"

Восстановлением называют процессы, обеспечивающие ликвидацию дефицита запасов энергетических и пластических веществ, воспроизведение израсходованных или поврежден­ных при работе структур, устранение избытка метаболитов и отклонений показателей гомеостаза от оптимального уровня.

Длительность периода, необходимого для восстановления организма, зависит от интенсивности и длительности работы. Чем больше интенсивность труда, тем через более короткое время необходимо делать периоды отдыха.

Различные показатели физиологических и биохимических процессов восстанавливаются через разное время от момента окончания физической нагрузки. Одним из важных тестов ско­рости восстановления является определение времени, в тече­ние которого частота сердечных сокращений возвращается к уровню, характерному для периода покоя. Время восстановле­ния частоты сердечных сокращений после теста с умеренной физической нагрузкой у здорового человека не должно превы­шать 5 мин.

При очень интенсивной физической нагрузке явления утомления развиваются не только в центральной нервной сис­теме, но и в нервно-мышечных синапсах, а также мышцах. В системе нервно-мышечного препарата наименьшей утомля­емостью обладают нервные волокна, наибольшей - нервно- мышечный синапс, промежуточное положение занимает мыш- Ца. Нервные волокна часами могут проводить высокую частоту потенциалов действия без признаков утомления. При частой Же активации синапса эффективность передачи возбуждения сначала уменьшается, а затем наступает блокада его проведе­ния. Это происходит из-за снижения запаса медиатора и АТФ в пресинаптической терминали, снижения чувствительности постсинаптической мембраны к ацетилхолину.

Был предложен ряд теорий механизма развития утомления в очень интенсивно работающей мышце: а) теория "истоще­ния" - израсходование запасов АТФ и источников ее образо­вания (креатинфосфата, гликогена, жирных кислот), б)теория "удушения" - на первое место выдвигается недостаток до­ставки кислорода в волокна работающей мышцы; в) теория "засорения", объясняющая утомление накоплением в мышце молочной кислоты и токсичных продуктов обмена веществ. В настоящее время считается, что все эти явления имеют мес­то при очень интенсивной работе мышцы.

Установлено, что максимальная физическая работа до раз­вития утомления выполняется при средней тяжести и темпе труда (правило средних нагрузок). В профилактике утомления важны также: правильное соотношение периодов труда и от­дыха, чередование умственной и физической работы, учет око­лосуточных (циркадных), годовых и индивидуальных биологи­ческих ритмов.

Мощность мышцы равна произведению мышечной силы на скорость укорочения. Максимальная мощность развивает­ся при средней скорости укорочения мышц. Для мышцы руки максимальная мощность (200 Вт) достигается при скорости сокращения 2,5 м/с.

5.2. Гладкие мышцы

Физиологические свойства и особенности гладких мышц.

Гладкие мышцы являются составной частью некоторых внут­ренних органов и участвуют в обеспечении функций, выполня­емых этими органами. В частности, регулируют проходимость бронхов для воздуха, кровотока в различных органах и тканях, перемещения жидкостей и химуса (в желудке, кишечнике, мо­четочниках, мочевом и желчном пузырях), осуществляют из­гнание плода из матки, расширяют или сужают зрачки (за счет сокращения радиальных или циркулярных мышц радужной оболочки), изменяют положение волос и кожного рельефа. Гладкомышечные клетки имеют веретенообразную форму, длину 50-400 мкм, толщину 2-10 мкм.

Гладкие мышцы, как и скелетные, обладают возбудимос­тью, проводимостью и сократимостью. В отличие от скелетных м ышц, имеющих эластичность, гладкие - пластичны (способ­ны длительное время сохранять приданную им за счет растя­жения длину без увеличения напряжения). Такое свойство важно для выполнения функции депонирования пищи в желуд­ке или жидкостей в желчном и мочевом пузырях.

Особенности возбудимости гладкомышечных волокон в определенной мере связаны с их низким трансмембранным по­тенциалом (Е 0 = 30-70 мВ). Многие из этих волокон облада­ют автоматией. Длительность потенциала действия у них мо­жет достигать десятков миллисекунд. Так происходит потому, что потенциал действия в этих волокнах развивается преиму­щественно за счет входа кальция в саркоплазму из межклеточ­ной жидкости через так называемые медленные Са 2+ -каналы.

Скорость проведения возбуждения в гладкомышечных клетках малая - 2-10 см/с. В отличие от скелетных мышц возбуждение в гладкой мышце может передаваться с одного волокна на другое, рядом лежащее. Такая передача происходит благодаря наличию между гладкомышечными волокнами нек­сусов, обладающих малым сопротивлением электрическому току и обеспечивающих обмен между клетками Са 2+ и други­ми молекулами. В результате этого гладкая мышца имеет свойства функционального синтиция.

Сократимость гладкомышечных волокон отличается про­должительным латентным периодом (0,25-1,00 с) и большой длительностью (до 1 мин) одиночного сокращения. Гладкие мышцы имеют малую силу сокращения, но способны длительно находиться в тоническом сокращении без развития утомления. Это связано с тем, что на поддержание тетанического сокраще­ния гладкая мышца расходует в 100-500 раз меньше энергии, чем скелетная. Поэтому расходуемые гладкой мышцей запасы АТФ успевают восстанавливаться даже во время сокращения и гладкие мышцы некоторых структур организма всю жизнь нахо­дятся в состоянии тонического сокращения.

Условия сокращения гладкой мышцы. Важнейшей особен­ностью гладкомышечных волокон является то, что они возбужда­ются под влиянием многочисленных раздражителей. Сокраще­ние скелетной мышцы в норме инициируется только нервным им­пульсом, приходящим к нервно-мышечному синапсу. Сокраще­ние гладкой мышцы может быть вызвано как нервными Импульсами, так и биологически активными веществами (гормо­нами, многими нейромедиаторами, простагландинами, некоторы­ми метаболитами), а также воздействием физических факторов, например растяжением. Кроме того, возбуждение гладкой мыш­цы может произойти спонтанно - за счет автоматии.

Очень высокая реактивность гладких мышц, их свойство отвечать сокращением на действие разнообразных факторов создают значительные трудности для коррекции нарушений тонуса этих мышц в медицинской практике. Это видно на при­мерах лечения бронхиальной астмы, артериальной гиперто­нии, спастического колита и других заболеваний, требующих коррекции сократительной активности гладких мышц.

В молекулярном механизме сокращения гладкой мышцы также имеется ряд отличий от механизма сокращения скелетной мышцы. Нити актина и миозина в гладкомышечных волокнах располагаются менее упорядоченно, чем в скелетных, и поэтому гладкая мышца не имеет поперечной исчерченности. В актино- вых нитях гладкой мышцы нет белка тропонина и молекулярные центры актина всегда открыты для взаимодействия с головками миозина. Чтобы такое взаимодействие произошло, необходимо расщепление молекул АТФ и перенос фосфата на головки мио­зина. Тогда молекулы миозина сплетаются в нити и связывают­ся своими головками с миозином. Далее следует поворот голо­вок миозина, при котором актиновые нити втягиваются между миозиновыми и происходит сокращение.

