26.06.2020

Водно–солевой обмен. Водно-солевой обмен Водно электролитный обмен биохимия



ГОУВПО УГМА Федерального агентства по здравоохранению и социальному развитию
кафедра биохимии

КУРС ЛЕКЦИЙ
ПО ОБЩЕЙ БИОХИМИИ

Модуль 8. Биохимия водно-солевого обмена.

Екатеринбург,
2009г

Тема: Водно-солевой и минеральный обмен
Факультеты: лечебно-профилактический, медико-профилактический, педиатрический.
2 курс.

Водно-солевой обмен – обмен воды и основных электролитов организма (Na + , K + , Ca 2+ , Mg 2+ , Cl - , HCO 3 - , H 3 PO 4).
Электролиты – вещества, диссоциирующие в растворе на анионы и катионы. Их измеряют в моль/л.
Неэлектролиты – вещества, недиссоциирующие в растворе (глюкоза, креатинин, мочевина). Их измеряют в г/л.
Биологическая роль воды

    Вода является универсальным растворителем для большинства органических (кроме липидов) и неорганических соединений.
    Вода и растворенные в ней вещества создают внутреннюю среду организма.
    Вода обеспечивает транспорт веществ и тепловой энергии по организму.
    Значительная часть химических реакций организма протекает в водной фазе.
    Вода участвует в реакциях гидролиза, гидратации, дегидратации.
    Определяет пространственное строение и свойства гидрофобных и гидрофильных молекул.
    В комплексе с ГАГ вода выполняет структурную функцию.
ОБЩИЕ СВОЙСТВА ЖИДКОСТЕЙ ОРГАНИЗМА
Все жидкости организма характеризуются общими свойствами: объемом, осмотическим давлением и величиной рН.
Объем. У всех наземных животных жидкости составляет около 70% от массы тела.
Распределение воды в организме зависит от возраста, пола, мышечной массы, телосложения и количества жира. Содержание воды в различных тканях распределяется следующим образом: легкие, сердце и почки (80%), скелетная мускулатура и мозг (75%), кожа и печень (70%), кости (20%), жировая ткань (10%). В целом, у худых людей меньше жира и больше воды. У мужчин на воду приходится 60%, у женщин - 50% от массы тела. У пожилых людей больше жира и меньше мышц. В среднем в организме мужчин и женщин старше 60 лет содержится соответственно 50% и 45% воды.
При полном лишении воды смерть наступает через 6-8 дней, когда количество воды в организме снижается на 12%.
Вся жидкость организма разделена на внутриклеточный (67%) и внеклеточный (33%) бассейны.
Внеклеточный бассейн (экстрацеллюлярное пространство) состоит из:
    Внутрисосудистой жидкости;
    Интерстициальной жидкости (межклеточная);
    Трансцеллюлярной жидкости (жидкость плевральной, перикардиальной, перитонеальной полостей и синовиального пространства, цереброспинальная и внутриглазная жидкость, секрет потовых, слюнных и слезных желез, секрет поджелудочной железы, печени, желчного пузыря, ЖКТ и дыхательных путей).
Между бассейнами жидкости интенсивно обмениваются. Перемещение воды из одного сектора в другой происходит при изменении осмотического давления.
Осмотическое давление – это давление, которое создают все растворенные в воде вещества. Осмотическое давление внеклеточной жидкости определяется главным образом концентрацией NaCl.
Внеклеточная и внутриклеточная жидкости значительно отличаются по составу и концентрации отдельных компонентов, но общая суммарная концентрация осмотически активных веществ примерно одинакова.
рН – отрицательный десятичный логарифм концентрации протонов. Величина рН зависит от интенсивности образования в организме кислот и оснований, их нейтрализации буферными системами и удалением из организма с мочой, выдыхаемым воздухом, потом и калом.
В зависимости от особенности обмена, величина рН может заметно отличаться как внутри клеток разных тканей, так и в разных отсеках одной клетки (в цитозоле кислотность нейтральная, в лизосомах и в межмембранном пространстве митохондрий - сильно кислая). В межклеточной жидкости разных органов и тканей и плазме крови величина рН, как и осмотическое давление, относительно постоянная величина.
РЕГУЛЯЦИЯ ВОДНО-СОЛЕВОГО БАЛАНСА ОРГАНИЗМА
В организме водно-солевой баланс внутриклеточной среды поддерживается постоянством внеклеточной жидкости. В свою очередь, водно-солевой баланс внеклеточной жидкости поддерживается через плазму крови с помощью органов и регулируется гормонами.
1. Органы, регулирующие водно-солевой обмен
Поступление воды и солей в организм происходит через ЖКТ, этот процесс контролируется чувством жажды и солевым аппетитом. Выведение излишков воды и солей из организма осуществляют почки. Кроме того, воду из организма выводят кожа, легкие и ЖКТ.
Баланс воды в организме

