30.06.2020

О новом лекарстве от рака: «Не бред, но абсолютно некорректная информация. Прорыв в медицине: в России создан универсальный препарат против рака Что знаем и о чем догадываемся


Александр Сапожников не согласен с таким теоретическим обоснованием механизма действия лекарства. По его словам, HSP70 может работать по другой схеме, которую только предстоит изучить, однако факт остается фактом - на клеточных культурах и ряде опухолей в двух линиях крыс, которым были привиты «человеческие» опухолевые клетки, белок действительно показывает активность.

По словам авторов работы, температура, при которой работают с HSP70 на культурах клеток, составляет 43°C, и она слишком высока для живых организмов, однако там, судя по всему, включаются иные механизмы, которые также только предстоит понять. Это касается и действия экзогенного неклеточного белка теплового шока внутри организма. «У каждого из нас в кровотоке присутствует достаточно высокий уровень HSP70 - до 900 нанограммов на миллилитр. Мы вводили его в животное и пытались смотреть, что с белком происходит дальше. В течение 40 минут мы видели следы HSP70 в крови, а потом он пропал. Есть мнение, что белок распадается, но мы так не думаем».

Впечатляющие результаты в ожидании проверки

Ирина Гужова рассказала и о дальнейших испытаниях препарата: «Мы испытывали этот механизм на мышиной меланоме B16, которая растет подкожно, и использовали в виде геля, наносимого на поверхность кожи. Результат получился впечатляющий: выживаемость мышей была гораздо выше, чем у контрольной группы, которую лечили гелем без действующего вещества или не лечили вообще. Разница была примерно в десять дней. Для мышей и данного типа опухоли это очень хорошая отсрочка. Подобные результаты были показаны и на крысиной глиоме C6 (это опухоль, которая растет непосредственно в мозге).

Животные, которых лечили однократной инъекцией в мозг, получали дополнительно десять дней жизни, а животные, которым вводили белок постоянно в течение трех дней с помощью помпы, эта продолжительность увеличивалась еще на десять дней, так как опухоль росла медленнее. Мы показали, что если обеднить популяцию Т-лимфоцитов от мыши, которая имела опухоль, и убрать уже «наученные» NK-клетки или CD8-положительные лимфоциты, то они не будут узнавать опухоль так хорошо. Можно сделать вывод, что основная функция HSP70 в этом процессе - активация специфического иммунитета».

Эти данные побудили ученых провести ограниченное исследование в рамках клиники имени Поленова (НИИ Нейрохирургии в Санкт-Петербурге). «В это время в нашем коллективе был нейрохирург Максим Шевцов, который одновременно с аспирантурой Бориса Александровича (Маргулиса, - прим. сайт) проходил ординатуру в этом НИИ. Он убедил своего руководителя, профессора Хачатуряна, испытать этот препарат. По тогдашнему законодательству достаточно было решения ученого совета и информированного согласия пациентов, и нам было выделено 25 больных. У них у всех были различные опухоли мозга, и они все получали то, что им полагалось по страховке, но плюс после хирургического удаления опухоли Максим вводил в операционное ложе раствор HSP70.

Проблема в том, что опухоли мозга удалить полностью сложно. Всегда остаются маленькие кусочки, которые опасно удалять, потому что вместе с ними можно удалить личность, и эти кусочки дают рецидивы. Но результаты оказались совершенно потрясающими: после операции у больных увеличивалось количество клеток специфического иммунитета, понижалось количество проопухолевых («перешедших на сторону опухоли») Т-лимфоцитов и уменьшалось количество интерлейкина-10 (информационной молекулы иммунной системы).

Исследование было только пилотное, не рандомизированное, группы контроля тоже не было, и проводилось оно в 2011 году. В том же году был принят закон, согласно которому такие испытания запрещены, и их пришлось прекратить, едва начав. У нас осталось 12 прооперированных пациентов. Кто знаком с клинической частью исследований, тот имеет представление о том, насколько сложно отследить судьбы пациентов после того, как каждый из них покидает клинику. Поэтому мы знаем только о восьми, которые остались доступны для контакта, и все они живы до сих пор. На начало осени прошлого года они были вполне здоровы, и те, кто продолжал учиться, осенью пошли в школу, хотя средний прогноз продолжительности жизни с обнаруженной глиомой - 14 месяцев».

Сейчас, по словам докладчиков, доклинические испытания подходят к концу, и препарату необходима многоступенчатая проверка на пациентах, которая займет несколько лет (вот почему в статье «Известий» фигурировал такой неправдоподобно короткий срок до выхода препарата на рынок - 3-4 года).

Александр Сапожников также подчеркнул важность клинических испытаний: «Привитая мышам опухоль и человеческая - это небо и земля. Препарат может работать на этой опухоли, но быть неэффективным ни на обычной опухоли мыши, ни на человеческой. Успокойте своих коллег, лекарства от всех болезней сразу не бывает».

Так считают и сами исследователи. «На данных стадиях все работает (и очень хорошо), но, конечно же, это не то лекарство, которое поднимает Лазаря, - заявляет Ирина Гужова, - однако оно достаточно эффективно и достойно того, чтобы пройти клинические испытания. И мы надеемся, что это случится».

