28.06.2020

Значение групп крови по системе аво системы. Плазменные антигены. Когда назначается исследование


Эта система является основной, определяющей совместимость или несовместимость переливаемой крови. В нее входя два генетически детерминированных важных антигена: А и В - и два вида антител к ним, агглютинины а и в. Сочетания агглютиногенов и агглютининов определяют 4 группы системы АВО. Эта система единственная, где в плазме у неиммунных людей имеются естественные антитела к отсутствующему антигену. Агглютиноген А у большинства людей является хорошо вы­раженным (обладает большой антигенной силой): с антителами анти-А (а) он дает резко выраженную реакцию агглютинации эритроцитов. Приблизительно у 12% лиц групп А(11) и AB(IV) антиген имеет слабые антигенные свойства, его обозначают как А2 антиген. Таким образом, имеется группа антигенов A: A1 (сильный) и более слабые А2, A3, А4 и др. О существовании слабых антигеном А следует помнить при определении групп крови, так как эрит­роциты с такими антигенами способны давать лишь позднюю и слабовыраженную агглютинацию, что может привести к ошиб­кам. Слабые разновидности антигена В встречаются очень редко. Антитела системы АВО а (анти-А) и в (анти-В) являются нормальным свойством плазмы крови, качественно не изменяющимся в течение жизни человека, а и в - это полные, холодовые анти­тела. В большинстве случаев они не обнаруживаются у новорожденных и появляются в течение первых трех месяцев жизни или даже года. Полного развития групповые агглютинины достигают к 18 годам, а в старости титр (уровень) их снижается, что наблю­дается также при иммунодефицитных состояниях. Кроме существующих в норме (естественных) групповых ангитсл а и в в ряде случаев возникают иммунные антитела анти-А и анти-В. Наиболее частой причиной этого является беремен­ность, при которой мать и плод имеют разные группы крови, чаще, если мать 1(0) группы, плод 11(A) или Ш(В). Определение группы крови необходимо для совместимого переливания крови. При этом необходимо придерживаться правила: эритроциты донора не должны содержать антигена, соответствующего антителам реципиента, т. е. А и а, В и в, так как иначе произойдет массивное разрушение введенных эрит­роцитов антителами больного - гемолиз, что может привести к смерти реципиента. Групповые антитела донора можно не учитывать, так как они разводятся плазмой реципиента. Следова­тельно, кровь группы O(I), не содержащую агглютиногенов, можно переливать людям с любой группой крови. Лица, имеющие 0(1) группу крови, считаются «универсальными до- норами». Кровь группы А(П) можно переливать реципиентам группы А(П) и группы AB(IV), не имеющей в плазме агглюти­нинов. Кровь группы В(Ш) может быть перелита лицам с группой В(Ш) и AB(IV).



Определение групп крови системы АВО производится сле­дующими методами.

I. Определение группы крови при помощи стандартных изогемагглютинирующих сывороток. При этом способе в крови устанав­ливают наличие или отсутствие агглю­тиногенов и, исходя из этого, делают заключение о групповой принадлеж­ности исследуемой крови.

2. Определение группы крови пе­рекрестным способом, т. е. одновре­менно при помощи стандартных изогемагглютинирующих сывороток и стан­дартных эритроцитов. При этом способе, так же как и при первом, определяют наличие или отсутст­вие агглютиногенов и, кроме того, при помощи стандартных эритроцитов устанавливают наличие или отсутствие групповых агглютининов.

3. Определение группы крови с помощью моноклональных антител (ЦОЛИКЛОНов).

ОШИБКИ ПРИ ОПРЕДЕЛЕНИИ ГРУПП КРОВИ

Технические ошибки. Нарушение изложенных правил опредсления групп крови может привести к неправильной оценке ре­зультатов реакции. Отступлением от правил могут явиться:

Использование недоброкачественных стандартных сывороток или эритроцитов (истекший срок годности, загрязнение ими высыхание сывороток);

Перепутывание проб исследуемой крови;

Ошибочное расположение стандартных сывороток или фоцитов в штативах;

Ошибочный порядок нанесения стандартных реагентов на пластину;

Неправильное соотношение количества сыворотки и эритроцитов (не 10:1);

Исследование при температуре менее 15 °С (наступает холодовая агглютинация) или более 25 °С (происходит замедление агглютинации);

Несоблюдение времени, необходимого для проведения реакции (5 мин);

Не осуществляют добавление физиологического раствора с последующим покачиванием пластинки;

Не используют контрольную реакцию с сывороткой АВо(IV) группы;

Применение загрязненных или мокрых пипеток, палочек, пластин.

Во всех случаях нечеткого или сомнительного результата необходимо повторное определение группы крови перекрестным методом с использованием стандартных сывороток других серий.

Ошибки, связанные с биологическими особенностями исследуемой крови.

Неправильное определение группы А 2 и А 2 В. Эритроциты со слабым антигеном А с антисывороткой образуют мелкие, мед­ленно появляющиеся агглютинаты. Реакция может быть учтена как отрицательная, т. е. группа А 2 ошибочно регистрируется как О(1), а А 2 В - как В(Ш). Особенно велик риск такой ошибки при одновременном наличии технических погрешностей (нару­шено соотношение сыворотки и эритроцитов 10:1, температура выше 25 °С, учет результатов ранее 5 мин).

Ошибки, связанные с наличием неспецифической агглю- тинабельности исследуемых эритроцитов. Такое явление наблюдается у больных злокачественными опухолями, лейкозами, сепсисом, ожогами, циррозом печени, аутоиммунной гемолитиче­ской анемией и обусловлено диспротеинемией. Выявляет нали­чие неспецифической агглютинации контроль с сывороткой АВо (IV) группы. В этих случаях необходимо вновь определить групповую принадлежность перекрестным методом. В капли, где на­блюдается агглютинация, можно добавить подогретый до 37° физиологический раствор. При необходимости, можно отмыть теп­лым (37°) физиологическим раствором исследуемые эритроциты и вновь определить группу крови.

Ошибки, связанные с наличием экстраагглютининов. В сыворотке крови лиц групп А2(П) и A2B(IV) приблизительно в 1% случаев обнаруживают антитела к А1 антигену - а1. Это осложняег определение группы крови перекрестным методом, так как сыворотка таких лиц агглютинирует стандартные эритроциты А(П) группы, т. е. проявляет себя как сыворотка 0(1) группы.

При некоторых заболеваниях наблюдается снижение агглютинабельности эритроцитов, особенно группы А(П).

При иммунодефицитных состояниях у стариков наблюдается снижение уровня групповых агглютининов.

Во всех случаях получения сомнительного результата определение групповой принадлежности крови должно производиться повторно перекрестным методом с использованием сывороток более высокой активности.

18.Антигены системы резус. Группы системы резус. Клиническое значение. Методы определения антигенов резус и возможные ошибки.

Антигены резус являются вторыми по значению в трансфузионной практике после групп крови системы АВО В период активного внедрения в клинику гемотрансфузий значительно воз­росло число посттрансфузионных осложнений после повторныхпереливаний совместимой по антигенам АВО крови. В систему резус входят шесть антигенов, для обозначения которых парал­лельно используются двеноменклатуры: Винера (Rh 0 , rh", rh", Hr 0 , hr", hr"); Фишера и Рейса (D, С, E, d, с, e).

Rh 0 - D, rh" - C, rh" - E, Hr 0 - d, hr" - c, hr" - e.