Фосфорилирование головок миозина производится с помо­щью фермента киназы легких цепей миозина, а дефосфорили- рование - фосфатазы легких цепей миозина. Если активность фосфатазы миозина преобладает над активностью киназы, то головки миозина дефосфорилируются, связь миозина и актина разрывается и мышца расслабляется.

Следовательно, чтобы произошло сокращение гладкой мышцы, необходимо повышение активности киназы легких цепей миозина. Ее активность регулируется уровнем Са 2+ в саркоплазме. При возбуждении гладкомышечного волокна со­держание кальция в его саркоплазме увеличивается. Это уве­личение обусловлено поступлением Са^ + из двух источников: 1) межклеточного пространства; 2) саркоплазматического ре- тикулума (рис. 5.5). Далее ионы Са 2+ образуют комплекс с белком кальмодулином, который переводит в активное состо­яние киназу миозина.

Последовательность процессов, приводящих к развитию сокращения гладкой мышцы: вход Са 2 в саркоплазму - акти­

вация кальмодулина (путем образования комплекса 4Са 2+ - кальмодулин) - активация киназы легких цепей миозина - фосфорилирование головок миозина - связывание головок миозина с актином и поворот головок, при котором нити акти­на втягиваются между нитями миозина.

Условия, необходимые для расслабления гладкой мышцы: 1) снижение (до 10 М/л и менее) содержания Са 2+ в сарко­плазме; 2) распад комплекса 4Са 2+ -кальмодулин, приводя­щий к снижению активности киназы легких цепей миозина - дефосфорилирование головок миозина, приводящее к разрыву связей нитей актина и миозина. После этого силы упругости вызывают относительно медленное восстановление исходной длины гладкомышечного волокна, его расслабление.

Контрольные вопросы и задания

    Клеточная мембрана

    Рис. 5.5. Схема путей поступления Са 2+ в саркоплазму гладкомышеч-

    ной клетки и удаления его из плазмы: а - механизмы, обеспечивающие поступление Са 2 + в саркоплазму и запуск со- кращеня (Са 2+ поступает из внеклеточной среды и саркоплазматического рети- кулума); б - пути удаления Са 2+ из саркоплазмы и обеспечения расслабления

    Влияние норадреналина через а-адренорецепторы

    Лигандзависимый Са 2+ -канал

    Каналы "утечки г

    Потенциал зависимый Са 2+ -канал

    Гладкомышечная клетка

    а-адрено! рецептор f Норадре- налин G

    Назовите виды мышц человека. Каковы функции скелет­ных мышц?

    Дайте характеристику физиологических свойств скелет­ных мышц.

    Каково соотношение потенциала действия, сокращения и воз­будимости мышечного волокна?

    Какие существуют режимы и виды мышечных сокращений?

    Дайте структурно-функциональную характеристику мышеч­ного волокна.

    Что такое моторные единицы? Перечислите их виды и осо­бенности.

    Каков механизм сокращения и расслабления мышечного волокна?

    Что такое сила мышц и какие факторы на нее влияют?

    Какова связь между силой сокращения, его скоростью и работой?

    Дайте определение утомления и восстановления. Каковы их физиологические основы?

    Каковыфизиологические свойства и особенности гладких мышц?

    Перечислите условия сокращения и расслабления гладкой мышцы.

Скелетная мускулатура является одной из основных систем человеческого организма и представляет собой активное звено двигательного аппарата.

Скелетные мышцы осуществляют движения отдельных частей тела и перемещение человека в пространстве, а также принимают активное участие в работе внутренних органов. Всего в теле человека насчитывается порядка 600 мышц.

Классификация скелетных мышц

Скелетная мускулатура состоит из волокон нескольких основных типов:

  • Медленные волокна. В них содержится большое количество белков миоглобина, связывающего кислород и являющегося своеобразным «дыхательным веществом» для мышц, аналогом гемоглобина для крови. Их называют «красными», так как они имеют темно-красный цвет. Эти волокна отвечают за поддержание позы. Переутомление в них наступает медленно из-за миоглобина и наличия митохондрий, а восстановление - быстро.
  • Быстрые волокна. Способны быстро сокращаться длительное время без утомляемости. Отсутствие утомления объясняется повышенным содержанием митохондрий и образованием АТФ при помощи окислительного фосфорилирования. Число волокон в нейромоторной единице такой мышцы меньше, чем в предыдущей.
  • Быстрые волокна с гликотическим окислением. В этих волокнах для образования АТФ используется гликолиз, в них меньше митохондрий. Мышцы с такими волокнами развиваются и сокращаются намного быстрее, но быстро утомляются. В них отсутствует белок миоглобин, в результате чего их называют «белыми».

Мышцы состоят из двигательных, или нейромоторных единиц. Часть мускулатуры, отвечающая за быстрые и точные движения, состоит из небольшого числа волокон. Мышцы, ответственные за поддержание позы, более массивны и могут содержать до нескольких тысяч таких волокон.

Основные типы мышц

В основном, все мышцы делятся на 3 типа:

  • Синергисты. Предназначены для осуществления движения только в одном направлении.
  • Антагонисты. Могут работать в разных направлениях.
  • Многофункциональные мышцы. Воздействуют более чем на один определенный сустав. Могут придавать движениям крутящий момент.

Расположение волокон в мышцах

Волокна скелетной мускулатуры могут располагаться в мышцах:

  • Параллельно растяжению. Так происходит, когда человек выполняет упражнения в быстром темпе, а уровень нагрузки при этом минимален.
  • Перпендикулярно растяжению. В этом случае используются короткие сокращения при максимальной нагрузке.

Механизмы, регулирующие силу сокращения мышц

Сила сокращения волокон мускулатуры регулируется центральной нервной системой. При этом используется два разных механизма подбора моторных единиц:

  • Для точных, координированных и тщательно рассчитанных движений во время занятий используются двигательные единицы, количество волокон в которых не превышает 30.
  • Сильные и грубые движения используют мышцы с числом волокон от 100 и выше.

Чем больше человек прикладывает мышечной силы для выполнения того или иного упражнения, тем сильнее генерируемый импульс. Благодаря этому увеличивается задействованное число мышц и производится еще большая сила приложения.

Функции скелетных мышц человека

Скелетная мускулатура входит в состав опорно-двигательной системы человека. При этом скелетные мышцы призваны выполнять следующие функции:

  • обеспечивать принятие и удержание определенной позы тела
  • перемещать тело в пространстве;
  • перемещать отдельные части человеческого тела относительно других частей;
  • выделять тепло, обеспечивая терморегуляцию организма.

Свойства скелетных мышц

Скелетная мускулатура обладает следующими физическими свойствами:

  • Возбудимость. Это состояние выражается в способности отвечать на действия раздражителей при помощи мембранного потенциала и ионной проводимости. Возбудителями могут быть медиаторы мотонейронов или миорелаксанты, которые действуют путем блокирования передачи нервного импульса. Также в лабораториях часто используются электростимуляторы.
  • Проводимость. Позволяет проводить действие вглубь и вдоль мышечного волокна согласно Т-системе.
  • Сократимость. Мышцы могут укорачиваться, а также увеличивать напряжение в условиях возбуждения.
  • Эластичность. Мышечные волокна способны развивать напряжение во время растягивания.