Для ЖКТ, кожи и легких выведение воды является побочным процессом, который происходит в результате выполнения ими своих основных функций. Например, ЖКТ теряет воду, при выделении из организма непереваренных веществ, продуктов метаболизма и ксенобиотиков. Легкие теряют воду при дыхании, а кожа при терморегуляции.
Изменения в работе почек, кожи, легких и ЖКТ может привести к нарушению водно-солевого гомеостаза. Например, в жарком климате, для поддержания температуры тела, кожа усиливает потовыделение, а при отравлениях, со стороны ЖКТ возникает рвота или диарея. В результате усиленной дегидратации и потери солей в организме возникает нарушение водно-солевого баланса.

2. Гормоны, регулирующие водно-солевой обмен
Вазопрессин
Антидиуретический гормон (АДГ), или вазопрессин - пептид с молекулярной массой около 1100 Д, содержащий 9 АК, соединённых одним дисульфидным мостиком.
АДГ синтезируется в нейронах гипоталамуса, переносится в нервные окончания задней доли гипофиза (нейрогипофиз).
Высокое осмотическое давление внеклеточной жидкости активирует осморецепторы гипоталамуса, в результате возникают нервные импульсы, которые передаются в заднюю долю гипофиза и вызывают высвобождение АДГ в кровоток.
АДГ действует через 2 типа рецепторов: V 1 , и V 2 .
Главный физиологический эффект гормона, реализуется через V 2 рецепторы, которые находятся на клетках дистальных канальцев и собирательных трубочек, которые относительно непроницаемы для молекул воды.
АДГ через V 2 рецепторы стимулирует аденилатциклазную систему, в результате фосфорилируются белки, стимулирующие экспрессию гена мембранного белка - аквапорина-2. Аквапорин-2 встраивается в апикальную мембрану клеток, образуя в ней водные каналы. По этим каналам вода пассивной диффузией реабсорбируется из мочи в интерстициальное пространство и моча концентрируется.
В отсутствие АДГ моча не концентрируется (плотность <1010г/л) и может выделяться в очень больших количествах (>20л/сут), что приводит к дегидратации организма. Это состояние называется несахарный диабет.
Причиной дефицита АДГ и несахарного диабета являются: генетические дефекты синтеза препро-АДГ в гипоталамусе, дефекты процессинга и транспорта проАДГ, повреждения гипоталамуса или нейрогипофиза (например, в результате черепно-мозговой травмы, опухоли, ишемии). Нефрогенный несахарный диабет возникает вследствие мутации гена рецептора АДГ типа V 2 .
Рецепторы V 1 локализованы в мембранах ГМК сосудов. АДГ через рецепторы V 1 активирует инозитолтрифосфатную систему и стимулирует высвобождение Са 2+ из ЭР, что стимулирует сокращение ГМК сосудов. Сосудосуживающий эффект АДГ проявляется при высоких концентрациях АДГ.
Натриуретический гормон (предсердный натриуретический фактор, ПНФ, атриопептин)
ПНФ - пептид, содержащий 28 АК с 1 дисульфидным мостиком, синтезируется, главным образом, в кардиомиоцитах предсердий.
Секрецию ПНФ стимулирует в основном повышение АД, а также увеличение осмотического давления плазмы, частоты сердцебиений, концентрации катехоламинов и глюкокортикоидов в крови.
ПНФ действует через гуанилатциклазную систему, активируя протеинкиназу G.