Поскольку в этой системе наиболее активным является антиген Rho(D), его называют резус-фактором. Именно в зависимости от наличия или отсутствия этого фактора людей разделяют на резус-положительных (Rh+) и резус-отрицательных (Rh-). Такое деление принято только в отношении реципиентов. Антигены rh"(C) и rh"(E) менее активны, чем Rho(D), но к ним также могут вырабатываться антитела у людей, не содержащих антигенов С и Е в эритроцитах. Поэтому к эритроцитам резус отрицательных доноров требования более строгие. Эритроциты не должны содержать не только антиген D, но также и С и Е. Антигены Hro(d), hr"(c), hr"(e) характеризуются низкой активностью, хотя антитела hr"(c) могут быть причиной изоиммунологических конфликтов. У 1-3% резус-положительных лиц в эритроцитах имеет слабый вариант антигена D - D", который определяет наличие мелкой, сомнительной агглютинации при определении резуc- фактора. В этих случаях резус-принадлежность крови реципиента или беременной женщины указывают как резус-отрицательную(Rh-), а резус-принадлежность крови донора как резус-положительную (Rh+). Не допускается переливание крови с ангеном D u резус-отрицательным реципиентам. Формируются антигены резус на 8-10 неделе эмбриогенеза, причем антигенность их даже может превышать активность ан­тигенов у взрослых. Система резус в отличие от системы АВО не имеет естест­венных антител. Антитела антирезус возникают только после иммунизации резус-отрицательного организма в результате переливания резус-положительной крови или беременности резус-положительным плодом. В организме сенсибилизированных лиц антитела к резус-антигенам сохраняются несколько лет, иногда на протяжении всей жизни. В большинстве случаев титр антител антирезус постепенно снижается, но опять резко возрастает при повторном попадании в организм резус-положительной крови. Резус-антитела различаются по специфичности (анти-D, ан- III С и т. д.) и по серологическим свойствам (полные и непол­ные). Полные антитела вызывают агглютинацию эритроцитов в солевой среде при комнатной температуре. Для проявления агглютинации под действием неполных антител требуются особые условия: повышенная температура, коллоидная среда (желатин, сывороточный белок). Полные антитела (IgM) синтезируются в начале иммунной реакции и вскоре исчезают из крови. Неполные антитела (IgG, IgA) появляются позже, синтезируются долго и являются причиной развития гемолитической болсзни новорожденных, так как проходят через плаценту и повреждают клетки плода.

Определение резус-принадлежности крови

Метод определения резус-фактора зависит от формы резус-антител в стандартной сыворотке и способа ее изготовления. К сыворотке антирезус прикладывается сопроводительная инст­рукция с описанием того метода, для которого предназначена данная серия выдаваемой сыворотки.

При каждом исследовании для проверки специфичности и активности сыворотки антирезус необходимо ставить контроль. Для контроля применяются стандартные резус-положительные эритроциты группы 0(1) или той же группы, что и исследуемая кровь, и стандартные резус-отрицательные эритроциты обязательно той же группы, что и исследуемая кровь.

При определении резус-принадлежности двумя сериями стан­дартных сывороток в тех случаях, когда они используются раз­ными методами, результат учитывается как истинный при совпадении его в обеих сериях исследований после проверки контрольных образцов, подтверждающих специфичность и активность каждой серии сыворотки антирезус, т. е. при отсутствии агглютинации со стандартными резус-отрицательными эритро цитами одноименной группы и наличии агглютинации со стандартными резус-положительными эритроцитами одноименной группы или группы 0(1) и в контрольных пробах без сыворотки (реагента) антирезус. Если при определении резус-принаддеж ности наблюдается слабая или сомнительная реакция, то следует повторно исследовать кровь данного лица этими же и другими сериями сыворотки антирезус и желательно включить сыворотку содержащую полные антитела. Если при этом все серии сывороток, содержащих неполные антитела, дадут также слабую или сомнительную реакцию, а с полными антителами реакция будет отрицательная, это значит, что эритроциты содержат слабую paзновидность антигена резус, так называемый фактор D u . В этих случаях резус-принадлежность крови больного или беременной женщины указывают как резус-отрицательную (Rh-), a резус- принадлежность крови донора как резус-положительную (Rh+), не допуская таким образом переливания его крови резус-отрицательным реципиентам.

Определение резус-фактора можно проводить также следующими методиками.

Определение резус-фактора Rh 0 (D) реакцией конглютинации с применением желатина (в пробирке с подогревом до 46-48 °С).

Определение резус-фактора Rho(D) реакцией конглютинации в сывороточной среде на плоскости с подогревом.

Определение резус-фактора Rh 0 (D) реакцией агглютинации в солевой среде в маленьких пробирках. Реакция агглютинации в солевой среде пригодна для работы только с сывороткой, содержащей полные резус-антитела.

Определение резус-фактора Rh 0 (D) с помощью моноклональных антител.

Определение резус-фа ктора Rho(D) с помощью непрямой пробы Кумбса.

19 Анемии. Классификация и краткая характеристика. Этиология и патогенез анемий. Анемия (от греческого anemia - бескровие) - большая груп­па заболеваний, которая характеризуется снижением количества гемоглобина или гемоглобина и эритроцитов в единице объема крови. Анемии различны по этиологии, механизмам развития, клинико-гематологической картине, поэтому есть много различных классификаций, но они недостаточно совершенны. Л. И. Идельсон предложил рабочую классификацию анемий для врачей-клиницистов: 1) острые постгеморрагические анемии; 2) железодефицитные анемии; 3) анемии, связанные с нарушением синтеза или утилизации порфиринов (сидеробластные); 4) анемии, связанные с нарушением синтеза ДНК, РНК (мегалобластные); 5) гемолитические анемии; 6) анемии, связанные с угнетением пролиферации клеток костного мозга (гипопластические, апластические); 7) анемии, связанные с замещением кроветворного костного мозга опухолевым процессом (метапластические).

Анемия может быть как самостоятельным заболеванием, так и сопутствующим симптомом или осложнением некоторых внутренних болезней, инфекционных и онкологических заболевании. Бывают полифакторные анемии, т. е. смешанного генеза, например: гемолитическая анемия с дефицитом железа, апластическая анемия с гемолитическим компонентом и др.

В зависимости от:

1)величины цветового показателя различают анемии:

Нормохромные (цветовой показатель 0,9-1,1);

Гипохромные (цветовой показатель меньше 0,85);

Гиперхромные (цветовой показатель больше 1,15);

2)величины среднего диаметра эритроцитов:

Нормоцитарные (средний диаметр эритроцитов 7,2-7,5 мкм)

Микроцитарные (средний диаметр эритроцитов меньше 6,5 мкм),

Макроцитарные (средний диаметр эритроцитов больше 8,0 мкм),

Мегалоцитарные (средний диаметр эритроцитов равен больше 12 мкм);

3)величины среднего объема эритроцитов в фемтолитрах (фл, 1 фл равен 1 мкм 3):

Нормоцитарные (средний объем эритроцитов 87±5 фл);

Микроцитарные (средний объем эритроцитов меньше 80 фл);

Макроцитарные (средний объем эритроцитов больше 95 фл);

4) уровня ретикулоцитов в периферической крови.

Регенераторные (количество ретикулоцитов 0,5-5%);

Гиперрегенераторные (количество ретикулоцитов больше 5%);

Гипо- и арегенераторные (количество ретикулоцитов сни­жено или они отсутствуют, несмотря на тяжелое течение анемии).

Уровень ретикулоцитов является показателем регенераторной функции костного мозга в отношении эритропоэза.

К нормохромным анемиям относятся острые постгеморраги­ческие (в первые дни после кровопотери), гипо- и апластические, несфероцитарные гемолитические, аутоиммунные гемоли­тические, метапластические (при лейкозах, миеломной болезни и др.), а также анемии, развивающиеся при эндокринных нару­шениях (гипофункция надпочечников), болезнях почек, хрони­ческих инфекциях.

К гипохромным анемиям относятся железодефицитные, си- деробластные, некоторые миелотоксические, гемолитические (талассемия).

Гиперхромными бывают В12-(фолиево)-дефицитные, некото­рые гемолитические анемии (наследственный микросфероцитоз, если среди эритроцитов в мазке преобладают микросфероциты). Иногда витамин-В1 2 -дефицитная анемия бывает нормохромной.

К нормоцитарным относятся острые постгеморрагические, апластические, аутоиммунные гемолитические анемии и др.

К микроцитарным относятся железодефицитные, сидеробластпые анемии, к макроцитарным - вигамин-В12-(фолиево)-дефицитные анемии и др.

К регенераторным относят постгеморрагические анемии; к гиперрегенераторным - гемолитические анемии, особенно со­стояние после гемолитического криза; к гипо- и арегенераторным - гипопластические, апластические анемии.

Костный мозг реагирует на развитие железодефицитных, ге­молитических анемий раздражением, гиперплазией красного рост­ка. При гипопластических анемиях отмечается прогрессирующее падение эритропоэза вплоть до полного его истощения.

20.Лабораторная диагностика железонасыщенных и железоненасыщенных анемий. Железодефицитная анемия. Виды дефицита железа. Лабораторные тесты, отражающие дефицит железа в организме. Картина периферической крови и костного мозга при ЖДА. Лабораторная диагностика сидеробластных анемии. Обмен и роль железа в организме

Железо имеет большое значение для организма, входит в со­став гемоглобина, миоглобина, дыхательных ферментов. Оно распределяется по основным фондам.

Гемоглобиновый фонд. Железо гемоглобина составляет 60- 65% от общего содержания железа в организме.