Тонус скелетной мускулатуры

Скелетные мышцы не могут находиться в полностью расслабленном состоянии и сохраняют определенный уровень напряжения, который называется тонусом. Тонус выражается в поддержании упругости мышц в спокойном состоянии. Он сохраняется благодаря нервным импульсам, поступающим последовательно с большими интервалами и раздражающим разные волокна.

Вместе с тем человек как высокоорганизованное существо, способен регулировать тонус по своему желанию. Например, он может полностью расслабить или напрячь мышцы, а также выбирать уровень напряжения. Для этого ему не нужно выполнять какую-либо физическую работу.

Работа скелетной мускулатуры

Основная задача скелетной мускулатуры - мышечная работа. Она полностью соответствует физическому закону А = FS, в котором определяется количество энергии, которая была затрачена на перемещение тела в определенных условиях (с использованием силы). Также существует возможность работы в изотоническом режиме, при котором сокращение мышцы происходит без нагрузки на нее.

Кроме того, выделяется изотермический режим, во время которого в условиях максимальной нагрузки мышца не укорачивается. В таком случае химическая энергия преобразуется в тепловую. При работе в естественных условиях изотермическими называются сокращения в фиксированной позе, и динамическими - в активной.

Сила и работа не остаются постоянными и эффективность занятий постепенно снижается. Такое состояние называется утомлением. Наиболее утомителен статический режим. При его использовании мышечные волокна быстрее накапливают продукты, возникающие в процессе окисления (пировиноградная, а также молочная кислота). При этом нарушается ресинтез АТФ, отвечающий за энергообеспечение сокращений мышц. Кроме того, на степень физической утомляемости влияет степень умственного напряжения во время работы. Чем она выше, тем меньше утомляются мышцы.

Виды мышц

В настоящее время различаются следующие виды мышц:

  • одноперистые, в которых мышечные пучки прикреплены с одной стороны сухожилия (такие, как сгибатели больших пальцев кистей);
  • двуперистые, в которых пучки прикрепляются с двух сторон сухожилий (такие, как длинные сгибатели больших пальцев ног);
  • многоперистые, в которых перистые группы примыкают к своим аналогам (такие, как дельтовидная мышца);
  • треугольные, в которых пучки соединяются с разных направлений (височная мышца).

Кроме того, мышцы имеют разное количество головок и могут быть:

  • двуглавыми;
  • трехглавыми;
  • четырехглавыми.

Скелетные мышцы выполняют много других функций. Например, могут обеспечить тканевое дыхание сердцу в экстренных случаях при помощи вещества оксимиоглобин (соединение кислорода и миоглобина). Поэтому развитие скелетных мышц является одной из основ спортивного и хорошего развитого тела человека, а также его здоровья.

КЛАССИФИКАЦИЯ МЫШЕЧНЫХ ВОЛОКОН.

Морфологическая классификация

Поперечно-полосатая (поперечно-исчерченная)

Гладкая (неисчерченная)

Классификация по типу контроля мышечной актичности

Поперечно-полосатая мышечная ткань скелетного типа.

Гладкая мышечная ткань внутренних органов.

Поперечно-полосатая мышечная ткань сердечного типа

КЛАССИФИКАЦИЯ СКЕЛЕТНЫХ МЫШЕЧНЫХ ВОЛОКОН

ПОПЕРЕЧНО-ПОЛОСАТЫЕ МЫШЦЫ представляют собой максимально специализированый аппарат для осуществления быстрого сокращения. Поперечно-полосатые мышцы бывают двух типов - скелетные и сердечные. СКЕЛЕТНЫЕ мышцы состоят из мышечных волокон, каждое из которых представляет собой многоядерную клетку, полученную в результате слияния большого количества клеток. В зависимости от сократительных свойств, окраски и утомляемости мышечные волокна подразделяют на две группы - КРАСНЫЕ И БЕЛЫЕ. Функциональной единицей мышечного волокна является миофибрилла. Миофибриллы занимают практически всю цитоплазму мышечного волокна, оттесняя ядра на периферию.

КРАСНЫЕ МЫШЕЧНЫЕ волокна (волокна 1 типа) содержат большое количество митохондрий с высокой активностью окислительных ферментов. Сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает аэробного метаболизма (используют кислород). Они участвуют в движениях, не требующих значительных усилий, - например, в поддержании позы.

БЕЛЫМ МЫШЕЧНЫМ ВОЛОКНАМ (волокнам 2 типа) присуща высокая активность ферментов гликолиза, значительная сила сокращения и такая высокая скорость потребления энергии, для которой уже не хватает аэробного метаболизма. Поэтому двигательные единицы, состоящие из белых волокон, обеспечивают быстрые, но кратковременные движения, требующие рывковых усилий.

КЛАССИФИКАЦИЯ ГЛАДКИХ МЫШЦ

Гладкие мышцы подразделяются на ВИСЦЕРАЛЬНЫЕ (УНИТАРНЫЕ) И МУЛЬТИУНИТАРНЫЕ . ВИСЦЕРАЛЬНЫЕ ГЛАДКИЕ мышцы находятся во всех внутренних органах, протоках пищеварительных желез, кровеносных и лимфатических сосудах, коже. К МУЛЫПИУНИТАРНЫМ относятся ресничная мышца и мышца радужки глаза. Деление гладких мышц на висцеральные и мультиунитарные основано на различной плотности их двигательной иннервации. В ВИСЦЕРАЛЬНЫХ ГЛАДКИХ мышцах двигательные нервные окончания имеются на небольшом количестве гладких мышечных клеток.

ФУНКЦИИ СКЕЛЕТНЫХ И ГЛАДКИХ МЫШЦ.

ФУНКЦИИ И СВОЙСТВА ГЛАДКИХ МЫШЦ

1. ЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ . Гладкие мышцы характеризуются нестабильным мембранным потенциалом. Колебания мембранного потенциала независимо от нервных влияний вызывают нерегулярные сокращения, которые поддерживают мышцу в состоянии постоянного частичного сокращения - тонуса. Мембранный потенциал гладкомышечных клеток не является отражением истинной величины потенциала покоя. При уменьшении мембранного потенциала мышца сокращается, при увеличении - расслабляется.



2. АВТОМАТИЯ . ПД гладких мышечных клеток имеют авторитмический характер, подобно потенциалам проводящей системы сердца. Это свидетельствует о том, что любые клетки гладких мышц способны к самопроизвольной автоматической активности. Автоматия гладких мышц, т.е. способность к автоматической (спонтанной) деятельности, присуща многим внутренним органам и сосудам.