В почках ПНФ расширяет приносящие артериол, что увеличивает почечный кровоток, скорость фильтрации и экскрецию Na + .
В периферических артериях ПНФ снижает тонус гладких мышц, что расширяет артериолы и понижает АД. Кроме того, ПНФ ингибирует выделение ренина, альдостерона и АДГ.
Ренин-ангиотензин- альдостероновая система
Ренин
Ренин - протеолитический фермент, продуцируемый юкстагломерулярными клетками, расположенными вдоль афферентных (приносящих) артериол почечного тельца. Секрецию ренина стимулирует падение давления в приносящих артериолах клубочка, вызванное уменьшением АД и снижением концентрации Na + . Секрецию ренина также способствует снижение импульсации от барорецепторов предсердий и артерий в результате уменьшения АД. Секрецию ренина ингибирует Ангиотензин II, высокое АД.
В крови ренин действует на ангиотензиноген.
Ангиотензиноген - ? 2 -глобулин, из 400 АК. Образование ангиотензиногена происходит в печени и стимулируется глюкокортикоидами и эстрогенами. Ренин гидролизует пептидную связь в молекуле ангиотензиногена, отщепляя от него N-концевой декапептид - ангиотензин I, не имеющий биологической активности.
Под действием антиотензин- превращающего фермента (АПФ) (карбоксидипептидилпептидазы) эдотелиальных клеток, лёгких и плазмы крови, с С-конца ангиотензина I удаляются 2 АК и образуется ангиотензин II (октапептид).
Ангиотензин II
Ангиотензин II функционирует через инозитолтрифосфатную систему клеток клубочковой зоны коры надпочечников и ГМК. Ангиотензин II стимулирует синтез и секрецию альдостерона клетками клубочковой зоны коры надпочечников. Высокие концентрации ангиотензина II вызывают сильное сужение сосудов периферических артерий и повышают АД. Кроме этого, ангиотензин II стимулирует центр жажды в гипоталамусе и ингибирует секрецию ренина в почках.
Ангиотензин II под действием аминопептидаз гидролизуется в ангиотензин III (гептапептид, с активностью ангиотензина II, но имеющий в 4 раза более низкую концентрацию), который затем гидролизуется ангиотензиназами (протеазы) до АК.
Альдостерон
Альдостерон - активный минералокортикостероид, синтезирующийся клетками клу-бочковой зоны коры надпочечников.
Синтез и секрецию альдостерона стимулируют ангиотензин II, низкая концентрация Na + и высокая концентрацией К + в плазме крови, АКТГ, простагландины. Секрецию альдостерона тормозит низкая концентрация К + .
Рецепторы альдостерона локализованы как в ядре, так и в цитозоле клетки. Альдостерон индуцирует синтез: а) белков-транспортёров Na + , переносящих Na + из просвета канальца в эпителиальную клетку почечного канальца; б) Na + ,К + -АТФ-азы в) белков-транспортёров К + , переносящих К + из клеток почечного канальца в первичную мочу; г) митохондриальных ферментов ЦТК, в частности цитратсинтазы, стимулирующих образование молекул АТФ, необходимых для активного транспорта ионов.
В результате альдостерон стимулирует реабсорбцию Na + в почках, что вызывает задержку NaCl в организме и повышает осмотическое давление.
Альдостерон стимулирует секрецию К + , NH 4 + в почках, потовых железах, слизистой оболочке кишечника и слюнных железах.