Запасной фонд. Это железо ферритина и гемосидерина, кото­рые депонированы в печени, селезенке, костном мозге, мышцах. Составляет 30-40% от уровня железа в организме. Ферритин - водорастворимый комплекс трехвалентного железа и белка апоферритина, содержащий 20% железа. Представляет собой ла­бильную фракцию запасного фонда железа. При необходимости легко используется для нужд эритропоэза. Гемосидерин - не­растворимый в воде белок, по составу близок к ферритину, но содержит большее количество железа - 25-30%. Является ста­бильной, прочно фиксированной фракцией запасов железа в организме.

Транспортный фонд представлен железом, связанным с транспортным белком трансферрином. Составляет 1% от содер­жания железа в организме.

Тканевой фонд представлен железом железосодержащих фер­ментов (цитохромы, пероксидаза и др.), миоглобина. Составляет 1% от содержания железа в организме.

Общее содержание железа в организме взрослых равно 4-5 г. Оно поступает в организм с пищевым рационом. Содержится в продуктах животного и растительного происхождения (мясо, особенно говядина, печень, яйца, бобовые, яблоки, курага и др.). Железо всасывается гораздо лучше из продуктов животного про­исхождения, чем растительного, так как оно содержится в них в форме гема. Так, из мяса всасывается 20-25%, из рыбы - 11%, из растительных продуктов - 3-5% содержащегося в них железа. Всасыванию железа способствуют аскорбиновая кислота, орга­нические кислоты (лимонная, яблочная и др.), ингибируют вса­сывание танин, высокое содержание жира в рационе. Всасыва­ние железа из пищевых продуктов лимитировано. За сутки вса­сывается 2-2,5 мг железа, кратковременно после сильного кро­вотечения может всасываться до 3 мг железа. Основное количест­во железа всасывается в 12-перстной кишке и в начальной части тощей кишки. Малое количество железа может всосаться во всех отделах тонкого кишечника.

Всасывание железа происходит в два этапа: 1) слизистая обо­лочка кишечника захватывает железо, поступающее с пищевым рационом; 2) железо из слизистой оболочки кишечника перехо­дит в кровь, нагружается на трансферрин и доставляется к мес­там использования и в депо. Трансферрин также переносит железо из его фондов и клеток системы фагоцитирующих мононук леаров, в которых происходит деструкция эритроцитов, в костный мозг, где оно частично используется для синтеза гемоглобина, а частично откладывается в виде железа запасов, а также в другие места хранения железа. Обычно с железом связывается 1/3 часть трансферрина. Ее называют связанным трансферрином или сы­вороточным железом. В норме содержание железа в сыворотке у мужчин и женщин составляет, соответственно, 13-30 и 12-25 мкмоль/л. Часть трансферрина, не связанную с желе­зом, называют свободным трансферрином или ненасыщенной, латентной железосвязывающей способностью сыворотки. Мак­симальное количество железа, которое мог бы присоединить трансферрин до своего насыщения, обозначают как общую железосвязывающую способность сыворотки (ОЖСС) (в норме 30-85 мкмоль/л). Разница между показателями ОЖСС и сывороточным железом отражает латентную железосвязывающую способ­ность, а отношение сывороточного железа к ОЖСС, выраженное в процентах, отражает процент насыщения трансферрина желе­зом (норма 16-50%). Для суждения о величине запасов железа и организме проводят:

Исследование уровня ферритина в сыворотке радиоимун ными методами;

Десфераловый тест. Десферал (десфероксамин) является комплексоном, который после введения в организм избира­тельно связывается с железом запасов, т. е. с железом ферри­тина, и выводит его с мочой. Больному однократно внутри­мышечно вводят 500 мг десферала, собирают суточную мочу и определяют в ней содержание железа. После введения десферала с мочой в норме выводится от 0,8 до 1,2 мг железа, в то время как у больных железодефицитной анемией или при на­личии скрытого дефицита железа количество выделяемого е мочой железа резко снижается;

Подсчет в пунктате костного мозга количества сидеробла- стов, а в периферической крови - сидероцитов. Сидеробласты - это нормобласты, т. е. ядросодержащие клетки красного ряда, в цитоплазме которых выявляются синего цвета гранулы железа запасов - ферритина. В норме 20-40% нормобластов являются сидеробластами. Сидероциты - это эритроциты, в которых обнаруживаются гранулы ферритина. В норме в периферической кровг: до 1% сидероцитов. Гранулы ферритина в сидеробластах и сидероцитах выявляются при специальной окраске берлинской лазурью.

Организму свойственны физиологические потери железа с мочой, калом, желчью, слущившимися клетками слизистой ки шсчника, с потом, при стрижке волос, ногтей. Женщины теряют железо с месячными.

Развитию железодефицитной анемии предшествует скрытый (латентный) дефицит железа. У больных появляются жалобы и клинические признаки, характерные для железодефицитной пиемии, но менее выраженные (слабость, умеренная бледность кожных покровов и видимых слизистых оболочек, головные боли, сердцебиение, часто извращение вкуса и обоняния, сухость кожи, ломкость ногтей и др.). При обследовании еще не обна­руживается изменений в содержании гемоглобина, эритроцитов и других показателей периферической крови. Но выявляются нарушения в обмене железа: снижается сывороточное железо, Повышаются общая и латентная железосвязывающие способности сыворотки, уменьшается процент насыщения трансферрина, снижается уровень железа запасов. Это сидеропения без анемии. Скрытый дефицит железа может развиться в любом возрасте, особенно часто им страдают женщины, подростки и дети. Если скрытый дефицит железа не компенсируется, а углубляется, раз­минается железодефицитная анемия.

Процедура определения групп крови по системе АВО заключается в выявлении антигенов А и В в эритроцитах с помощью стандартных антител и использованием агглютининов в плазме или сыворотке анализируемой крови стандартными эритроцитами. Методика разработана в начале XX века и до сих пор активно применяется в медицине. Определение антигенов А и В осуществляется благодаря цоликлонам анти-А и анти-В.

Основные понятия

У доноров всегда определяются не только антигены в эритроцитах, но и агглютинины в сыворотке (плазме) с применением стандартных эритроцитов. В качестве биоматериала используется венозная кровь. Перед исследованием необходимо отказаться от жирной пищи за сутки до анализа и не курить за полчаса до сдачи теста. Группы крови определяют дважды: сначала в лечебном отделении, где заготавливается материал, а затем подтверждают исследованием в лаборатории.

Определение групп крови по системе АВО является основным тестом, который используется в трансфузиологии. Также подобная система групп крови есть у некоторых животных, например у шимпанзе, горилл и бонобо.

История открытия

В науке существует общепринятое мнение о том, что методика определения групп крови по системе АВО была выявлена впервые Карлом Ландштейнером, австрийским учёным, в 1900 году. Тогда он описал в своём труде три типа антигенов. За это через тридцать лет ему была присуждена Нобелевская премия по медицине и физиологии. Из-за того, что между учёными раньше не было тесных связей, позже установили, что чешский врач-серолог Ян Янский независимо от изысканий К. Ландштейнера впервые описал четыре группы крови человека, но его исследования были не известны широкой аудитории. В настоящее время именно классификация, разработанная Я. Янским, применяется в России и республиках бывшего СССР. В США У. Л. Мосс создал свою похожую работу в 1910 г.

Методика определения групп крови по системе АВО с помощью цоликлонов

Группа крови должна определяться в помещении с хорошим освещением с соблюдением диапазона температуры от 15 до 25 градусов Цельсия, так как отклонения от этой нормы могут повлиять на результаты исследования. На пластинке или тарелке пишутся инициалы и фамилия пациента. Слева направо или по кругу наносят стандартные обозначения групп (О(I), A(II), В(III)). Под ними размещают по капле соответствующие сыворотки отдельными пипетками для каждого вида. Затем к ним добавляется кровь пациента. Материал для исследования берется из мочки уха или пальца. Этого требует техника определения группы крови по системе АВО.

Правомерно также использование эритроцитов, находящихся в пробирке после того, как образовался сгусток. Нужно, чтобы количество сыворотки было больше количества добавленной крови в десять раз. После этого капли перемешиваются стеклянными палочками (отдельно для каждой). В течение пяти минут, аккуратно покачивая пластинку, смотрят за появлением реакции гемагглютинации. Она обнаруживается в том, что появляются маленькие красные комочки, сливающиеся затем в более крупные. Сыворотка в это время практически полностью теряет цвет.

Для того чтобы устранить ложную гемагглютинацию простого склеивания эритроцитов, нужно через три минуты добавить одну каплю физиологического раствора и проверить, сохраняется ли агглютинация. Если да, то она является истинной. Все, определение групп крови по системе АВО на этом завершено.