3. РЕАКЦИЯ НА РАСТЯЖЕНИЕ . В ответ на растяжение гладкая мышца сокращается. Это вызвано тем, что растяжение уменьшает мембранный потенциал клеток, увеличивает частоту ПД и в конечном итоге - тонус гладкой мускулатуры. В организме человека это свойство гладкой мускулатуры служит одним из способов регуляции двигательной деятельности внутренних органов. Например, при наполнении желудка происходит растяжение его стенки. Увеличение тонуса стенки желудка в ответ на его растяжение способствует сохранению объема органа и лучшему контакту его стенок с поступившей пищей. В кровеносных сосудах растяжение, создаваемое колебаниями кровяного давления.

4. ПЛАСТИЧНОСТ Ь. Изменчивость напряжения без закономерной связи с ее длиной. Так, если растянуть гладкую мышцу, то ее напряжение будет увеличиваться, однако если мышцу удерживать в состоянии удлинения, вызванным растяжением, то напряжение будет постепенно уменьшаться, иногда не только до уровня, существовавшего до растяжения, но и ниже этого уровня.

5. ХИМИЧЕСКАЯ ЧУВСТВИТЕЛЬНОСТЬ . Гладкие мышцы обладают высокой чувствительностью к различным физиологически активным веществам: адреналину, норадреналину. Это обусловлено наличием специфических рецепторов мембраны гладкомышечных клеток. Если добавить адреналин или норадреналин к препарату гладкой мышцы кишечника, то увеличивается мембранный потенциал, уменьшается частота ПД и мышца расслабляется, т. е. наблюдается тот же эффект, что и при возбуждении симпатических нервов.

ФУНКЦИИ И СВОЙСТВА СКЕЛЕТНЫХ МЫШЦ

Скелетная мускулатура является составной частью опорно-двигательного аппарата человека. При этом мышцы выполняют следующие функции :

1)обеспечивают определенную позу тела человека;

2)перемещают тело в пространстве;

3) перемещают отдельные части тела относительно друг друга;

4) являются источником тепла, выполняя терморегуляционную функцию.

Скелетная мышца обладает следующими важнейшими СВОЙСТВАМИ :

1)ВОЗБУДИМОСТЬЮ - способностью отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала.

2) ПРОВОДИМОСТЬЮ - способностью проводить потенциал действия вдоль и в глубь мышечного волокна по Т-системе;

3) СОКРАТИМОСТЬЮ - способностью укорачиваться или развивать напряжение при возбуждении;

4) ЭЛАСТИЧНОСТЬЮ - способностью развивать напряжение при растягивании.

Скелетные мышцы - активная часть опорно-двигатель­ного аппарата, включающего также кости, связки, сухожилия и их сочленения. С функциональной точки зрения к двигатель­ному аппарату можно отнести и мотонейроны, вызывающие возбуждение мышечных волокон. Аксон мотонейрона при вхо­де в скелетную мышцу ветвится, и каждая веточка участвует в формировании нервно-мышечного синапса на отдельном мы­шечном волокне.

Мотонейрон вместе с иннервируемыми им мышечными во­локнами называют нейромоторной (или двигательной) едини­цей (ДЕ). В глазных мышцах одна двигательная единица со­держит 13-20 мышечных волокон, в мышцах туловища - со 1 тни волокон, в камбаловидной мышце - 1500-2500 волокон. Мышечные волокна одной ДЕ имеют одинаковые морфофунк- циональные свойства.

Функциями скелетных мышц являются: 1) передвижение тела в пространстве; 2) перемещение частей тела относитель­но друг друга, втом числе осуществление дыхательных движе­ний, обеспечивающих вентиляцию легких; 3) поддержание по­ложения и позы тела. Кроме того, поперечно-полосатые мыш­цы имеют значение в выработке тепла, поддерживающего температурный гомеостаз, и в депонировании некоторых пита­тельных веществ.

Физиологические свойства скелетных мышц выделяют:

1) возбудимость. Из-за высокой поляризации мембран поперечно-полосатых мышечных волокон (90 мВ) возбуди­мость их ниже, чем у нервных волокон. Амплитуда потенциала действия у них (130 мВ) больше, чем удругих возбудимых кле­ток. Это позволяет на практике достаточно легко регистриро­вать биоэлектрическую активность скелетных мышц. Дли­тельность потенциала действия составляет 3-5 мс. Этим определяется короткий период абсолютной рефрактерности мышечных волокон;

          проводимость. Скорость проведения возбуждения вдоль мембраны мышечного волокна составляет 3-5 м/с;

          сократимость. Представляет специфическое свойство мышечных волокон изменять свою длину и напряжение при развитии возбуждения.

Скелетные мышцы обладают также эластичностью и вязкостью.

Режимы и виды мышечных сокращений. Изотониче­ский режим - мышца укорачивается при отсутствии возрас­тания ее напряжения. Такое сокращение возможно только для изолированной (удаленной из организма) мышцы.

Изометрический режим - напряжение мышцы возрас­тает, а длина практически не уменьшается. Такое сокращение наблюдается при попытке поднять непосильный груз.

Ауксотонический режим мышца укорачивается и возрастает ее напряжение. Такое сокращение чаще всего на­блюдается при осуществлении трудовой деятельности челове­ка. Вместо термина "ауксотонический режим" часто применя­ется название концентрический режим.

Выделяют два вида мышечных сокращений: одиночное и те- таническое.

Одиночное мышечное сокращение проявляется в резуль­тате развития одиночной волны возбуждения в мышечных во­локнах. Этого можно достичь при воздействии на мышцу очень коротким (около 1 мс) стимулом. В развитии одиночного мы­шечного сокращения выделяют латентный период, фазу уко­рочения и фазу расслабления. Сокращение мышцы начинает проявляться через 10 мс от начала воздействия раздражителя. Этот временной интервал называют латентным периодом (рис.5.1). Затем последует развитие укорочения (длитель­ность около 50 мс) и расслабления (50-60 мс). Считается, что на весь цикл одиночного мышечного сокращения затрачивает­ся в среднем 0,1 с. Но следует иметь в виду, что длительность одиночного сокращения у разных мышц может сильно варьи­ровать. Она также зависит от функционального состояния мышцы. Скорость сокращения и особенно расслабления за­медляется при развитии утомления мышцы. К быстрым мыш­цам, имеющим короткий период одиночного сокращения, от­носятся мышцы языка и смыкающие веко.

Рис. 5.1. Временные соотношения разных проявлений возбуждения волокна скелетной мышцы: а - соотношение потенциала действия, выхода Са 2+ в саркоплазму и сокраще­ния: / - латентный период; 2 - укорочение; 3 - расслабление; б - соотношение потенциала действия, сокращения и уровня возбудимости

Под влиянием одиночного раздражителя вначале возникает потенциал действия и лишь затем начинает развиваться пери­од укорочения. Оно продолжается и после окончания реполя­ризации. Восстановление исходной поляризации сарколеммы свидетельствует и о восстановлении возбудимости. Следова­тельно, на фоне развивающегося сокращения в мышечных во­локнах можно вызвать новые волны возбуждения, сократи­тельный эффект от которых будет суммироваться.