Роль системы РААС в развитии гипертонической болезни
Гиперпродукция гормонов РААС вызывает повышение объема циркулирующей жидкости, осмотического и артериального давления, и ведет к развитию гипертонической болезни.
Повышение ренина возникает, например, при атеросклерозе почечных артерий, который возникает у пожилых.
Гиперсекреция альдостерона – гиперальдостеронизм, возникает в результате нескольких причин.
Причиной первичного гиперальдостеронизма (синдром Конна) примерно у 80% больных является аденома надпочечников, в остальных случаях - диффузная гипертрофия клеток клубочковой зоны, вырабатывающих альдостерон.
При первичном гиперальдостеронизме избыток альдостерона усиливает реабсорбцию Na + в почечных канальцах, что служит стимулом к секреции АДГ и задержке воды почками. Кроме того, усиливается выведение ионов К + , Mg 2+ и Н + .
В результате развиваются: 1). гипернатриемия, вызывающая гипертонию, гиперволемию и отёки; 2). гипокалиемия, ведущая к мышечной слабости; 3). дефицит магния и 4). лёгкий метаболический алкалоз.
Вторичный гиперальдостеронизм встречается гораздо чаще, чем первичный. Он может быть связан с сердечной недостаточностью, хроническими заболеваниями почек, а также с опухолями, секретирующие ренин. У больных наблюдают повышенный уровень ренина, ангиотензина II и альдостерона. Клинические симптомы менее выражены, чем при первичном альдостеронизе.

КАЛЬЦИЙ, МАГНИЙ, ФОСФОРНЫЙ ОБМЕН
Функции кальция в организме:


    Внутриклеточный посредник ряда гормонов (инозитолтрифосфатная система);
    Участвует в генерации потенциалов действия в нервах и мышцах;
    Участвует в свертывании крови;
    Запускает мышечное сокращение, фагоцитоз, секрецию гормонов, нейромедиаторов и т.д.;
    Участвует в митозе, апоптозе и некробиозе;
    Увеличивает проницаемость мембраны клеток для ионов калия, влияет на натриевую проводимость клеток, на работу ионных насосов;
    Кофермент некоторых ферментов;
Функции магния в организме:
    Является коферментом многих ферментов (транскетолаз (ПФШ), глюкозо-6ф дегидрогеназы, 6-фосфоглюконат дегидрогеназы, глюконолактон гидролазы, аденилатциклазы и т.д.);
    Неорганический компонент костей и зубов.
Функции фосфата в организме:
    Неорганический компонент костей и зубов (гидроксиаппатит);
    Входит в состав липидов (фосфолипиды, сфинголипиды);
    Входит в состав нуклеотидов (ДНК, РНК, АТФ, ГТФ, ФМН, НАД, НАДФ и т.д.);
    Обеспечивает энергетический обмен т.к. образует макроэргические связи (АТФ, креатинфосфат);
    Входит в состав белков (фосфопротеины);
    Входит в состав углеводов (глюкозо-6ф, фруктозо-6ф и т.д.);
    Регулирует активность ферментов (реакции фосфорилирования / дефосфорилирования ферментов, входит в состав инозитолтрифосфата – компонента инозитолтрифосфатной системы);
    Участвует в катаболизме веществ (реакция фосфоролиза);
    Регулирует КОС т.к. образует фосфатный буфер. Нейтрализует и выводит протоны с мочой.
Распределение кальция, магния и фосфатов в организме
У взрослого человека содержится в среднем 1000г кальция:
    Кости и зубы содержат 99% кальция. В костях 99% кальция находится в виде малорастворимого гидроксиапатита [Са 10 (РО 4) 6 (ОН) 2 Н 2 О], а 1% - в виде растворимых фосфатов;
    Внеклеточная жидкость 1%. Кальций плазмы крови представлен в виде: а). свободных ионов Са 2+ (около 50%); б). ионов Са 2+ соединённых с белками, главным образом, с альбумином (45%); в) недиссоциирующих комплексов кальция с цитратом, сульфатом, фосфатом и карбонатом (5%). В плазме крови концентрация общего кальция составляет 2, 2-2,75 ммоль/л, а ионизированного - 1,0-1,15 ммоль/л;
    Внутриклеточная жидкость содержит кальция в 10000-100000 раз меньше чем внеклеточной жидкости.
Во взрослом организме содержится в около 1кг фосфора:
    Кости и зубы содержат 85% фосфора;
    Внеклеточная жидкость – 1% фосфора. В сыворотке крови концентрация неорганического фосфора – 0,81-1,55 ммоль/л, фосфора фосфолипидов 1,5-2г/л;
    Внутриклеточная жидкость – 14% фосфора.
Концентрация магния в плазме крови 0,7-1,2 ммоль/л.