Толкование результатов

В результате могут наблюдаться четыре реакции:

  • не происходит агглютинация ни с одной из сывороток - первая группа О(I);
  • реакция проявилась с сыворотками I(ab) и III(a) - вторая группа А(II);
  • агглютинация наступает с сыворотками I(ab) и II(b) - третья группа В(III);
  • если реакция происходит с тремя сыворотками, нужно провести дополнительную процедуру с реактивами группы АВ(IV), которые являются стандартными; если агглютинация в такой капле отсутствует, можно считать, что это 4-я группа крови АВ(IV).

Экспресс-метод для резус-фактора

Методика определения групп крови по системе АВО предполагает одновременное выявление резус-фактора (Rh).

Поверхность пластинки предварительно смачивают и пишут на ней «контрольная сыворотка» и «сыворотка антирезус». Затем под надписями располагают одну-две капли нужных реактивов и добавляют к ним анализируемый материал. Для этого также можно использовать кровь из пальца (в таком же количестве, как и объём сыворотки) или эритроциты, оставшиеся на дне пробирки после появления сгустка (половина объёма сыворотки). Выбор материала на конечный результат не влияет. Затем кровь и сыворотка перемешиваются сухой стеклянной палочкой, после чего в течение пяти минут ожидают наступления реакции. Для того чтобы устранить ложные показания, через три-четыре минуты добавляют изотонический раствор натрия хлорида (всего несколько капель). Определение группы крови по системе АВО и Rh проводится очень часто.

Если агглютинация эритроцитов в капле с сывороткой происходит, это указывает на положительный резус крови. По статистике Rh+ встречается у 85 % населения планеты. Отсутствие её позволяет говорить о резус-отрицательной принадлежности. Если агглютинация появилась в контрольной сыворотке, значит она пришла в негодность. К сожалению, алгоритм определения группы крови по системе АВО не всегда срабатывает идеально.

Какие ошибки могут быть допущены при данной методике?

Неточности при определении принадлежности крови той или иной группе зависят от следующих причин:

  • Технических.
  • Биологической специфики исследуемой крови.
  • Неполноценного характера стандартных сывороток и эритроцитов.

Технические ошибки

Возможные погрешности при определении группы крови системы АВО перекрестным способом:


Ошибки биологической специфики

Погрешности, связанные с биологической спецификой анализируемой крови, делятся на два типа.

  • Зависящие от особенностей эритроцитов.
  • Ошибки, обусловленные биологическими особенностями сыворотки.

Рассмотрим каждый вид более подробно.

Зависящие от особенностей эритроцитов

  • Поздняя агглютинация, объясняющаяся «слабыми» формами эритроцитов и антигенов. Для того чтобы избежать ошибок, определять группу крови доноров и реципиентов нужно с использованием стандартных эритроцитов. Индентифицировать агглютиноген А 2 следует повторным исследованием с другими видами реагентов и другой посуды, увеличив время регистрации реакции.
  • «Панагглютинация» («аутоагглютинация») - умение крови проявлять одинаковую реакцию неспецифического характера со всеми сыворотками, в том числе с собственной. Через пять минут острота такой агглютинации слабеет, хотя должна усиливаться. Подобные случаи наблюдаются у онкобольных, обожжённых и др. В качестве контроля необходимо оценить проявление агглютинации анализируемых эритроцитов в стандартной сыворотке четвёртой группы и физрастворе. При «панагглютинации» группу крови определяют в результате тройного отмывания эритроцитов. Если оно не даёт нужного результата, стоит произвести повторный забор образца крови в согретую перед процедурой пробирку и поставить пробу в термоконтейнер, чтобы способствовать поддержанию температуры 37 градусов Цельсия и выше. Затем следует доставить в лабораторию, где сохраняется указанная выше температура и используются подогретые физиологический раствор, пластинка и реактивы.

  • Иногда эритроциты анализируемой крови располагаются как «монетные столбики», и их можно принять за агглютинаты. Если добавить две капли изотонического раствора и мягко покачать планшет, красные кровяные клетки занимают правильную позицию.
  • Неполная или смешанная агглютинация, встречающаяся у пациентов со второй, третьей и четвёртой группами в результате трансплантации костного мозга или в первые три месяца после переливания крови 0(I).

Обусловленные биологическими особенностями сыворотки


Ошибки, связанные с применением неполноценных стандартных эритроцитов и сывороток

Слабые сыворотки с прошедшим сроком годности или имеющие титр меньше 1:32 способны зарождать слабую и позднюю агглютинацию. Применение таких реактивов недопустимо.

Использование негодных стандартных эритроцитов или сывороток, приготовленных в нестерильных условиях и законсервированных в недостаточной степени, приводит к появлению «бактериальной» агглютинации, имеющей неспецифическую природу.

Существует множество популярных предположений о группах крови системы АВО, появившихся непосредственно после её обнаружения в разных мировых культурах. Так, например, в 30-е годы прошлого столетия в Японии и некоторых других странах получила популярность теория, связывающая группу крови с тем или иным типом личности. Подобные теории популярны и на сегодняшний день.

Есть также мнение, что человек, имеющий группу А, подвержен тяжёлому похмелью, О связана с хорошими зубами, а группа А2 - с самым высоким уровнем IQ. Но научно такие утверждения не доказаны.

Мы рассмотрели определение групп крови по системе АВО с помощью стандартных сывороток.

Про системы групп крови, пожалуй, слышали все, но у большинства людей знания заканчиваются сведениями о групповой несовместимости и о том, что при переливании можно вливать только одноименную группу крови. Как правило, для человека, не связанного с медициной, этих знаний бывает достаточно, а тем, кому интересны особенности подразделения по системе ABO и причины различия групп, можно ознакомиться с дополнительным материалом.

Принципы деления по ABO

Система ABO группы крови основана на различном содержании на поверхности эритроцитов агглютиногенов A и B. А также на присутствии в плазме агглютининов a и b.

Выделяется 4 группы крови АВО и характеристики каждой основаны на соотношении агглютиногенов и агглютининов:
  1. I - эритроцит не несет на своей поверхности агглютиногенов, зато в кровеносном русле содержится оба вида агглютининов. В этом случае обозначается группа крови ab0 или 0 (I). Считается, что это самый «древний» вид крови.
  2. II - эритроцитарная поверхность содержит компонент A, при этом в плазме выявляется агглютинин b, обозначением станет A (II).
  3. III - эритроцит является носителем элемента B, при этом в плазме будет содержаться только b, и обозначаться это будет как B (III).
  4. IV - на поверхности эритроцитов имеются агглютиногены A и B, но при этом в составе плазмы совсем нет агглютининов. Ее принято обозначать AB (IV). Есть мнение о том, что это самая «молодая» кровь.
Таким образом, в крови человека могут присутствовать сочетания:

Но никогда не встречается сочетаний Aa или Bb.

Ученые строят теории относительно того, как связана данная система с психологическим типом человека, предрасположенностью его к тем или иным патологиям и т. п.

Наличие одноименных агглютиногенов и агглютининов всегда провоцирует реакцию агглютинации, которая всегда заканчивается летальным исходом.

Именно агглютинация служит причиной гемотрансфузионного шока, который возникает при групповой несовместимости.

Немного о гемотрансфузионном шоке

Даже после того как была открыта система АВО группы крови, осложнения при гемотрансфузии раньше происходили довольно часто по причине того, что на ранних этапах не учитывалось значение агглютининов, а принимался во внимание только показатель агглютеногенов. Ранее считалось, что переливание группы крови АВ0 или 0 (I) допускается всем, в то время как AB (IV) можно вливать только для четвертой группы. Такое ошибочное мнение служило основной причиной осложнений после гемотрансфузии.

Постепенно в процессе лабораторных исследований было обнаружено, что одноименные агглютиногены и агглютинины при попадании в общей кровоток провоцируют следующую реакцию:
  • агглютинацию (склеивание) эритроцитов;
  • после агглютинации происходит гемолиз (разрушение) эритроцита и сильное повышение количества свободного гемоглобина в плазме;
  • изменение кровяной формулы приводит к эритропении и общей интоксикации организма из-за избыточного количества свободного гемоглобина.

Такое состояние называется гемотрансфузионным шоком и часто заканчивается гибелью больного из-за того, что нарушается полноценное кровоснабжение тканей, а организм из-за недостатка кислорода испытывает сильную гипоксию. В первую очередь от недостатка питания страдают жизненно важные органы - сердце и мозг.