Тетаническим сокращением или тетанусом называют сокращение мышцы, появляющееся в результате возникнове­ния в моторных единицах многочисленных волн возбуждения, сократительный эффект от которых суммируется по амплитуде и времени.

Различают зубчатый и гладкий тетанус. Для получения зуб­чатого тетануса надо стимулировать мышцу с такой частотой, чтобы каждое последующее воздействие наносилось после фа­зы укорочения, но до момента окончания расслабления. Гладкий тетанус получается при более частых раздражениях, когда по­следующие воздействия наносятся во время развития укороче­ния мышцы. Например, если фаза укорочения у мышцы состав­ляет 50 мс, а фаза расслабления - 60 мс, то для получения зуб­чатого тетануса необходимо раздражать эту мышцу с частотой 9-19 Гц, для получения гладкого - с частотой не менее 20 Гц.

Несмотря

Амплитуда сокращений

расслабилась

Пессимум

на длящееся раздражение, мышца

30 Гц

1 Гц 7 Гц

200 Гц

50 Гц

Частота раздражения

Рис. 5.2. Зависимость амплитуды сокращения от частоты раздражения (сила и длительность стимулов неизменны)

Для демонстрации различных видов тетануса обычно ис­пользуют регистрацию сокращений изолированной икронож­ной мышцы лягушки на кимографе. Пример такой кимограм- мы представлен на рис. 5.2. Амплитуда одиночного сокраще­ния минимальна, увеличивается при зубчатом тетанусе и ста­новится максимальной - при гладком. Одной из причин такого возрастания амплитуды является то, что при возникновении частых волн возбуждения в саркоплазме мышечных волокон накапливается Са 2+ стимулирующий взаимодействие сокра­тительных белков.

При постепенном увеличении частоты раздражения нарас­тание силы и амплитуды сокращения мышцы идет лишь до не­которого предела - оптимума ответной реакции. Частоту раздражения, вызывающую наибольший ответ мышцы, назы­вают оптимальной. Дальнейшее увеличение частоты раздра­жения сопровождается уменьшением амплитуды и силы со­кращения. Это явление называют пессимумом ответной ре­акции, а частоты раздражения, превышающие оптимальную величину, - пессимальными. Явления оптимума и пессимума были открыты Н.Е. Введенским.

При оценке функциональной активности мышц говорят об их тонусе и фазических сокращениях. Тонусом мышцы называ­ют состояние длительного непрерывного напряжения. При этом видимое укорочение мышцы может отсутствовать из-за того, что возбуждение возникает не во всех, а лишь в некоторых мо­торных единицах мышцы и они возбуждаются не синхронно. Фазическим сокращением мышцы называют кратковремен­ное укорочение мышцы, сменяющееся ее расслаблением.

Структурно -функциональная характеристика мышечно­го волокна. Структурной и функциональной единицей скелет­ной мышцы является мышечное волокно, представляющее со­бой вытянутую (длиной 0,5-40 см) многоядерную клетку. Тол­щина мышечных волокон составляет 10- 100 мкм. Диаметр их может увеличиваться при интенсивных тренировочных нагруз­ках, количество же мышечных волокон может нарастать лишь до 3-4-месячного возраста.

Мембрану мышечного волокна называют сарколеммой, цитоплазму - саркоплазмой. В саркоплазме располагаются ядра, многочисленные органеллы, саркоплазматический рети- кулум, в состав которого входят продольные трубочки и их утолщения - цистерны, в которых содержатся запасы Са 2+ Цистерны соседствуют с поперечными трубочками, пронизы­вающими волокно в поперечном направлении (рис. 5.3).

В саркоплазме вдоль мышечного волокна проходит около 2000 миофибрилл (толщиной около 1 мкм), которые включают нити, образованные сплетением молекул сократительных бел­ков: актина и миозина. Молекулы актина образуют тонкие нити (миофиламенты), которые лежат параллельно друг другу и про­низывают своеобразную мембрану, называемую Z-линией или полоской. Z-линии расположены перпендикулярно длинной оси миофибриллы и делят миофибриллу на участки длиной 2- 3 мкм. Эти участки называют саркомерами.

Цистерна Сарколемма

Поперечная трубочка

Саркомер

Трубочка с-п. рет^|

Jj3H сссс с_ з зззз tccc ;

; зззз сссс с

з зззз сссс с

j3333 СССС£

J3333 с с с с с_

J3333 сс с с с_

Саркомер сокращен

3 3333 сссс с

Саркомер расслаблен

Рис. 5.3. Строение саркомера мышечного волокна: Z-линии - ограничивают саркомер,/! - анизотропный (темный)диск, / - изотропный (светлый) диск, Н - зона (менее темная)

Саркомер является сократительной единицей миофибрил- лы- В центре саркомера строго упорядоченно друг над другом лежат толстые нити, сформированные молекулами миозина, flo краям саркомера аналогичным образом расположены тон­кие нити актина. Концы актиновых нитей заходят между кон­цами миозиновых нитей.

Центральная часть саркомера (ширина 1,6 мкм), в которой лежат мио- зиновые нити, под микроскопом выглядит темной. Этот темный участок прослеживается поперек всего мышечного волокна, так как саркомеры соседних миофибрилл располагаются строго симметрично друг над дру­гом. Темные участки саркомеров получили название А-дисков от слова "анизотропный" Эти участки обладают двойным лучепреломлением в поляризованном свете. Зоны по краям А-диска, где нити актина и миози­на перекрываются, кажутся темнее, чем в центре, где находятся только миозиновые нити. Этот центральный участок называют полоской Н.

Участки миофибриллы, в которых располагаются только актиновые нити, не обладают двойным лучепреломлением, они изотропны. Отсюда их название - I-диски. В центре I-диска проходит узкая темная линия, образованная Z-мембраной. Эта мембрана удерживает в упорядоченном состоянии актиновые нити двух соседних саркомеров.

В состав актиновой нити кроме молекул актина входят так­же белки тропомиозин и тропонин, влияющие на взаимодей­ствие нитей актина и миозина. В молекуле миозина выделяют участки, которые называют головкой, шейкой и хвостом. В каждой такой молекуле имеется один хвост и по две головки с шейками. На каждой головке имеется химический центр, ко­торый может присоединять АТФ и участок, позволяющий свя­зываться с актиновой нитью.

Молекулы миозина при формировании миозиновой нити сплетаются своими длинными хвостами, располагающимися в центре этой нити, а головки находятся ближе к ее концам (рис. 5.4). Шейка и головка образуют выступ, торчащий из мио­зиновых нитей. Эти выступы называют поперечными мостика­ми. Они подвижны, и благодаря таким мостикам миозиновые нити могут установить связь с актиновыми.

Когда к головке молекулы миозина присоединяется АТФ, то мостик на короткое время располагается под тупым углом относительно хвоста. В следующий момент происходит частич­ное расщепление АТФ и за счет этого головка приподнимает­ся, переходит в энергизированное положение, при котором она может связываться с актиновой нитью.