Просто космос

У читателя может возникнуть резонный вопрос: откуда вообще взялся космос? Ирина Гужова поясняет: «Дело в том, что испытания проходили на базе Института особо чистых препаратов, у сотрудников которого хороший опыт в регистрации патентов и написании бумаг, поэтому мы это дело отдали им. Одновременно они начали производство этого белка, а мы делали опыты на животных. Но в процессе к ним обратился представитель Роскосмоса и спросил, а нет ли у нас какого-то незакристаллизованного белка, чтобы закристаллизовать в космосе, на орбите. И им отдали HSP70, кристаллы пытались вырастить на орбите, но ничего не получилось».

Проблема оказалась в строении белка. Очень подвижная часть в структуре белка мешала кристаллизации, поэтому его стали пытаться закристаллизовать по кусочкам, связывать подвижную часть специальной молекулой, чтобы она его «держала». Пытаются до сих пор. «Отсюда выросла эта история про клетки, которые растут в космосе и лечат всех от рака», - комментирует Ирина Гужова.

Она также сообщила, что для испытаний в космосе и на мышах белок подвергли очень высокой степени очистки - около 99%. Что касается сомнений, что активирует иммунитет не шаперон, а липополисахарид (ЛПС) - компонент клеточной стенки бактерий, в которых нарабатывают этот белок, - такая вероятность невелика. Хотя ЛПС «прилипает» к HSP очень сильно, и очистить от самых мизерных его примесей белок довольно трудно. Ученые ставят дополнительные контроли, чтобы показать, что не он, а именно шаперон - причина эффекта препарата. Например, препарат могут кипятить, что не влияет на ЛПС, но разрушает структуру белка. Тогда его свойства HSP теряются, и препарат перестает работать, чего бы не произошло, если бы в нем действовал в основном бактериальный ЛПС.

Кроме того, исследователи сравнивали эффект введения компонентов клеточной стенки бактерий с эффектом от HSP70, и эти сравнения явно были в пользу последнего.

«Не говорили глупостей. И чего? – Ноль эмоций!»

Ирина сообщает, что побочных реакций в ходе испытаний ученые пока не обнаружили, но они могут быть отсроченными. «Я считаю, что исследователь в первую очередь должен на себе все попробовать сам, и прошла два курса шаперонотерапии. Никаких побочных эффектов не было, наоборот, казалось, что проходят мелкие болячки и крылья вырастают за спиной».

«С другой стороны, все, что было в СМИ, - настоящее безобразие, - отмечает исследователь. - Но, как говорится, не было бы счастья, да несчастье помогло: уже сейчас в Институт особо чистых препаратов поступают звонки с предложениями помочь с клиническими испытаниями. Мы выступали на конференциях и в разных более скромных СМИ, говорили о том же самом, но выверяли слова, не говорили глупостей. И чего? - Ноль эмоций! А тут пронеслась такая вот муть по экранам, и пожалуйста! Такое интересное общество, такая интересная страна».

Впрочем, согласно источникам сайт, интервью, с которого все началось, Симбирцев дал вынужденно. предложили дать интервью, чтобы стимулировать интерес к проблемам Института и привлечь дополнительное финансирование на клинические испытания. Кроме того, ходят слухи о возможной утрате институтом юридического лица вследствие происходящих по всей стране слияний научных организаций. Видимо, ученый оказался не готов подробно и популярно рассказать газете о происходящем. «В этот раз все, что могло быть понято неправильно, было понято неправильно», - замечает источник.

В результате ситуация все больше становится похожа на небезызвестную басню, когда Роскосмос и госструктуры, раздающие гранты, рвутся в облака, ожидая немедленных результатов от фундаментальной науки, рак пятится назад, журналисты разливают структурированную воду… А российская наука в очередной раз оказывается в незавидном положении, вынужденная оправдываться за преступления, которых не совершала.

Все живые клетки отвечают на повышение температуры и некоторые другие стрессовые воздействия синтезом специфического набора белков, называемых белками теплового шока (БТШ). К БТШ относят белки, синтезируемые клетками в ответ на тепловой шок, когда подавлена экспрессия основного пула белков, участвующих в нормальном метаболизме. Семейство 70 кДа БТШ (БТШ-70 эукариот и DnaK прокариот) объединяет белки теплового шока, играющие существенную роль как в обеспечении выживания клетки в стрессовых условиях, так и в нормальном метаболизме. Уровень гомологии между белками прокариот и эукариот превышает 50% при полной идентичности отдельных доменов. 70 кДа БТШ являются одной из самых консервативных групп белков в природе (Lindquist Craig, 1988 ; Yura et al., 1993), что связано, вероятно, с шаперонными функциями, которые эти БТШ выполняют в клетках

Индукция генов белков теплового шока (HSP) у эукариот происходит под воздействием фактора теплового шока HSF. В клетках, не подвергшихся стрессу, HSF присутствует и в цитоплазме и в ядре в виде мономерной формы, связанной с Hsp70 , и не имеет ДНК- связывающей активности. В ответ на тепловой шок или другой стресс, Hsp70 отсоединяется от HSF и начинает укладывать денатурированные белки. HSF собирается в тримеры, у него появляется ДНК связывающая активность, он аккумулируется в ядре и связывается с промотором. При этом транскрипция шаперонов в клетке возрастает во много раз. После того, как стресс прошел, освободившийся Hsp70 опять присоединяется к HSF, который при этом теряет ДНК-связывающую активность и все возвращается в нормальное состояние [ Morimoto ea 1993 ].Белки теплового шока появляются на поверхности клеток синовиальной оболочки при бактериальных инфекциях.