До того как медиками были открыты и исследованы группы крови системы АВО, а также принципы из совместимости, гибель пациентов после переливания случалась довольно часто из-за гемотрансфузионного шока, возникавшего на фоне массивного разрушения эритроцитов.

Дополнительная информация о рисках переливания

Даже полная совместимость донора и рецепиента крови по системе АВО не дает 100% гарантии, что гемотрансфузия произойдет без осложнений.

Возникновение осложнений может быть связано со следующим:

  1. Агглютиногены или агглютинины донора сильно отличаются по своему составу от одноименных у рецепиента и при попадании в организм вызывают иммунную реакцию. Несмотря на основное деление на группы, состав крови у каждого человека индивидуален, именно эти индивидуальные особенности вызывают иммунологические реакции при переливании.
  2. Сильное различие в составе плазмы. Лабораторные исследования проверяют только соотношения основных биохимических компонентов, многие показатели при этом не учитываются. Такое несовпадение также может послужить причиной острого иммунного ответа.

Но бывают ситуации, когда переливание необходимо по жизненным показателям.

К ним относятся:

  • тяжелые формы анемий;
  • обширные кровопотери при травмах или операциях:
  • снижение свертываемости;
  • онкологические процессы;
  • тяжелые ожоги.
Современная медицина в зависимости от возникшего состояния больного рекомендует делать не полную гемотрансфузию, а вливать пациенту отдельные компоненты крови:
  1. Эритроцитарная масса. Готовится из донорской крови и содержит только «отмытые» эритроциты, несущие минимум информации о доноре. Эритроцитарная масса применяется для лечения анемий, онкологических процессов системы кроветворения или при кровопотерях.
  2. Тромбоцитарная масса. Обезличенные донорские тромбоциты переливают при нарушении свертываемости.
  3. Лейкоцитарная масса. Помогает восполнить количество лейкоцитов при онкологических заболеваниях, связанных с угнетением лейкоцитарного ростка и при других состояниях, сопровождающихся лейкопенией.
  4. Плазма. Вливание плазмы проводится в основном при сильных ожогах, во время других заболеваний плазмотрансфузия применяется редко.

Для подбора совместимых элементов крови также используется система АВО, но при этом гемотрансфузионные осложнения встречаются значительно реже.

Система АВО групп крови важна при подборе донора для больного и позволяет снизить риск возникновения гемотрансфузионного шока.

Во всех других случаях сочетание агглютининов и агглютиногенов не влияет на общее состояние здоровья человека.

Учение о группах крови возникло из потребностей клинической медицины. Переливая кровь от животных человеку или от человека человеку, врачи нередко наблюдали тяжелейшие осложнения, иногда заканчивавшиеся гибелью реципиента.

С открытием венским врачом К.Ландштейнером (1901) групп крови стало понятно, почему в одних случаях трансфузии крови проходят успешно, а в других заканчиваются трагически для больного. К.Ландштейнер впервые обнаружил, что плазма, или сыворотка, одних людей способна агглютинировать (склеивать) эритроциты других людей. Это явление получило наименование изогемагглютинации. В основе ее лежит наличие в эритроцитах антигенов, названных агглютиногенами и обозначаемых буквами А и В, а в плазме - природных антител, или агглютининов, именуемых a и b. Агглютинация эритроцитов наблюдается лишь в том случае, если встречаются одноименные агглютиноген и агглютинин: А и α, В и β.

Установлено, что агглютинины, являясь природными антителами (AT), имеют два центра связывания, а потому одна молекула агглютинина способна образовать мостик между двумя эритроцитами. При этом каждый из эритроцитов может при участии агглютининов связаться с соседним, благодаря чему возникает конгломерат (агглютинат) эритроцитов.

В крови одного и того же человека не может быть одноименных агглютиногенов и агглютининов, так как в противном случае происходило бы массовое склеивание эритроцитов, что несовместимо с жизнью. Возможны только четыре комбинации, при которых не встречаются одноименные агглютиногены и агглютинины, или четыре группы крови: I - 0 (αβ), II - A (β), III - B (α), IV - АВ (0).

Кроме агглютининов, в плазме, или сыворотке, крови содержатся гемолизины, их также два вида и они обозначаются, как и агглютинины, буквами α и β. При встрече одноименных агглютиногена и гемолизина наступает гемолиз эритроцитов. Действие гемолизинов проявляется при температуре 37-40°С. Вот почему при переливании несовместимой крови у человека уже через 30-40 с наступает гемолиз эритроцитов. При комнатной температуре, если встречаются одноименные аглютиногены и агглютинины, происходит агглютинация, но не наблюдается гемолиза.

В плазме людей с II, III, IV группами крови имеются антиагглютиногены, покинувшие эритроцит и ткани. Обозначаются они, как и агглютиногены, буквами А и В

Серологический состав основных групп крови (система АВО)

Как видно из приводимой таблицы, I группа крови не имеет агглютиногенов, а потому по международной классификации обозначается как группа 0, II - носит наименование A, III - В, IV - АВ.

Для решения вопроса о совместимости групп крови пользуются следующим правилом: среда реципиента должна быть пригодна для жизни эритроцитов донора (человек, который отдает кровь). Такой средой является плазма, следовательно, у реципиента должны учитываться агглютинины и гемолизины, находящиеся в плазме, а у донора - агглютиногены, содержащиеся в эритроцитах. Для решения вопроса о совместимости групп крови смешивают исследуемую кровь с сывороткой, полученной от людей с различными группами крови. Агглютинация происходит в случае смешивания сыворотки I группы с эритроцитами II, III и IV групп, сыворотки II группы - с эритроцитами III и IV групп, сыворотки III группы - с эритроцитами 11 и IV групп.

Следовательно, кровь I группы совместима со всеми другими группами крови, поэтому человек, имеющий I группу крови, называется универсальным донором. С другой стороны, эритроциты

IV группы крови не должны давать реакции агглютинации при смешивании с плазмой (сывороткой) людей с любой группой крови, поэтому люди с IV группой крови называются универсальными реципиентами.

Почему же при решении вопроса о совместимости не принимают в расчет агглютинины и гемолизины донора? Это объясняется тем, что агглютинины и гемолизины при переливании небольших доз крови (200-300 мл) разводятся в большом объеме плазмы (2500-2800 мл) реципиента и связываются его антиагглютининами, а потому не должны представлять опасности для эритроцитов.

В повседневной практике для решения вопроса о группе переливаемой крови пользуются иным правилом: переливаться должны одногруппная кровь и только по жизненным показаниям, когда человек потерял много крови. Лишь в случае отсутствия одногруппной крови с большой осторожностью можно перелить небольшое количество иногруппной совместимой крови. Объясняется это тем, что приблизительно у 10-20% людей имеется высокая концентрация очень активных агглютининов и гемолизинов, которые не могут быть связаны антиагглютининами даже в случае переливания небольшого количества иногруппной крови.

Постгрансфузионные осложнения иногда возникают из-за ошибок при определении групп крови. Установлено, что агглютиногены А и В существуют в разных вариантах, различающихся по своему строению и антигенной активности. Большинство из них получило цифровое обозначение (A 1 , А 2 , А 3 и т.д., B 1 , В 2 и т.д.). Чем больше порядковый номер агглютиногена, тем меньшую активность он проявляет. И хотя разновидности агглютиногенов А и В встречаются относительно редко, при определении групп крови они могут быть не обнаружены, что может привести к переливанию несовместимой крови.

Следует также учитывать, что большинство человеческих эритроцитов несет антиген Н. Этот АГ всегда находится на поверхности клеточных мембран у лиц с группой крови 0, а также присутствует в качестве скрытой детерминанты на клетках людей с группами крови А, В и АВ. Н - антиген, из которого образуются антигены А и В. У лиц с 1 группой крови антиген доступен действию анти-Н-антител, которые довольно часто встречаются у людей со II и IV группами крови и относительно редко у лиц с III группой. Это обстоятельство может послужить причиной гемотрансфузионных осложнений при переливании крови 1 группы людям с другими группами крови.

Концентрация агглютиногенов на поверхности мембраны эритроцитов чрезвычайно велика. Так, один эритроцит группы крови A 1 содержит в среднем 900000-1700000 антигенных детерминант, или рецепторов, к одноименным агглютининам. С увеличением порядкового номepa агглютиногена число таких детерминант уменьшается. Эритроцит группы А² имеет всего 250000-260000 антигенных детерминант, что также объясняет меньшую активность этого агглютиногена.