Молекулы актина образуют двойную спираль Тролонин

Центр связи с АТФ

Участок тонкой нити (вдоль цепочек актина располагаются молекулы тропомиозина, тролонин в узлах спирали)

Шейка

Хвост

Тропомиоэин т i

Молекула миозина при большом увеличении

Участок толстой нити (видны головки молекул миозина)

Нить актина

Головка

+Са 2+

Са 2+ "*Са 2+

АДФ- Ф

Са 2+ N

Расслабление

Цикл движений головки миозина при сокращении мышцы

миозина 0 +АТФ

Рис. 5.4. Структура нитей актина и миозина, движение головок миозина при сокращении и расслаблении мышцы. Объяснение в тексте: 1-4 - этапы цикла

Механизм сокращения мышечного волокна. Возбужде­ние волокна скелетной мышцы в условиях физиологической нормы вызывается только импульсами, приходящими от мото­нейронов. Нервный импульс активирует нервно-мышечный синапс, вызывает возникновение ПК.П, а потенциал концевой пластинки обеспечивает генерацию потенциала действия на сарколемме.

Потенциал действия распространяется как вдоль поверх­ностной мембраны мышечного волокна, так и вглубь по попе­речным трубочкам. При этом происходит деполяризация цис­терн саркоплазматического ретикулума и открытие Са 2+ -ка­налов. Поскольку в саркоплазме концентрация Са 2+ состав­ляет 1(Г 7 -1(Г б М, а в цистернах она приблизительно в 10 ООО раз большая, то при открытии Са 2+ -каналов кальций по градиенту концентрации выходит из цистерн в саркоплазму, диффундирует к миофиламентам и запускает процессы, обес­печивающие сокращение. Таким образом, выход ионов Са 2+

в саркоплазму является фактором, сопрягающим электриче­ские и механические явления в мышечном волокне. Ионы Са 2+ связываются с тропонином и это, при участии тропомио- зина, приводит к открытию (разблокировке) участков актино­вой нити, которые могут связываться с миозином. После этого энергизированные головки миозина образуют мостики с акти­ном, происходит окончательное расщепление АТФ, ранее за­хваченных и удерживаемых головками миозина. Получаемая от расщепления АТФ энергия идет на поворот головок миози­на в направлении к центру саркомера. При таком повороте головки миозина тянут за собой актиновые нити, продвигая их между миозиновыми. За одно грёбковое движение головка может продвинуть актиновую нить на-1 % от длины саркомера. Для максимального сокращения нужны повторные гребковые движения головок. Это имеет место при достаточной концен­трации АТФ и Са 2+ в саркоплазме. Для повторного движения головки миозина необходимо, чтобы к ней присоединилась новая молекула АТФ. Подсоединение АТФ вызывает разрыв связи головки миозина с актином и она на мгновение занимает исходное положение, из которого может переходить к взаимо­действию с новым участком актиновой нити и делать новое гребковое движение.

Такую теорию механизма мышечного сокращения назвали теорией "скользящих нитей"

Для расслабления мышечного волокна необходимо, чтобы концентрация ионов Са 2+ в саркоплазме стала менее Ю -7 М/л. Это происходит за счет функционирования кальциевого насо­са, который перегоняет Са 2+ из саркоплазмы в ретикулум. Кроме того, для расслабления мышцы необходимо, чтобы бы­ли разорваны мостики между головками миозина и актином. Такой разрыв происходит при наличии в саркоплазме молекул АТФ и связывания их с головками миозина. После отсоедине­ния головок эластические силы растягивают саркомер и пере­мещают нити актина в исходное положение. Эластические си­лы формируются за счет: 1) эластической тяги спиралевидных клеточных белков, входящих в структуру саркомера; 2) элас­тических свойств мембран саркоплазматического ретикулума и сарколеммы; 3) эластичности соединительной ткани мышцы, сухожилий и действия сил гравитации.

Сила мышц. Силу мышцы определяют по максимальной Величине груза, который она может поднять, либо по макси­мальной силе (напряжению), которую она может развить в условиях изометрического сокращения.

Одиночное мышечное волокно способно развить напряже­ние 100-200 мг. В теле примерно 15-30 млн волокон. Если бы они действовали параллельно в одном направлении и одно­временно, то могли бы создать напряжение 20-30 т.

Сила мышц зависит от ряда морфофункциональных, фи­зиологических и физических факторов.

    Сила мышц возрастает с увеличением площади их гео­метрического и физиологического поперечного сечения. Для определения физиологического поперечного сечения мышцы находят сумму поперечных сечений всех волокон мышцы по линии, проведенной перпендикулярно к ходу каждого мышеч­ного волокна.

В мышце с параллельным ходом волокон (портняжная) геометрическое и физиологическое поперечные сечения рав­ны. В мышцах с косым ходом волокон (межреберные) физио­логическое сечение больше геометрического и это способ­ствует увеличению силы мышц. Еще больше возрастает фи­зиологическое сечение и сила у мышц с перистым расположе­нием (большинство мышц тела) мышечных волокон.

Чтобы иметь возможность сопоставить силу мышечных во­локон в мышцах с различным гистологическим строением, ввели понятие абсолютной силы мышцы.

Абсолютная сила мышцы - максимальная сила, развива­емая мышцей, в перерасчете на 1 см 2 физиологического попе­речного сечения. Абсолютная сила бицепса - 11,9 кг/см 2 , трехглавой мышцы плеча - 16,8 кг/см 2 , икроножной 5,9 кг/см 2 , гладкой - 1 кг/см 2

    Сила мышцы зависит от процентного соотношения раз­личных типов двигательных единиц, входящих в эту мышцу. Соотношение разных типов двигательных единиц в одной и той же мышце у людей неодинаково.

Выделяют следующие типы двигательных единиц: а) мед­ленные, неутомляемые (имеют красный цвет) - обладают ма­лой силой, но могут быть длительно в состоянии тонического сокращения без признаков утомления; б) быстрые, легко- утомляемые (имеют белый цвет) - их волокна обладают боль­шой силой сокращения; в) быстрые, устойчивые к утомлению - имеют относительно большую силу сокращения и в них мед­ленно развивается утомление.

У разных людей соотношение числа медленных и быстрых двигательных единиц в одной и той же мышце определено ге­нетически и может значительно различаться. Так, в четырех­главой мышце бедра человека относительное содержание мед- денных волокон может варьировать от 40 до 98%. Чем боль­ший процент медленных волокон в мышцах человека, тем бо­лее они приспособлены к длительной, но небольшой по мощности работе. Люди с высоким содержанием быстрых сильных моторных единиц способны развивать большую силу, но склонны к быстрому утомлению. Однако надо иметь в виду, что утомление зависит и от многих других факторов.

    Сила мышцы увеличивается при умеренном ее растяже­нии. Это происходит из-за того, что при умеренном растяже­нии саркомера (до 2,2 мкм) увеличивается количество мости­ков, которые могут образоваться между актином и миозином. При растяжении мышцы в ней также развивается эластиче­ская тяга, направленная на укорочение. Эта тяга суммируется с силой, развиваемой движением головок миозина.