Большинство этих белков теплового шока образуются и в ответ на другие повреждающие воздействия. Возможно именно они помогают клетке пережить стрессовые ситуации. Существует три основных семейства белков теплового шока: с мол. массой 25, 70 и 90 кДа (hsp25 , hsp70 и hsp90 . В нормальных клетках было обнаружено множество очень похожих между собой белков из каждого семейства.Белки теплового шока помогают переводить в раствор и вновь сворачивать денатурированные или неправильно свернутые белки. Есть у них и другие функции.

Лучше всего изучены белки семейства hsp70 . Эти белки связываются с некоторыми другими белками, а также аномальными белковыми комплексами и агрегатами, от которых потом освобождаются, присоединяя AТР. Они помогают переводить в раствор и заново сворачивать агрегированные или неправильно свернутые белки путем нескольких циклов присоединения и гидролиза AТР. Аномальные белки имеются в любой клетке, но при некоторых воздействиях, например при тепловом шоке, их количество в клетке резко возрастает, и соответственно возникает необходимость в большом количестве белков теплового шока. Оно обеспечивается активацией транскрипции определенных генов теплового шока.

Белки теплового шока (Hsp - heat shock protein), образуя комплекс с растущей полипептидной цепью, предотвращают их неспецифическую агрегацию и деградацию под действием внутриклеточных протеиназ, способствуя их правильному фолдингу, происходящему с участием других шаперонов. Hsp70 принимает участие в ATP-зависимом разворачивании полипептидных цепей, делая неполярные участки полипептидных цепей доступными действию протеолитических ферментов.

см. также ТРАНСКРИПЦИОННЫЕ ФАКТОРЫ: КЛАСС: ТФ 3.4 факторы теплового шока - http://humbio.ru/humbio/transcription/0002df25.htm

07 Июня 2010

Как выглядит молекулярный термометр? Этот вопрос намного сложнее, чем может показаться на первый взгляд. Судя по всему, используемый клеткой «термометр», играющий одну из важнейших ролей в поддержании стабильности протеома клетки, представляет собой систему факторов транскрипции и специализированных белков – шаперонов, в т.ч. белков теплового шока, реагирующих не только на повышение температуры (это всего лишь первая из открытых функций этого класса белков), но и на другие повреждающие клетку физиологические воздействия.

Шапероны (chaperones) – класс белков, основная функция которых – восстановление правильной третичной структуры повреждённых белков, а также образование и диссоциация белковых комплексов.

Система шаперонов реагирует на возникающие в процессе жизнедеятельности клетки повреждения и обеспечивает правильное прохождение фолдинга – сворачивания аминокислотных цепочек, сходящих с рибосомальной «линии сборки», в трехмерные структуры. Несмотря на очевидность исключительной важности этой системы, долгое время никто из занимающихся ее изучением специалистов даже не предполагал, что этот молекулярный термометр одновременно является и своего рода «источником молодости» клетки, а его изучение предоставляет возможность взглянуть на ряд заболеваний с новой, неизвестной ранее стороны.

Белки, являющиеся основным продуктом функционирования генома, не только формируют структуру, но и обеспечивают работу всех клеток, тканей и органов. Отсутствие сбоев в процессах синтеза аминокислотных последовательностей; формирования, сборки и транспортировки белковых молекул, а также выведения поврежденных белков является важнейшим аспектом поддержания здоровья как отдельных клеток, так и всего организма. Белки также являются материалом, необходимым для формирования и эффективного функционирования «молекулярных машин», обеспечивающих процессы биосинтеза, – процесса, критичного для обеспечения долголетия организма. Причиной многих проблем являются нарушения фундаментального процесса фолдинга белков. Нарушения работы «ОТК», представленного белками теплового шока и шаперонами, приводят к появлению и накоплению ошибок. Эти ошибки нарушают работу молекулярных механизмов, что может приводить к развитию различных заболеваний. Возникновение таких ошибок в нейронах чревато поистине ужасными последствиями, проявляющимися развитием таких нейродегенеративных заболеваний, как рассеянный склероз, а также болезней Гентингтона, Паркинсона и Альцгеймера.

Открытая в 1962 году Феруччио Ритосса (Ferruccio Ritossa) реакция теплового шока описана как индуцированное повышением температуры изменение организации плотно упакованных хромосом в клетках слюнных желез мух-дрозофил, ведущее к образованию так называемых «вздутий». Такие вздутия, выглядящие под микроскопом как хлопковые шарики, зажатые между плотно упакованными участками хромосом, появляются также при воздействии динитрофенола, этанола и солей салициловой кислоты.