В настоящее время система АВО часто обозначается как АВН, а вместо терминов «агглютиногены» и «агглютинины» применяются термины «антигены» и «антитела» (например, АВН-антигены и АВН-антитела).

Некоторые жизненные ситуации (предстоящая операция, беременность, желание стать донором и др.) требуют анализа, который мы привыкли называть просто: «группа крови». Между тем, в широком понимании этого термина, здесь есть некая неточность, поскольку большинство из нас подразумевает известную эритроцитарную систему АВ0, описанную в 1901 году Ландштейнером, но не знает о ней и поэтому говорит «анализ крови на группу», отделяя, таким образом, другую важную систему .

Карл Ландштейнер, удостоенный за это открытие Нобелевской премии, на протяжении своей жизни продолжал работать над поиском других антигенов, расположенных на поверхности эритроцитов, и в 1940 году мир узнал о существовании системы Резус, занимающей по значимости второе место. Кроме этого, ученым в 1927 году были найдены белковые вещества, выделенные в системы эритроцитов – MNs и Pp. На тот момент это было огромным прорывом в медицине, ведь люди подозревали, что способна привести к гибели организма, а чужая кровь может спасти жизнь, поэтому делали попытки переливания ее от животных человеку и от человека человеку. К сожалению, успех приходил не всегда, но наука уверенно двигалась вперед и в настоящее время мы только по привычке говорим о группе крови, подразумевая систему АВ0.

Что представляет собой группа крови и как о ней стало известно?

Определение группы крови основано на классификации генетически детерминированных индивидуально специфических белков всех тканей человеческого организма. Эти органоспецифические белковые структуры называются антигенами (аллоантигенами, изоантигенами), но их не следует путать с антигенами, специфическими для определенных патологических образований (опухолей) или белками-возбудителями инфекций, поступающими в организм извне.

Антигенный набор тканей (и крови, конечно), данный от рождения, определяет биологическую индивидуальность конкретной особи, которой может быть и человек, и любое животное, и микроорганизм, то есть, изоантигены характеризуют группоспецифические признаки, позволяющие различать эти особи внутри своего вида.

Аллоантигенные свойства наших тканей начал изучать Карл Ландштейнер, который смешивал кровь (эритроциты) людей с сыворотками других людей и замечал, что в одних случаях эритроциты склеиваются между собой (агглютинация), а в других окраска остается гомогенной. Правда, сначала ученый нашел 3 группы (А, В, С), 4 группа крови (АВ) была открыта позже чехом Яном Янским. В 1915 году в Англии и Америке уже были получены первые стандартные сыворотки, содержащие специфические антитела (агглютинины), определяющие групповую принадлежность. В России группу крови по системе АВ0 начали определять с 1919 года, но цифровые обозначения (1, 2, 3, 4) были введены в практику в 1921 году, а чуть позже стали применять буквенно-цифровую номенклатуру, где антигены обозначались латинскими буквами (А и В), а антитела – греческими (α и β).

Оказывается, их так много…

На сегодняшний день иммуногематология пополнилась более чем 250 антигенами, расположенными на эритроцитах. Основные системы эритроцитарных антигенов включают:

Эти системы, помимо трансфузиологии (переливание крови), где главная роль принадлежит все же АВ0 и Rh, чаще всего напоминают о себе в акушерской практике (выкидыши, мертворождения, рождение детей с тяжелой гемолитической болезнью), однако определить эритроцитарные антигены многих систем (кроме АВ0, Rh) не всегда возможно, что связано отсутствием типирующих сывороток, получение которых требует больших материальных и трудовых затрат. Таким образом, когда мы говорим о 1, 2, 3, 4 группе крови, мы подразумеваем главную антигенную систему эритроцитов, называемую системой АВ0.

Таблица: возможные сочетаний АВ0 и Rh (групп крови и резус-факторов)

Помимо этого, приблизительно со средины прошлого века один за другим стали открываться антигены:

  1. Тромбоцитов, которые в большинстве случаев повторили антигенные детерминанты эритроцитов, однако с меньшей степенью выраженности, что и затрудняет определение группы крови на тромбоцитах;
  2. Ядерных клеток, прежде всего, лимфоцитов (HLA – система гистосовместимости), открывших широкие возможности для трансплантации органов и тканей и решения некоторых проблем генетики (наследственная предрасположенность к определенной патологии);
  3. Плазменных белков (число описанных генетических систем уже перевалило за десяток).

Открытия многих генетически детерминированных структур (антигенов) позволили не только по-другому подойти к определению группы крови, но и укрепить позиции клинической иммуногематологии в плане борьбы с различными патологическими процессами, сделали возможным безопасное , а также пересадку органов и тканей .

Главная система, разделяющая людей на 4 группы

Групповая принадлежность эритроцитов зависит от группоспецифических антигенов А и В (агглютиногены):

  • Содержащих в своем составе белок и полисахариды;
  • Тесно связанных со стромой красных кровяных клеток;
  • Не имеющих отношения к гемоглобину, который никак не участвует в реакции агглютинации.

Кстати, агглютиногены можно найти на других клетках крови (тромбоциты, лейкоциты) или в тканях и жидкостях организма (слюна, слезы, околоплодные воды), где они определяются в значительно меньших количествах.

Таким образом, на строме эритроцитов конкретного человека можно встретить антигены А и В (вместе или порознь, но всегда образующих пару, например, АВ, АА, А0 или ВВ, В0) или вовсе их там не обнаружить (00).

Кроме этого, в плазме крови плавают глобулиновые фракции (агглютинины α и β) , совместимые с антигеном (А с β, В с α), названные естественными антителами .

Очевидно, что в первой группе, не содержащей антигенов, будут присутствовать оба вида групповых антител – α и β. В четвертой группе в норме никаких естественных глобулиновых фракций быть не должно, поскольку, если допустить подобное, антигены и антитела начнут склеиваться между собой: α будет агглютинировать (склеивать) А, а β, соответственно, В.

В зависимости от комбинаций вариантов и присутствия тех или иных антигенов и антител групповую принадлежность крови человека можно представить в следующем виде:

  • 1 группа крови 0αβ(I): антигены – 00(I), антитела – α и β;
  • 2 группа крови Aβ(II): антигены – АА или А0(II), антитела – β;
  • 3 группа крови Bα(III): антигены – ВВ или В0(III), антитела – α
  • 4 группа крови АВ0(IV): антигены только А и В, антитела отсутствуют.

Возможно, читатель удивится, узнав, что существует группа крови, которая не подходит под такую классификацию. Она была открыта в 1952 году у жителя Бомбея, поэтому названа «бомбейской». Антигенно-серологический вариант эритроцитов типа « Bombey » не содержит антигенов системы АВ0, а в сыворотке таких людей, наряду с естественными антителами α и β, обнаруживаются анти-Н (антитела, направленные на вещество Н, дифференцирующее антигены А и В и не позволяющие их присутствие на строме эритроцитов). В дальнейшем «бомбейский» и другие редкие типы групповой принадлежности были найдены в разных уголках планеты. Конечно, таким людям не позавидуешь, ведь в случае массивной кровопотери, спасительную среду им нужно искать по всему земному шару.

Незнание законов генетики может стать причиной трагедии в семье

Группа крови каждого человека по системе АВ0 является результатом наследования одного антигена от матери, другого от отца. Получая наследственную информацию от обоих родителей, человек в своем фенотипе имеет половину каждого из них, то есть, группа крови родителей и ребенка представляет собой сочетание двух признаков, поэтому может не совпадать с групповой принадлежностью крови отца или матери.

Несовпадения групп крови родителей и ребенка зарождают в головах отдельных мужчин сомнения и подозрения в неверности супруги. Подобное происходит по причине отсутствия элементарных знаний законов природы и генетики, поэтому во избежание трагических ошибок со стороны мужского пола, невежество которого нередко ломает счастливые семейные отношения, считаем необходимым лишний раз разъяснить, откуда у ребенка берется та или иная группа крови по системе АВ0 и привести примеры ожидаемых результатов.

Вариант 1 . Если оба родителя имеют первую группу крови: 00(I) x 00(I), то у ребенка будет только первая 0(I ) группа , все остальные – исключаются. Это происходит потому, что гены, синтезирующие антигены первой группы крови – рецессивны , они могут проявлять себя только в гомозиготном состоянии, когда никаким другим геном (доминантным) не подавляются.