    Сила мышц регулируется нервной системой путем изме­нения частоты импульсаций, посылаемых к мышце, синхрони­зации возбуждения большого числа моторных единиц, выбора типов моторных единиц. Сила сокращений увеличивается: а) при возрастании количества возбуждаемых моторных еди­ниц, вовлекаемых в ответную реакцию; б) при увеличении час­тоты волн возбуждения в каждом из активируемых волокон; в) при синхронизации волн возбуждения в мышечных волок­нах; г) при активации сильных (белых) моторных единиц.

Сначала (при необходимости развития небольшого усилия) активируются медленные неутомляемые моторные единицы, затем быстрые, устойчивые к утомлению. А если надо развить силу более 20-25% от максимальной, то в сокращение вовле­каются быстрые легкоутомляемые моторные единицы.

При напряжении до 75% от максимально возможного практически все моторные единицы активированы и дальнейший прирост силы идет за счет увеличения частоты импульсов, приходящих к мышечным волокнам.

При слабых сокращениях частота импульсаций в аксонах мотонейро­нов составляет 5-10 имп/с, а при большой силе сокращения может до­ходить до 50 имп/с.

В детском возрасте прирост силы идет главным образом за счет увеличения толщины мышечных волокон, и это связано с увеличением количества миофибрилл. Увеличение числа во­локон незначительно.

При тренировке мышцу взрослых нарастание их силы свя­зано с увеличением числа миофибрилл, повышение же вынос­ливости обусловлено увеличением числа митохондрий и ин­тенсивности синтеза АТФ за счет аэробных процессов.

Существует взаимосвязь силы и скорости укорочения. Ско­рость сокращения мышцы тем выше, чем больше ее длина (за счет суммации сократительных эффектов саркомеров) и зави­сит от нагрузки на мышцу. При увеличении нагрузки скорость сокращения уменьшается. Тяжелый груз можно поднять толь­ко при медленном движении. Максимальная скорость сокра­щения, достигаемая при сокращении мышц человека, около 8 м/с.

Сила сокращения мышцы снижается при развитии утом­ления.

Утомление и его физиологические основы. Утомлением называют временное понижение работоспособности, обуслов­ленное предыдущей работой и исчезающее после периода отдыха.

Утомление проявляется снижением мышечной силы, ско­рости и точности движений, изменением показателей работы кардиореспираторной системы и вегетативных регуляций, ухудшением показателей функций центральной нервной сис­темы. О последнем свидетельствует снижение скорости про­стейших психических реакций, ослабление внимания, памяти, ухудшение показателей мышления, возрастание количества ошибочных действий.

Субъективно утомление может проявляться ощущением усталости, появлением боли в мышцах, сердцебиением, симп­томами одышки, желанием снизить нагрузку или прекратить работу. Симптомы усталости могут различаться в зависимости от вида работы, ее интенсивности и степени утомления. Если утомление вызвано умственной работой, то, как правило, бо­лее выражены симптомы снижения функциональных возмож­ностей психической деятельности. При очень тяжелой мышеч­ной работе на первый план могут выступать симптомы нару­шений на уровне нервно-мышечного аппарата.

Утомление, развивающееся в условиях обычной трудовой деятельности как при мышечной, так и при умственной работе, имеет во многом сходные механизмы развития. В обоих случа­ях процессы утомления раньше всего развиваются в нервных центрах. Одним из показателей этого является снижение ум­ственной работоспособности при физическом утомлении, а при умственном утомлении - снижение эффективности мы­шечной деятельности.

Отдыхом называют состояние покоя или выполнение но­вой деятельности, при которых устраняется утомление и вос­станавливается работоспособность. И.М. Сеченов показал, что восстановление работоспособности происходит быстрее, если при отдыхе после утомления одной группы мышц(напри- мер, левой руки), выполнять работу другой группой мышц (правой рукой). Это явление он назвал "активным отдыхом"

Восстановлением называют процессы, обеспечивающие ликвидацию дефицита запасов энергетических и пластических веществ, воспроизведение израсходованных или поврежден­ных при работе структур, устранение избытка метаболитов и отклонений показателей гомеостаза от оптимального уровня.

Длительность периода, необходимого для восстановления организма, зависит от интенсивности и длительности работы. Чем больше интенсивность труда, тем через более короткое время необходимо делать периоды отдыха.

Различные показатели физиологических и биохимических процессов восстанавливаются через разное время от момента окончания физической нагрузки. Одним из важных тестов ско­рости восстановления является определение времени, в тече­ние которого частота сердечных сокращений возвращается к уровню, характерному для периода покоя. Время восстановле­ния частоты сердечных сокращений после теста с умеренной физической нагрузкой у здорового человека не должно превы­шать 5 мин.

При очень интенсивной физической нагрузке явления утомления развиваются не только в центральной нервной сис­теме, но и в нервно-мышечных синапсах, а также мышцах. В системе нервно-мышечного препарата наименьшей утомля­емостью обладают нервные волокна, наибольшей - нервно- мышечный синапс, промежуточное положение занимает мыш- Ца. Нервные волокна часами могут проводить высокую частоту потенциалов действия без признаков утомления. При частой Же активации синапса эффективность передачи возбуждения сначала уменьшается, а затем наступает блокада его проведе­ния. Это происходит из-за снижения запаса медиатора и АТФ в пресинаптической терминали, снижения чувствительности постсинаптической мембраны к ацетилхолину.

Был предложен ряд теорий механизма развития утомления в очень интенсивно работающей мышце: а) теория "истоще­ния" - израсходование запасов АТФ и источников ее образо­вания (креатинфосфата, гликогена, жирных кислот), б)теория "удушения" - на первое место выдвигается недостаток до­ставки кислорода в волокна работающей мышцы; в) теория "засорения", объясняющая утомление накоплением в мышце молочной кислоты и токсичных продуктов обмена веществ. В настоящее время считается, что все эти явления имеют мес­то при очень интенсивной работе мышцы.

Установлено, что максимальная физическая работа до раз­вития утомления выполняется при средней тяжести и темпе труда (правило средних нагрузок). В профилактике утомления важны также: правильное соотношение периодов труда и от­дыха, чередование умственной и физической работы, учет око­лосуточных (циркадных), годовых и индивидуальных биологи­ческих ритмов.

Мощность мышцы равна произведению мышечной силы на скорость укорочения. Максимальная мощность развивает­ся при средней скорости укорочения мышц. Для мышцы руки максимальная мощность (200 Вт) достигается при скорости сокращения 2,5 м/с.

5.2. Гладкие мышцы

Физиологические свойства и особенности гладких мышц.

Гладкие мышцы являются составной частью некоторых внут­ренних органов и участвуют в обеспечении функций, выполня­емых этими органами. В частности, регулируют проходимость бронхов для воздуха, кровотока в различных органах и тканях, перемещения жидкостей и химуса (в желудке, кишечнике, мо­четочниках, мочевом и желчном пузырях), осуществляют из­гнание плода из матки, расширяют или сужают зрачки (за счет сокращения радиальных или циркулярных мышц радужной оболочки), изменяют положение волос и кожного рельефа. Гладкомышечные клетки имеют веретенообразную форму, длину 50-400 мкм, толщину 2-10 мкм.