Оказалось, что вздутия хромосом являются новыми регионами транскрипции, начинающими синтез новых информационных РНК в течение нескольких минут после своего возникновения. Белковые продукты этого процесса в настоящее время широко известны как белки теплового шока, наиболее изученными из которых являются Hsp90 и Hsp70. Белки этого семейства регулируют сворачивание аминокислотных цепочек и предотвращают появление неправильно сформированных белковых молекул в клетках всех живых организмов.

В конце 1970-х и в начале 1980-х годов с помощью оригинального приема клеточной биохимии, позволяющего увеличить количество информационных РНК, кодирующих последовательности соответствующих белков, ученым удалось клонировать первые гены теплового шока мухи-дрозофилы. На тот момент специалисты придерживались мнения, что реакция теплового шока характерна исключительно для организма дрозофил. На этом этапе Ричард Моримото и сделал своей первый вклад в изучение белков теплового шока. Он собрал обширную коллекцию ДНК многоклеточных организмов и с помощью метода саузерн-блоттинга продемонстрировал, что все они содержат практически идентичные по структуре аналоги гена Hsp70. Примерно в то же время Джим Бардуэлл (Jim Bardwell) и Бетти Крейг (Betty Craig) из университета Висконсина в Мэдисоне идентифицировали в геноме кишечной палочки (Escherichia coli) ген dnaK, также являющийся аналогом Hsp70. Результатом дальнейшего детального изучения этого вопроса стало понимание того, что гены теплового шока в практически неизменившимся в ходе эволюции виде представлены в геномах представителей всех пяти царств живого мира.

Следующим достижением в цепи последовавших за этим событий стала идентификация семейства факторов транскрипции, управляющих запуском первого этапа реакции теплового шока. В этой работе приняло участие несколько исследовательских групп из разных университетов, в том числе и группа Моримото. Ученые продемонстрировали, что повышение температуры клетки вызывает изменение формы этих факторов транскрипции, что способствует их связыванию с промоторами генов теплового шока, инициирующими синтез белков теплового шока. Более того, оказалось, что в отличие от дрожжей, мух-дрозофил и нематод Caenorhabditis elegans, имеющих только один фактор транскрипции генов теплового шока, в клетках человека имеется целых три таких фактора. Такая сложная схема регуляции экспрессии исследуемых генов навела ученых на мысль об их многофункциональности, требующей дополнительного изучения.

Дальнейшие исследования показали, что белки теплового шока сами регулируют функционирование фактора транскрипции, инициирующего их продукцию в ядрах клеток. Очевидным стало также то, что белки теплового шока выполняют функции молекулярных шаперонов – управляют сворачиванием аминокислотных цепочек, обеспечивая формирование правильных пространственных конформаций белковых молекул, а также выявляют и устраняют сбои в этом процессе. Таким образом, оказалось, что клеточный термометр не только измеряет температуру, но и осуществляет мониторинг появления в клетке неправильно сформированных и поврежденных белков. Тепловой шок и другие стрессорные воздействия наполняют клетку аномальными белками, на что шапероны реагируют связыванием этих белков и высвобождением фактора транскрипции теплового шока-1 (Hsf1). Молекулы этого фактора самопроизвольно формируют тримеры (комплексы из трех молекул), связывающиеся с соответствующими регионами генома, в свою очередь запускающими синтез белков теплового шока. Следующее за этим повышение концентрации белков теплового шока до необходимого уровня по принципу обратной связи подавляет транскрипционную активность фактора транскрипции Hsf1.

Изучение функционирования белков теплового шока на линиях клеток сильно ограничивало возможности исследователей, так как не обеспечивало получения информации о сопровождающих его изменениях, происходящих во всем организме. Поэтому примерно в 1999 году Моримото и его коллеги решили перейти на новую модель – круглых червей C.elegans. Их особенно вдохновила опубликованная в 1994 году работа Макса Перутца (Max Perutz), установившего, что причиной серьезного нейродегенеративного заболевания – болезни Гентингтона – является особая мутация гена, получившего название гентингтин. Эта мутация приводит к синтезу варианта белка, содержащего дополнительный фрагмент из длинной цепочки аминокислоты глутамина, по всей видимости, нарушающий нормальный процесс фолдинга. Агрегация таких аномальных белковых молекул в нейронах и приводит к развитию болезни Гентингтона. Исследователи предположили, что изучение белков, формирование молекул которых нарушено из-за экспрессии полиглутамина или сходных причин, поможет разобраться в работе молекулярного термометра.

В процессе работы над созданием животных моделей экспрессии в нейронах и мышечных клетках белков, содержащих избыточные полиглутаминовые последовательности, исследователи установили, что степень агрегации и ассоциированной с ней токсичности таких белков пропорциональна их длине и возрасту организма. Это навело их на мысль, что подавление опосредуемого инсулином сигнального механизма, регулирующего продолжительность жизни организма, может повлиять на процесс агрегации полиглутаминсодержащих белков. Результаты дальнейших исследований подтвердили существование предполагаемой взаимосвязи, а также продемонстрировали, что влияние функционирования фактора транскрипции Hsf1 на продолжительность жизни организма опосредовано инсулинзависимым сигнальным механизмом. Эти наблюдения сделали очевидным тот факт, что реакция теплового шока одинаково важна как для выживания организма в условиях острого стресса, так и для постоянной нейтрализации токсичного действия белков, отрицательно сказывающегося на функционировании и продолжительности жизни клеток.