Вариант 2 . У обоих родителей вторая группа А(II). Однако она может быть как гомозиготной, когда два признака одинаковы и доминантны (АА), так и гетерозиготой, представленной доминантным и рецессивным вариантом (А0), поэтому здесь возможны следующие сочетания:

  • АА(II) х АА(II) → АА(II);
  • АА(II) х А0(II) → АА(II);
  • А0(II) х А0(II) → АА(II), А0(II), 00(I), то есть, при такой комбинации родительских фенотипов вероятна как первая, так и вторая группа, третья и четвертая – исключаются .

Вариант 3 . У одного из родителей первая группа 0(I), у другого – вторая:

  • АА(II) х 00(I) → A0(II);
  • A0(II) x 00(I) → А0 (II), 00(I).

Возможные группы у ребенка – А(II) и 0(I), исключаемые – В(III ) и АВ(IV ).

Вариант 4 . В случае комбинации двух третьих групп наследование пойдет по варианту 2 : возможной принадлежностью станет третья или первая группа, тогда как вторая и четвертая будут исключены .

Вариант 5 . Когда один из родителей имеет первую группу, а второй третью, наследование происходит аналогично варианту 3 – у ребенка возможны В(III) и 0(I), но исключаются А(II ) и АВ(IV ) .

Вариант 6 . Группы родителей А(II ) и В(III ) при наследовании могут давать любую групповую принадлежность системы АВ0 (1, 2, 3, 4). Появление 4 группы крови является примером кодоминантного наследования , когда оба антигена в фенотипе равноправны и в одинаковой мере проявляют себя новым признаком (А + В = АВ):

  • АА(II) х ВВ(III) → АВ(IV);
  • А0(II) х В0(III) → АВ(IV), 00(I), А0(II), В0(III);
  • А0(II) х ВВ(III) → АВ(IV), В0(III);
  • В0(III) х АА(II) → АВ(IV), А0(II).

Вариант 7 . При сочетании второй и четвертой группы у родителей возможна вторая, третья и четвертая группа у ребенка , первая исключается:

  • АА(II) х АВ(IV) → АА(II), АВ(IV);
  • А0(II) х АВ(IV) → АА(II), A0(II), В0(III), АВ(IV).

Вариант 8 . Аналогичная ситуация складывается и в случае сочетания третьей и четвертой групп: возможными будут A(II), В(III) и АВ(IV), а первая – исключаемой.

  • ВВ (III) х АВ(IV) → BB(III), АВ(IV);
  • B0(III) х АВ(IV) → А0(II), ВB(III), B0(III), АВ(IV).

Вариант 9 – наиболее интересный. Наличие у родителей 1 и 4 группы крови в результате оборачивается появлением у ребенка второй или третьей группы крови, но никогда первой и четвертой :

  • АВ(IV) х 00(I);
  • А + 0 = А0(II);
  • B + 0 = B0 (III).

Таблица: группа крови ребенка исходя из групп крови родителей

Очевидно, что утверждение об одинаковой групповой принадлежности у родителей и детей – заблуждение, ведь генетика подчиняется своим законам. Что касается определения группы крови ребенка по групповой принадлежности родителей, то подобное возможно только, если родители имеют первую группу, то есть, в данном случае появление А(II) или B(III) будет исключать биологическое отцовство или материнство. Комбинация четвертой и первой групп приведет к возникновению новых фенотипических признаков (2 или 3 группа), тогда как старые будут утеряны.

Мальчик, девочка, групповая совместимость

Если в старину для рождения в семье наследника клали вожжи под подушку, то сейчас все поставлено почти на научную основу. Пытаясь обмануть природу и «заказать» пол ребенка заранее, будущие родители производят простые арифметические действия: делят возраст отца на 4, а матери – на 3, у кого больше остаток, тот и победил. Иногда это совпадает, а иногда и разочаровывает, поэтому какова вероятность получить желаемый пол с помощью расчетов – официальная медицина не комментирует, поэтому вычислять или нет – дело каждого, но метод безболезненный и абсолютно безвредный. Можно попытаться, а вдруг повезет?

для справки: nо что действительно влияет на пол ребенка – сочетания X и Y хромосом

А вот совместимость группы крови родителей – это совсем другое дело и не в плане пола ребенка, а в смысле, появится ли он вообще на свет. Образование иммунных антител (анти-А и анти-В), хоть и редко, но может помешать нормальному течению беременности (IgG) и даже кормлению ребенка (IgA). К счастью, система АВ0 не так часто вмешивается в процессы воспроизводства, чего нельзя сказать о резус-факторе. Он может стать причиной невынашивания беременности или рождения малышей с , лучшим последствием которой является глухота, а в худшем случае ребенка вообще спасти не удается.

Групповая принадлежность и беременность

Определение группы крови по системам АВ0 и Резус (Rh) является обязательной процедурой при постановке на учет по беременности.

В случае отрицательного резус-фактора у будущей матери и такого же результата у будущего отца ребенка, можно не волноваться, поскольку у малыша тоже будет отрицательный резус-фактор.

Не стоит сразу паниковать «отрицательной» женщине и при первой (аборты и выкидыши тоже считаются) беременности. В отличие от системы АВ0 (α, β), система Резус не имеет естественных антител, поэтому организм еще только распознает «чужое», но никак на него не реагирует. Иммунизация произойдет во время родов, поэтому, чтобы организм женщины «не запомнил» присутствие чужеродных антигенов (резус-фактор – положительный), родильнице в первые сутки после родов вводится специальная антирезусная сыворотка , защищающая последующие беременности . В случае сильной иммунизации «отрицательной» женщины «положительным» антигеном (Rh+) совместимость для зачатия находится под большим вопросом, поэтому, не глядя на длительное лечение, женщину преследуют неудачи (выкидыши). Организм женщины, имеющий отрицательный резус, единожды «запомнив» чужой белок («клетка памяти»), ответит активной выработкой иммунных антител при последующих встречах (беременность) и будет всячески отторгать его, то есть, собственного желанного и долгожданного ребенка, если у того окажется положительный резус-фактор.

О совместимости для зачатия иной раз следует иметь в виду и в отношении других систем. Кстати, АВ0 достаточно лояльна к присутствию незнакомого и редко дает иммунизацию. Однако известны случаи возникновения иммунных антител у женщин при АВ0-несовместимой беременности, когда поврежденная плацента открывает доступ эритроцитам плода в кровь матери. Принято считать, что наибольшую вероятность изоиммунизации женщины привносят прививки (АКДС), которые содержат группоспецифические субстанции животного происхождения. В первую очередь такая особенность замечена за веществом А.

Наверное, второе место после системы Резус в этом плане можно отдать системе гистосовместимости (HLA), а затем – Келл. А вообще, каждая из них способна иной раз преподнести сюрприз. Это происходит потому, что организм женщины, имеющей близкие отношения с определенным мужчиной, даже без беременности, реагирует на его антигены и вырабатывает антитела. Этот процесс называется сенсибилизацией . Вопрос лишь в том, до какого уровня дойдет сенсибилизация, которая зависит от концентрации иммуноглобулинов и образования комплексов «антиген-антитело». При высоком титре иммунных антител совместимость для зачатия находится под большим сомнением. Скорее, речь будет идти о несовместимости, требующей огромных усилий врачей (иммунологов, гинекологов), к сожалению, нередко напрасных. Снижение титра с течением времени тоже мало успокаивает, «клетка памяти» свою задачу знает…

Видео: беременность, группа крови и резус-конфликт


Совместимое переливание крови

Кроме совместимости для зачатия, не менее важное значение имеет совместимость для переливания , где системе АВ0 принадлежит главенствующая роль (переливание крови, несовместимой по системе АВ0 очень опасно и может привести к летальному исходу!). Нередко человек считает, что 1 (2, 3, 4) группа крови у него и у соседа должна быть обязательно одинаковой, что первая всегда подойдет первой, вторая – второй и так далее, и в случае некоторых обстоятельств они (соседи) могут помочь друг другу. Казалось бы, реципиент, имеющий 2 группу крови, должен принять донора такой же групповой принадлежности, однако это не всегда так. Все дело в том, что антигены А и В имеют свои разновидности. Например, больше всех аллоспецифических вариантов имеет антиген А (А 1 , А 2 , А 3 , А 4 , А 0 , А Х и др), но и В мало уступает (В 1 , В Х, В 3 , В слабый и пр.), то есть, получается что эти варианты могут попросту не совместиться, хоть при анализе крови на группу результат будет А(II) или В(III). Таким образом, учитывая такую неоднородность, можно представить сколько разновидностей может иметь 4 группа крови, содержащая в своем составе антиген и А, и В?