Гладкие мышцы, как и скелетные, обладают возбудимос­тью, проводимостью и сократимостью. В отличие от скелетных м ышц, имеющих эластичность, гладкие - пластичны (способ­ны длительное время сохранять приданную им за счет растя­жения длину без увеличения напряжения). Такое свойство важно для выполнения функции депонирования пищи в желуд­ке или жидкостей в желчном и мочевом пузырях.

Особенности возбудимости гладкомышечных волокон в определенной мере связаны с их низким трансмембранным по­тенциалом (Е 0 = 30-70 мВ). Многие из этих волокон облада­ют автоматией. Длительность потенциала действия у них мо­жет достигать десятков миллисекунд. Так происходит потому, что потенциал действия в этих волокнах развивается преиму­щественно за счет входа кальция в саркоплазму из межклеточ­ной жидкости через так называемые медленные Са 2+ -каналы.

Скорость проведения возбуждения в гладкомышечных клетках малая - 2-10 см/с. В отличие от скелетных мышц возбуждение в гладкой мышце может передаваться с одного волокна на другое, рядом лежащее. Такая передача происходит благодаря наличию между гладкомышечными волокнами нек­сусов, обладающих малым сопротивлением электрическому току и обеспечивающих обмен между клетками Са 2+ и други­ми молекулами. В результате этого гладкая мышца имеет свойства функционального синтиция.

Сократимость гладкомышечных волокон отличается про­должительным латентным периодом (0,25-1,00 с) и большой длительностью (до 1 мин) одиночного сокращения. Гладкие мышцы имеют малую силу сокращения, но способны длительно находиться в тоническом сокращении без развития утомления. Это связано с тем, что на поддержание тетанического сокраще­ния гладкая мышца расходует в 100-500 раз меньше энергии, чем скелетная. Поэтому расходуемые гладкой мышцей запасы АТФ успевают восстанавливаться даже во время сокращения и гладкие мышцы некоторых структур организма всю жизнь нахо­дятся в состоянии тонического сокращения.

Условия сокращения гладкой мышцы. Важнейшей особен­ностью гладкомышечных волокон является то, что они возбужда­ются под влиянием многочисленных раздражителей. Сокраще­ние скелетной мышцы в норме инициируется только нервным им­пульсом, приходящим к нервно-мышечному синапсу. Сокраще­ние гладкой мышцы может быть вызвано как нервными Импульсами, так и биологически активными веществами (гормо­нами, многими нейромедиаторами, простагландинами, некоторы­ми метаболитами), а также воздействием физических факторов, например растяжением. Кроме того, возбуждение гладкой мыш­цы может произойти спонтанно - за счет автоматии.

Очень высокая реактивность гладких мышц, их свойство отвечать сокращением на действие разнообразных факторов создают значительные трудности для коррекции нарушений тонуса этих мышц в медицинской практике. Это видно на при­мерах лечения бронхиальной астмы, артериальной гиперто­нии, спастического колита и других заболеваний, требующих коррекции сократительной активности гладких мышц.

В молекулярном механизме сокращения гладкой мышцы также имеется ряд отличий от механизма сокращения скелетной мышцы. Нити актина и миозина в гладкомышечных волокнах располагаются менее упорядоченно, чем в скелетных, и поэтому гладкая мышца не имеет поперечной исчерченности. В актино- вых нитях гладкой мышцы нет белка тропонина и молекулярные центры актина всегда открыты для взаимодействия с головками миозина. Чтобы такое взаимодействие произошло, необходимо расщепление молекул АТФ и перенос фосфата на головки мио­зина. Тогда молекулы миозина сплетаются в нити и связывают­ся своими головками с миозином. Далее следует поворот голо­вок миозина, при котором актиновые нити втягиваются между миозиновыми и происходит сокращение.

Фосфорилирование головок миозина производится с помо­щью фермента киназы легких цепей миозина, а дефосфорили- рование - фосфатазы легких цепей миозина. Если активность фосфатазы миозина преобладает над активностью киназы, то головки миозина дефосфорилируются, связь миозина и актина разрывается и мышца расслабляется.

Следовательно, чтобы произошло сокращение гладкой мышцы, необходимо повышение активности киназы легких цепей миозина. Ее активность регулируется уровнем Са 2+ в саркоплазме. При возбуждении гладкомышечного волокна со­держание кальция в его саркоплазме увеличивается. Это уве­личение обусловлено поступлением Са^ + из двух источников: 1) межклеточного пространства; 2) саркоплазматического ре- тикулума (рис. 5.5). Далее ионы Са 2+ образуют комплекс с белком кальмодулином, который переводит в активное состо­яние киназу миозина.

Последовательность процессов, приводящих к развитию сокращения гладкой мышцы: вход Са 2 в саркоплазму - акти­

вация кальмодулина (путем образования комплекса 4Са 2+ - кальмодулин) - активация киназы легких цепей миозина - фосфорилирование головок миозина - связывание головок миозина с актином и поворот головок, при котором нити акти­на втягиваются между нитями миозина.

Условия, необходимые для расслабления гладкой мышцы: 1) снижение (до 10 М/л и менее) содержания Са 2+ в сарко­плазме; 2) распад комплекса 4Са 2+ -кальмодулин, приводя­щий к снижению активности киназы легких цепей миозина - дефосфорилирование головок миозина, приводящее к разрыву связей нитей актина и миозина. После этого силы упругости вызывают относительно медленное восстановление исходной длины гладкомышечного волокна, его расслабление.

Контрольные вопросы и задания

    Клеточная мембрана

    Рис. 5.5. Схема путей поступления Са 2+ в саркоплазму гладкомышеч-

    ной клетки и удаления его из плазмы: а - механизмы, обеспечивающие поступление Са 2 + в саркоплазму и запуск со- кращеня (Са 2+ поступает из внеклеточной среды и саркоплазматического рети- кулума); б - пути удаления Са 2+ из саркоплазмы и обеспечения расслабления

    Влияние норадреналина через а-адренорецепторы

    Лигандзависимый Са 2+ -канал

    Каналы "утечки г

    Потенциал зависимый Са 2+ -канал

    Гладкомышечная клетка

    а-адрено! рецептор f Норадре- налин G

    Назовите виды мышц человека. Каковы функции скелет­ных мышц?

    Дайте характеристику физиологических свойств скелет­ных мышц.

    Каково соотношение потенциала действия, сокращения и воз­будимости мышечного волокна?

    Какие существуют режимы и виды мышечных сокращений?

    Дайте структурно-функциональную характеристику мышеч­ного волокна.

    Что такое моторные единицы? Перечислите их виды и осо­бенности.

    Каков механизм сокращения и расслабления мышечного волокна?

    Что такое сила мышц и какие факторы на нее влияют?

    Какова связь между силой сокращения, его скоростью и работой?

    Дайте определение утомления и восстановления. Каковы их физиологические основы?

    Каковыфизиологические свойства и особенности гладких мышц?

    Перечислите условия сокращения и расслабления гладкой мышцы.