Использование живых организмов в качестве экспериментальной модели позволило ученым перевести исследования на качественно новый уровень. Они стали обращать внимание на механизмы, посредством которых организм воспринимает и интегрирует поступающую извне информацию на молекулярном уровне. Если стресс влияет на процесс старения, логично предположить, что белки теплового шока, регистрирующие появление и предотвращающие накопление в клетке поврежденных белков, вполне способны замедлять развитие эффектов старения.

То, что для многих заболеваний, ассоциированных с накоплением склонных к агрегации белков, характерны симптомы старения, а все болезни, в основе которых лежат нарушения формирования белковых молекул, ассоциированы со старением, наводит на мысль, что чувствительные к температуре метастабильные белки теряют свою функциональность по мере старения организма. И действительно, эксперименты на C.elegans показали, что функционирование механизма, запускаемого фактором транскрипции Hsf1, также как и других защитных систем клетки, начинает угасать практически сразу после достижения организмом зрелости. Однако оказалось, что активация фактора транскрипции Hsf1 на ранних этапах развития может препятствовать нарушению стабильности белковых молекул (протеостаза).

Возможно, это наблюдение, предполагающее весьма интригующие возможности, не распространяется на более сложные многоклеточные организмы, однако все живое состоит из белков, поэтому полученные в экспериментах на круглых червях результаты с большой степенью вероятности могут помочь ученым разобраться в механизмах старения человека.

Однако это еще не конец истории. Результаты работы, недавно проведенной под руководством профессора Моримото, указывают на существование механизмов корректировки протеостаза, не требующих непосредственного вмешательства в функционирование фактора транскрипции Hsf1. Исследователи решили провести классический генетический скрининг мутантов C.elegans, демонстрирующих нарушения процесса формирования белковых молекул в мышечных клетках. В результате они установили, что влияющая на этот процесс мутация находится в гене фактора транскрипции, контролирующего продукцию нейротрансмиттера гамма-аминомасляной кислоты (ГАМК). ГАМК управляет функционированием нейротрансмиттеров возбуждения и регулирует мышечный тонус. Интересен тот факт, что любое нарушение стабильности работы опосредуемых ГАМК механизмов ведет к гиперстимуляции, заставляющей постсинаптические мышечные клетки реагировать на несуществующий стресс, что приводит к нарушению процессов формирования белковых молекул. Другими словами, оказалось, что активность нейронов может влиять на функционирование молекулярных термометров других клеток организма, что еще более усложнило вырисовывающуюся картину.

Если этот механизм распространяется и на человека, то, возможно, ученым удастся разработать метод воздействия на нейроны, приводящий к активации белков теплового шока в клетках скелетных мышц и способствующий устранению симптомов мышечной дистрофии и других заболеваний двигательных нейронов. Возможно, манипуляции над этим механизмов позволят контролировать и процесс накопления поврежденных белков, ассоциированный со старением. Однако, к сожалению, не все так просто, как хотелось бы. В организме C.elegans развитием реакции теплового шока во всех взрослых соматических клетках управляет одна пара нейронов. Судя по всему, активность этих нейронов и механизм обратной связи позволяют клеткам и тканям активировать белки теплового шока согласно их конкретным нуждам. Дело в том, что для различных тканей характерна разная активность биосинтеза белков, а также отличающиеся выраженность и характер внешних воздействий. Поэтому универсальный подход к управлению реакцией теплового шока в принципе невозможен.

Вооружившись результатами своей работы и многообещающими идеями, Моримото и несколько из его коллег основали компанию Proteostasis Therapeutics, целью работы которой является идентификация терапевтических малых молекул, способных корректировать патологические эффекты накопления неправильно сформированных белковых молекул. Этот подход связан с достаточно большой долей риска, так как уровень белков теплового шока повышается при многих злокачественных заболеваниях. Однако Моримото и его соратники считают, что разрабатываемое ими направление обладает слишком большим потенциалом, чтобы его игнорировать.

Об авторе
Профессор Ричард Моримото (Richard Morimoto), после защиты докторской диссертации полностью посвятил свою работу изучению функционирования белков теплового шока и их роли в старении организма. Первые шаги в выбранном им направлении Моримото сделал в Гарвардском университете под руководством доктора Мэтта Месельсона (Matt Meselson). В настоящее время Ричард Моримото является директором института биомедицинских исследований имени Райса, входящего в структуру Северо-Западного университета в Эванстоне, штат Иллинойс, а также одним из основателей компании Proteostasis Therapeutics (Кембридж, штат Массачусетс).

Евгения Рябцева
Портал «Вечная молодость» по материалам The Scientist: Richard Morimoto,

«Белками теплового шока» (сокр. БТШ или HSP от англ. Heat shock proteins) называются особые соединения, которые клетки живых организмов продуцируют при резком повышении температуры или в результате других стрессовых нагрузок. Первые HSP впервые были обнаружены учеными еще в середине прошлого века. С тех пор роль белков теплового шока в организме растений, животных и человека активно изучалась.