Утверждение, что 1 группа крови – самая лучшая, так как подходит всем без исключения, а четвертая принимает любую – также устарело. Например, некоторых людей, имеющих 1 группу крови, почему-то называют «опасным» универсальным донором. А опасность заключается в том, что не имея на эритроцитах антигенов А и В, плазма этих людей содержит большой титр естественных антител α и β, которые, попадая в кровоток реципиента других групп (кроме первой) начинают агглютинировать находящиеся там антигены (А и/или В).

совместимость групп крови при переливании

В настоящее время переливание разногруппной крови не практикуется, исключение составляют лишь некоторые случаи трансфузий, требующие специального подбора. Тогда универсальной считают первую резус-отрицательную группу крови, эритроциты которой во избежание иммунологических реакций отмывают 3 или 5 раз. Первая группа крови с положительным резусом может быть универсальной только в отношении эритроцитов Rh(+), то есть, после определения на совместимость и отмывания эритроцитной массы может быть перелита резус-положительному реципиенту, имеющему любую группу системы АВ0.

Самой распространенной группой на европейской территории РФ считается вторая – А(II), Rh(+), самой редкой – 4 группа крови с отрицательным резусом. В банках крови к последней отношение особенно трепетное, ведь человек, имеющий подобный антигенный состав, не должен погибнуть только потому, что в случае необходимости ему не найдут нужное количество эритроцитной массы или плазмы. Кстати, плазма АВ(IV ) Rh (-) подходит абсолютно всем, поскольку ничего не содержит (0), однако такой вопрос никогда не рассматривается по причине редкой встречаемости 4 группы крови с отрицательным резусом .

Как определяют группу крови?

Определение группы крови по системе АВ0 можно произвести, взяв капельку из пальца. Кстати, уметь это должен каждый медработник, имеющий диплом о высшем или среднем медицинском образовании, независимо от профиля своей деятельности. Что касается других систем (Rh, HLA, Kell), то анализ крови на группу берут из вены и, следуя методике, определяют принадлежность. Подобные исследования уже находятся в компетенции врача лабораторной диагностики, а иммунологическое типирование органов и тканей (HLA) вообще требует специальной подготовки.

Анализ крови на группу делают с помощью стандартных сывороток , изготовленных в специальных лабораториях и отвечающих определенным требованиям (специфичность, титр, активность), или используя цоликлоны , полученные в заводских условиях. Таким образом определяют групповую принадлежность эритроцитов (прямой метод ). Чтобы исключить ошибку и получить полную уверенность в достоверности полученных результатов, на станциях переливания крови или в лабораториях стационаров хирургического и, особенно, акушерского профиля группу крови определяют перекрестным методом , где в качестве испытуемого образца используют сыворотку, а специально подобранные стандартные эритроциты идут как реагент. Кстати, у новорожденных групповую принадлежность перекрестным методом определить весьма сложно, агглютинины α и β хоть и называются естественными антителами (данными от рождения), но синтезироваться они начинают только с полугода и накапливаются к 6-8 годам.

Группа крови и характер

Влияет ли группа крови на характер и можно ли заранее предугадать, что в дальнейшем можно ожидать от годовалого розовощекого карапуза? Официальная медицина групповую принадлежность в подобном ракурсе рассматривает мало или вовсе не уделяет этим вопросам внимания. Генов у человека множество, групповых систем тоже, поэтому вряд ли можно ожидать исполнения всех предсказаний астрологов и заранее определить характер человека. Однако нельзя исключать некоторые совпадения, ведь кое-какие прогнозы все-таки сбываются.

распространенность групп крови в мире и приписываемые им характеры

Итак, астрология утверждает, что:

  1. Носители первой группы крови – люди смелые, сильные, целеустремленные. Лидеры от природы, обладающие неуемной энергией, они не только сами достигают больших высот, но и увлекают за собой других, то есть, являются замечательными организаторами. Вместе с этим, их характер не лишен отрицательных черт: они могут внезапно вспылить и в порыве гнева проявить агрессию.
  2. Вторую группу крови имеют люди терпеливые, уравновешенные, спокойные, слегка застенчивые, сопереживающие и принимающие все близко к сердцу. Их отличает домовитость, хозяйственность, стремление к комфорту и уюту, однако упрямство, самоедство и консерватизм мешают в решении многих профессиональных и бытовых задач.
  3. Третья группа крови предполагает поиски неизведанного, творческий порыв, гармоническое развитие, коммуникабельность. С таким бы характером, да горы ворочать, но вот незадача – плохая переносимость рутины и однообразия не позволяет этого сделать. Обладатели группы В(III) быстро меняют настроение, проявляют непостоянство во взглядах, суждениях, поступках, много мечтают, что препятствует осуществлению намеченной цели. Да и цели-то у них меняются быстро…
  4. В отношении индивидов, имеющих четвертую группу крови, астрологи не поддерживают версию некоторых психиатров, утверждающих, что среди ее обладателей больше всего маньяков. Люди, изучающие звезды, сходятся во мнении, что 4 группа собрала в себе лучшие черты предыдущих, поэтому отличается особо хорошим характером. Лидеры, организаторы, обладающие завидной интуицией и коммуникабельностью, представители группы АВ(IV), вместе с тем, нерешительны, противоречивы и своеобразны, их разум ведет постоянную борьбу с сердцем, но на чьей стороне будет победа – большой вопросительный знак.

Конечно, читатель понимает, что все это весьма приблизительно, ведь люди такие разные. Даже однояйцевые близнецы и те проявляют какую-то индивидуальность, во всяком случае – в характере.

Питание и диета по группам крови

Концепция диеты по группам крови своим появлением обязана американцу Питеру Д’Адамо, который в конце прошлого века (1996 г.) выпустил книгу с рекомендациями правильного питания в зависимости от групповой принадлежности по системе АВ0. Тогда же это модное течение проникло в Россию и было причислено к альтернативным.

По мнению абсолютного большинства врачей, имеющих медицинское образование, данное направление антинаучно и противоречит сложившимся представлениям, основанным на многочисленных исследованиях. Автор разделяет взгляд официальной медицины, поэтому читатель вправе выбирать, кому верить.

  • Утверждение, что сначала у всех людей была только первая группа, ее обладатели «охотники, живущие в пещере», обязательные мясоеды , имеющие здоровый пищеварительный тракт, можно смело подвергать сомнению. Групповые вещества А и В были определены в сохранившихся тканях мумий (Египет, Америка), возраст которых более 5000 лет. Сторонники концепции «Ешьте правильно для Вашего типа» (название книги Д’Адамо), не указывают, что присутствие антигенов 0(I) считают факторам риска в отношении заболеваний желудка и кишечника (язвенная болезнь), кроме этого, носители данной группы чаще других имеют проблемы с давлением ( ).
  • Обладатели второй группы господином Д’Адамо признаны чистыми вегетарианцами . Учитывая, что данная групповая принадлежность в Европе является превалирующей и в некоторых районах доходит до 70%, можно представить себе исход массового вегетарианства. Наверное, психбольницы будут переполнены, ведь современный человек – устоявшийся хищник.

К сожалению, диета по группе крови А(II) не заостряет внимание заинтересованных на том, что люди, имеющие данный антигенный состав эритроцитов составляют большую часть в числе больных , . У них чаще других случаются . Так, может быть, в этом направлении человеку следует поработать? Или хотя бы иметь в виду риск возникновения подобных проблем?

Пища для размышлений

Интересный вопрос: когда человек должен переходить на рекомендованную диету по группе крови? От рождения? В период полового созревания? В золотые годы юности? Или когда постучится старость? Тут право выбора, мы лишь хотим напомнить, что детей и подростков нельзя лишать необходимых микроэлементов и витаминов, нельзя предпочитать одно, а игнорировать другое.

Молодые люди что-то любят, что-то – нет, но если здоровый человек готов, лишь переступив совершеннолетний возраст, следовать всем рекомендациям в питании в соответствии с групповой принадлежностью, то это его право. Хочется лишь заметить, что, помимо антигенов системы АВ0, существуют и другие антигенные фенотипы, существующие параллельно, но тоже вносящие свою лепту в жизнедеятельность человеческого организма. Их игнорировать или иметь в виду? Тогда для них тоже нужно разрабатывать диеты и не факт, что они совпадут с нынешними направлениями, пропагандирующими здоровое питание для определенных категорий людей, имеющих ту или иную групповую принадлежность. Скажем, лейкоцитарная система HLA более других связана с различными заболеваниями, по ней заранее можно вычислить наследственную предрасположенность к той или иной патологии. Так почему бы не заняться именно такой, более реальной профилактикой немедленно с помощью продуктов питания?

Видео: тайны групп крови человека