Вначале считалось, что они выполняют исключительно защитную роль, предупреждая возникновение необратимых нарушений. Однако со временем выяснилось, что эти соединения могут принимать активное участие в регенерации поврежденных структур клетки, а также в работе иммунной системы.

В том числе, была выдвинута гипотеза, что HSP участвуют в связывании белковых фрагментов, появляющихся при разрушении клеток злокачественных опухолей. При этом образуются конгломераты, распознаваемые противораковым иммунитетом в качестве «агрессора», т.е. происходит так называемая «презентация антигена». Другими словами, иммунная система человека получает возможность «видеть рак», который в обычных условиях может достаточно успешно от нее маскироваться. В результате запускается естественный процесс уничтожения опухоли.

Подтверждение этой теории, а также доскональное изучение структуры белка теплового шока и его действия в опухолевых тканях на молекулярном уровне, стало возможным только после того, как это уникальное вещество попало на международную космическую станцию. Отправили его в космос российские специалисты НИИ Особо Чистых Биопрепаратов ФМБА, синтезировавшие БТШ с помощью эксклюзивных технологий генной инженерии.

Благодаря невесомости, из исходного материала, «упакованного» в тончайшие молекулярные трубочки, выросли идеально ровные кристаллы белка, пригодные для рентгеноструктурного анализа. Космический этап позволил успешно решить главную проблему, стоявшую перед учеными: в условиях земного притяжения белки росли неравномерно, и получить кристаллы с правильной геометрией на Земле было невозможно. Анализ выращенных в космосе кристаллических белков был проведен российскими и японскими учеными на современном сверхмощном оборудовании.

Полученные данные легли в основу создания уникального препарата, действие которого опробовали сначала в пробирках на клеточных культурах, а потом – на лабораторных животных. Лекарством на основе синтезированного БТШ были пролечены мыши с саркомой и меланомой, включая животных с четвертой (терминальной) стадией заболеваний.

Результаты оказались более чем впечатляющими:

  • абсолютное большинство мышей полностью выздоровело;
  • не было зарегистрировано ни одного побочного эффекта.

Как российские ученые получают белок теплового шока

HSP продуцируется клетками бактерий, в которые внедрен выделенный из клеток человека и клонированный ген. Этот ген отвечает за синтез белка теплового шока. В настоящее время его изготовление по данной технологии ведется на производственных участках НИИ ОЧБ.

Как «работает» лекарство, и какие виды рака можно будет лечить с его помощью

Применение биопрепарата направлено на повышение концентрации БТШ в опухолевых тканях онкобольных до значений, вызывающих терапевтический эффект. Такая потребность существует потому, что «показывающий рак иммунитету» белок теплового шока в организме человека:

  • вырабатывается в очень небольших количествах;
  • не может быть «собран» в здоровых клетках и «перенесен» в атипичные клетки раковой опухоли.

Разработчики утверждают, что разработанный ими метод универсален так же, как универсален сам белок, продуцируемый всеми тканями нашего организма. Поэтому если при дальнейших испытаниях лечебное действие лекарства подтвердится, а побочные не будут выявлены, его можно будет применять для терапии абсолютно всех форм рака.

Другие достоинства российской разработки:

  • Лечение эффективно на терминальных стадиях, т.е. именно тогда, когда справится с опухолью каким-либо другим способом чрезвычайно сложно, очень часто – невозможно.
  • Ученые рассматривают возможность целенаправленного действия препарата. До настоящего времени лекарство вводилось лабораторным животным внутривенно и распространялось с кровью по всему организму. На этапе клинических испытаний специалисты планируют параллельно с внутривенным введением опробовать методику адресной доставки белка теплового шока в клетки опухоли, рассчитывая еще более увеличить эффективность лечения и снизить риск побочных эффектов. Эта возможность принципиально отличает российскую технологию от метода «клеточной терапии CAR-T» , официальное внедрение которого в клиническую практику ожидается уже летом 2017 года.

Деньги на заключительный этап доклинических исследований нового средства (порядка 100 млн. рублей) уже найдены. Остается найти спонсора, который разделит с государством финансирование клинических испытаний. Пока приоритеты отдаются российскому бизнесу. Если же российских спонсоров найти не удастся, будут рассматриваться варианты партнерства с японскими предпринимателями или бизнес-структурами из других стран. На завершение процесса испытаний может понадобиться еще 3-4 года. При их положительном исходе онкологи смогут получить высокоэффективный инструмент в борьбе с раком.

Что может сдерживать инвесторов и снижать уровень оптимизма при прогнозах

Вложения в любые клинические испытания несут достаточно большие риски для бизнеса. Ведь даже при современном развитии науки нельзя со стопроцентной вероятностью предположить, как поведет себя новое лекарство, насколько эффективным и безопасным оно окажется не в пробирке и в организме лабораторной мыши, а на практике. Тем не менее, поиски инвестиций – всего лишь вопрос времени.

Насколько действенным будет новый метод, также покажет время. Например, нельзя исключить, что при ослабленном естественном иммунитете его возможностей для борьбы с опухолью может просто не хватить.

И, разумеется, только по истечении нескольких лет можно будет понять:

  • смогут ли раковые клетки мутировать в поисках защиты от «ударных доз» БТШ;
  • не вызовет ли действие препарата нежелательных последствий в отдаленном периоде.

Материал с весьма оптимистичным подзаголовком «Генно-инженерный препарат от всех видов и стадий злокачественных опухолей пациенты могут получить через три-четыре года».

Однако любой человек, хоть сколько-нибудь знающий о терапии онкологических заболеваний, при виде такого прогноза в лучшем случае удивленно поднимет брови, а в худшем — возмутится. Рассказываем, что не так с очередной «научной сенсацией».

Что случилось?

Разработка препарата, о котором рассказали в «Известиях», ведется в Государственном научно-исследовательском институте особо чистых препаратов Федерального медико-биологического агентства (ФМБА) России. Замдиректора по научной работе института, член-корреспондент РАН и доктор медицинских наук, профессор Андрей Симбирцев, в этом материале под заголовком «В России создали лекарство от рака и проверили его в космосе» рассказал корреспонденту «Известий» о «белке теплового шока», который был кристаллизован в невесомости, на МКС, и теперь проходит доклинические испытания.

Сейчас исследования проводятся на грант Министерства образования и науки, а 100 миллионов рублей на клинические испытания ученые планируют найти с помощью частных инвесторов и программы государственного 50%-ного софинансирования. Чтобы его привлечь, разработчики собираются «стучаться во все двери, потому что препарат уникальный. Мы стоим на пороге открытия совершенно нового средства лечения рака. Оно позволит помочь людям с неизлечимыми опухолями».

«Мы уже изготавливаем препарат на производственных участках НИИ», — сообщает воодушевленным журналистам Андрей Симбирцев, добавляя, что в данный момент проходят испытания на мышах, а до пациентов он дойдет всего через три-четыре года.

В чем подвох?

Все это звучит очень вдохновляюще, однако белки теплового шока действительно известны давно, но люди почему-то до сих пор не сделали из них панацею от всех видов рака. Это довольно большое семейство белков, которые активируются в ответ на стресс при повышении (а иногда и при понижении) температуры. Они помогают клетке бороться с последствиями деградации структуры других белков. Самый известный пример такого изменения — сворачивание главного компонента яичного белка, альбумина, при жарке или варке, когда он из прозрачного становится белым. Так вот, белки теплового шока устраняют последствия этих изменений: «чинят» или окончательно утилизируют деградировавшие структуры. Многие белки теплового шока являются в то же время шаперонами, которые помогают другим белкам «сворачиваться» правильно.

Справка:
Шапероны — класс белков, основной функцией которых является восстановление третичной или четвертичной структуры белков, также они участвуют в образовании и диссоциации белковых комплексов.

Белки теплового шока есть во всех клетках. Однако в разных клетках (особенно опухолевых, которые сильно отличаются при разных видах рака как друг от друга, так и от нормальных клеток организма) эти белки ведут себя по-разному. К примеру, в одних видах рака экспрессия белка HSP-70 может быть как повышенной (при злокачественной меланоме), так и пониженной (при раке почки).

Чтобы понять, о каком белке идет речь и действительно ли он используется в терапии рака и может помочь при всех его видах, мы поговорили с доктором биологических наук Александром Сапожниковым . Этот ученый — руководитель лаборатории клеточных взаимодействий Института биоорганической химии имени М.М. Шемякина и Ю.А. Овчинникова РАН, которая занимается одним из самых перспективных для разработок в этом направлении белков теплового шока уже много лет. Он так прокомментировал эту статью:

«Я не скажу, что это бред, но это абсолютно некорректная информация. Автором идеи применения белков теплового шока с молекулярной массой 70 килодальтон (так называемые БТШ-70, по-английски HSP70) является мой друг и коллега Борис Маргулис. Он работает в Институте цитологии в Санкт-Петербурге.

Он и его жена Ирина Гужова занимаются этим белком всю жизнь (я тоже занимаюсь им много лет, но не исследованиями, связанными с терапией рака). Формально заведующей лабораторией является Ирина, она занимается изучением того, как белок связан с нейродегенеративными заболеваниями, а Борис — заведующий отделом. Он первый в мире человек, который предложил применять «голый», не нагруженный никакими опухолево-ассоциируемыми антигенами, белок.

Я не верил в его представления о таком применении этого белка (собственно, пока и не доказано, что это будет эффективно). Если «плясать от печки», есть некий индус, Прамод Сривастава , который в Индии родился, но учился, живет и работает в Америке. Он давным-давно сделал не просто «вакцину» против опухоли с помощью БТШ-70, но и открыл клинику и лечит ею онкологических больных. Сривастава выделяет этот белок прямо из опухоли: берет биопсию у пациентов, выделяет его из кусочков ткани (есть специальные способы получить очень высокую фракцию этого белка).

Однако белок, который получают из тканей онкологических больных, находится в прочной связи с опухоль-ассоциированными пептидами — теми признаками опухоли, которые распознает иммунная система. Поэтому, когда этот комплекс вводят больным, у большого количества больных вырабатывается иммунный ответ, и получается позитивный эффект для больного.

На самом деле, по статистике, этот эффект не превышает эффект от применения химиотерапии. Но все-таки химиотерапия «травит» организм, а вот такая «вакцинация» организм не «травит». Это очень давняя история, такой подход давным-давно применяется в клинике.
Александр Сапожников. Доктор биологических наук, профессор

Что касается Бориса Маргулиса, он (в частности, на базе моей лаборатории) показал (и опубликовал результаты своей работы), что если чистый белок, без всякой опухолевой нагрузки, добавить к опухолевым клеткам, то этот экзогенный белок заставляет опухолевые клетки выставлять на свою поверхность те самые опухолево-ассоциированные пептиды, которые в нормальном состоянии находятся внутри этих клеток, в цитоплазме. Тогда иммунная система их распознает, и организм будет своими силами отторгать эти клетки, бороться с опухолью.

Это было показано в культуре in vitro , то есть не в организме, а в пробирке. К тому же Борис Маргулис претендовал только на детские лейкемии, поскольку он связан с клиницистами в Питере. То, что Симбирцев в своем интервью сказал, — это уже расширение вот такого метода применения голого, чистого белка.

Механизм действия этого чистого белка — заставлять опухоль вытаскивать на поверхность (как сам Маргулис это назвал, «выдавливать») эти пептиды со своим эндогенным белком. Этот белок есть во всех клетках, и в мире нет ни единой клетки, у которой не было бы этого белка. Это очень древний, очень консервативный протеин, он есть у всех (о вирусах я не веду сейчас речи).

Сам Маргулис не потянул бы доклинические исследования, он получил (лет пять назад) грант совместно с Институтом особо чистых препаратов. В этом институте, видимо, и работает этот Симбирцев, его фамилию я слышал много раз, но коль скоро это Федеральное медико-биологическое агентство, к которому относится Институт иммунологии на Каширке, в котором я много лет работал, то, скорее всего, это Институт особо чистых препаратов, с которым он получил грант на доклинические исследования. В советские годы это было Третье управление Минздрава. Именно с этим институтом был получен грант на доклинику от Минобра на 30 миллионов на три года, который закончился два года назад.

Все бумажные дела Институт особо чистых препаратов сделал, они отчитались по своему гранту, что касается следующей стадии, продвижения препарата, там тоже нужны деньги. Это первая стадия клинических исследований. Тут Борис Маргулис, насколько я понимаю, уже отошел от разработок, отдав это на откуп Институту особо чистых препаратов.

Они делают этот белок, сделали биотехнологию, у меня он даже в холодильнике есть, Борис давал его для испытаний. Они в больших количествах его делают, хранят в лиофилизированной форме (в сухом виде), в стерильных ампулах. Собственно, этот препарат и надо, может быть с какими-то добавками, применять в клинических испытаниях. Но для этого нужны деньги.

Увидев случайно новость с интервью Симбирцева, я прочитал, послал Маргулису, спросил, читал ли он. Борис мне ответил, что Андрей (с которым он хорошо знаком) сделал какую-то глупость, даже не сослался на авторов. Автором этой идеи (применять чистый белок как противоопухолевый препарат в онкологии), повторюсь, является Борис Маргулис. Но, насколько я от него слышал в последнее время, он от этой проблематики отошел.

Я занимаюсь этим белком, но как иммуномодулятором, как и моя лаборатория. Мы немножко работали с противоопухолевыми свойствами, на мышиных моделях. Там действительно получились хорошие результаты. Я имею в виду «голый» белок, он просто обладает иммуностимулирующими свойствами. Кстати, еще большой вопрос, что является причиной его иммуностимулирующих свойств: сам белок или какие-то маленькие примеси, например липополисахариды. Этот белок получают в бактериальной культуре (в E.coli ), это самая распространенная техника получения рекомбинантных белков. Липополисахариды (ЛПС) — компонент клеточной стенки бактерий, и очистить культуру от этой примеси до конца очень сложно. Конечно, очищают, но какие-то мизерные концентрации остаются. Эти примеси ЛПС тоже обладают иммуностимулирующими свойствами просто потому, что иммунная система в процессе эволюции выработала свою защиту от бактерий. Как только «запах» бактерий появляется в организме, иммунная система активируется. Поэтому многие авторы сейчас считают, что иммуностимулирующие свойства этого белка, которые модулируют и противоопухолевый ответ, вызваны не БТШ как таковым, а его примесью. Но этот вопрос научный, дискуссионный и не имеет отношения к практике.

Сейчас, повторюсь, Борис Маргулис отходит от этой темы, от онкологии, и работает над малыми молекулами, которые способны регулировать продукцию этого белка. Он связался с химиками, которые умеют делать ингибиторы — такие специфические киназы, какие-то ферменты внутри клеток, которые прекращают их работу. Ингибиторы могут сказать какому-то ферменту: «Нет, ты не имеешь права работать».

Это делается очень просто: все ферменты имеют центр связывания с субстратом, и, если взять какую-то маленькую молекулу, которая встроится в этот центр связывания субстрата, он уже не сможет этот субстрат обрабатывать. Борис сейчас как раз занимается такими молекулами, которые ингибируют внутриклеточный синтез этого БТШ-70. И, действительно, такие молекулы очень актуальны, и не только для фундаментальной биологии, но и для практики, клинической медицины».