Обмен кальция, магния и фосфатов в организме
С пищей в сутки должно поступать кальция - 0,7-0,8г, магния - 0,22-0,26г, фосфора – 0,7-0,8г. Кальций всасывается плохо на 30-50%, фосфор хорошо – на 90%.
Помимо ЖКТ, кальций, магний и фосфор поступают в плазму крови из костной ткани, в процессе ее резорбции. Обмен между плазмой крови и костной тканью по кальцию составляет 0,25-0,5г/сут, по фосфору – 0,15-0,3г/сут.
Выводится кальций, магний и фосфор из организма через почки с мочой, через ЖКТ с калом и через кожу с потом.
Регуляция обмена
Основными регуляторами обмена кальция, магния и фосфора являются паратгормон, кальцитриол и кальцитонин.
Паратгормон
Паратгормон (ПТГ) - полипептид, из 84 АК (около 9,5 кД), синтезируется в паращитовидных железах.
Секрецию паратгормона стимулирует низкая концентрация Са 2+ , Mg 2+ и высокая концентрация фосфатов, ингибирует витамин Д 3 .
Скорость распада гормона уменьшается при низкой концентрации Са 2+ и увеличивается, если концентрация Са 2+ высока.
Паратгормон действует на кости и почки. Он стимулирует секрецию остеобластами инсулиноподобного фактора роста 1 и цитокинов, которые повышают метаболическую активность остеокластов. В остеокластах ускоряется образование щелочной фосфатазы и коллагеназы, которые вызывают распад костного матрикса, в результате чего происходит мобилизация Са 2+ и фосфатов из кости во внеклеточную жидкость.
В почках паратгормон стимулирует реабсорбцию Са 2+ , Mg 2+ в дистальных извитых канальцах и уменьшает реабсорбцию фосфатов.
Паратгормон индуцирует синтез кальцитриола (1,25(OH) 2 D 3).
В результате паратгормон в плазме крови повышает концентрацию Са 2+ и Mg 2+ , и снижает концентрацию фосфатов.
Гиперпаратиреоз
При первичном гиперпаратиреозе (1:1000) нарушается механизм подавления секреции паратгормона в ответ на гиперкальциемию. Причинами могут быть опухоль (80%), диффузная гиперплазия или рак (менее 2%) паращитовидной железы.
Гиперпаратиреоз вызывает:

    разрушение костей, при мобилизации из них кальция и фосфатов. Увеличивается риск переломов позвоночника, бедренных костей и костей предплечья;
    гиперкальциемию, при усилении реабсорбции кальция в почках. Гиперкальциемия приводить к снижению нервно-мышечной возбудимости и мышечной гипотонии. У больных появляются общая и мышечная слабость, быстрая утомляемость и боли в отдельных группах мышц;
    образования в почках камней при увеличение концентрации фосфата и Са 2 + в почечных канальцах;
    гиперфосфатурию и гипофосфатемию, при снижении реабсорбции фосфатов в почках;
Вторичный гиперпаратиреоз возникает при хронической почечной недостаточности и дефиците витамина D 3 .
При почечной недостаточности угнетается образование кальцитриола, что нарушает всасывание кальция в кишечнике и приводит к гипокальциемии. Гиперпаратиреоз возникает в ответ на гипокальциемию, но паратгормон не способен нормализовать уровень кальция в плазме крови. Иногда возникает гиперфостатемия. В следствие повышения мобилизации кальция из костной ткани развивается остеопороз.
Гипопаратиреоз
Гипопаратиреоз обусловлен недостаточностью паращитовидных желёз и сопровождается гипокальциемией. Гипокальциемия вызывает повышение нервно-мышечной проводимости, приступы тонических судорог, судороги дыхательных мышц и диафрагмы, ларингоспазм.
Кальцитриол
Кальцитриол синтезируется из холестерола.
    В коже под влиянием УФ-излучения из 7-дегидрохолестерола образуется большая часть холекальциферола (витамина Д 3). Небольшое количество витамина Д 3 поступает с пищей. Холекальциферол связывается со специфическим витамин Д-связывающим белком (транскальциферином), поступает в кровь и переносится в печень.
    В печени 25-гидроксилаза гидроксилирует холекальциферол в кальцидиол (25-гидроксихолекальциферол, 25(OH)Д 3). D-связывающий белок транспортирует кальцидиол в почки.
    В почках митохондриальная 1?-гидроксилаза гидроксилирует кальцидиол в кальцитриол (1,25(OH) 2 Д 3), активную форму витамина Д 3 . Индуцирует 1?-гидроксилазу паратгормон.
Синтез кальцитриола стимулирует паратгормон, низкая концентрация фосфатов и Са 2+ (через паратгормон) в крови.
Синтез кальцитриола ингибирует гиперкальциемия, она активирует 24?-гидроксилазу, которая превращает кальцидиол в неактивный метаболит 24,25(OH) 2 Д 3 , при этом соответственно активный кальцитриол не образуется.
Кальцитриол воздействует на тонкий кишечник, почки и кости.
Кальцитриол:
    в клетках кишечника индуцирует синтез Са 2 + -переносящих белков, которые обеспечивают всасывание Са 2+ , Mg 2+ и фосфатов;
    в дистальных канальцах почек стимулирует реабсорбцию Са 2 + , Mg 2+ и фосфатов;
    при низком уровне Са 2 + увеличивает количество и активность остеокластов, что стимулирует остеолиз;
    при низком уровне паратгормона, стимулирует остеогенез.
В результате кальцитриол повышает в плазме крови концентрацию Са 2+ , Mg 2+ и фосфатов.
При дефиците кальцитриола нарушается образование аморфного фосфата кальция и кристаллов гидроксиапатитов в костной ткани, что приводит к развитию рахита и остеомаляции.
Рахит - заболевание детского возраста, связанное недостаточной минерализацией костной ткани.
Причины рахита: недостаток витамина Д 3 , кальция и фосфора в пищевом рационе, нарушение всасывания витамина Д 3 в тонком кишечнике, снижением синтеза холекальциферола из-за дефицита солнечного света, дефект 1а-гидроксилазы, дефект рецепторов кальцитриола в клетках-мишенях. Снижение концентрации в плазме крови Са 2+ стимулирует секрецию паратгормона, который через остеолиз вызывает разрушение костной ткани.
При рахите поражаются кости черепа; грудная клетка вместе с грудиной выступает вперёд; деформируются трубчатые кости и суставы рук и ног; увеличивается и выпячивается живот; задерживается моторное развитие. Основные способы предупреждения рахита - правильное питание и достаточная инсоляция.
Кальцитонин
Кальцитонин - полипептид, состоит из 32 АК с одной дисульфидной связью, секретируется парафолликулярными К-клетками щитовидной железы или С-клетками паращитовидных желёз.
Секрецию кальцитонина стимулирует высокая концентрация Са 2+ и глюкагона, подавляет низкая концентрация Са 2+ .
Кальцитонин:
    подавляет остеолиз (снижая активность остеокластов) и ингибирует высвобождение Са 2 + из кости;
    в канальцах почек тормозит реабсорбцию Са 2 + , Mg 2+ и фосфатов;
    тормозит пищеварение в ЖКТ,
Изменения уровня кальция, магния и фосфатов при различных патологиях
Снижение концентрации Са 2+ в плазме крови наблюдается при:

    беременности;
    алиментарной дистрофии;
    рахите у детей;
    остром панкреатите;
    закупорке желчевыводящих путей, стеаторее;
    почечной недостаточности;
    вливание цитратной крови;
Повышение концентрации Са 2+ в плазме крови наблюдается при:

    переломы костей;
    полиартриты;
    множественные миеломы;
    метастазы злокачественных опухолей в кости;
    передозировка витамина Д и Са 2+ ;
    механическая желтуха;
Снижение концентрации фосфатов в плазме крови наблюдается при:
    рахите;
    гиперфункции паращитовидных желез;
    остеомаляции;
    почечный ацидоз
Повышение концентрации фосфатов в плазме крови наблюдается при:
    гипофункции паращитовидных желез;
    передозировка витамина Д;
    почечной недостаточности;
    диабетическом кетоацидозе;
    миеломной болезни;
    остеолизе.
Концентрация магния часто пропорциональна концентрации калия и зависит от общих причин.
Повышение концентрации Mg 2+ в плазме крови наблюдается при:
    распаде тканей;
    инфекциях;
    уремии;
    диабетическом ацидозе;
    тиреотоксикозе;
    хроническом алкоголизме.
Роль микроэлементов: Mg 2+ , Mn 2+ , Co, Cu, Fe 2+ , Fe 3+ , Ni, Mo, Se, J. Значение церулоплазмина, болезнь Коновалова-Вильсона.

Марганец – кофактор аминоацил-тРНК синтетаз.

Биологическая роль Na + , Cl - , K + , HCO 3 - - основных электролитов, значение в регуляции КОС. Обмен и биологическая роль. Анионная разность и ее коррекция.

Тяжелые металлы (свинец, ртуть, медь, хром и др.), их токсическое действие.

Повышение содержание хлоридов в сыворотке крови: обезвоживание, острая почечная недостаточность, метаболический ацидоз после диареи и потери бикарбонатов, респираторный алкалоз, травма головы, гипофункция надпочечников, при длительном приеме кортикостероидов, тиазидный диуретиков, гиперальдостеронизм, болезнь Кушенга.
Снижение содержания хлоридов в сыворотке крови: алкалоз гипохлоремический (после рвоты), ацидоз респираторный, избыточное потоотделение, нефрит с потерей солей (нарушение реабсорбции), травма головы, состояние с увеличением объема внеклеточной жибкости, калит язвенный, болезнь Аддисона (гипоальдостеронизм).
Повышенное выделение хлоридов с мочой: гипоальдостеронизм (болезнь Аддисона), нефрит с потерей солей, повышенный прием соли, лечение диуретиками.
Снижение выведения хлоридов с мочой: Потеря хлоридов при рвоте, диареи, болезнь Кушинга, терминальная фаза почечной недостаточности, ретенция соли при образовании отеков.
Содержание кальция в сыворотке крови в норме 2,25- 2,75 ммоль/л.
Выделение кальция с мочой в норме 2,5-7,5 ммоль/сут.
Повышение содержание кальция в сыворотке крови: гиперпаратиреоз, метастазы опухолей в костную ткань, миеломная болезнь, сниженное выделение кальцитонина, передозировка витамина Д, тиреотоксикоз.
Снижение содержания кальция в сыворотке крови: гипопаратиреоз, увеличение выделения кальцитонина, гиповитаминоз Д, нарушение реабсорбции в почках, массивная гемотрансфузия, гипоальбунемия.
Повышенное выделение кальция с мочой: длительное воздействие солнечных лучей (гипервитаминоз Д), гиперпаратиреоз, метастазы опухолей в костную ткань, нарушение реабсорбции в почках, тиреотоксикоз, остеопороз, лечение глюкокортикоидами.
Снижение выведения кальция с мочой: гипопаратиреоз, рахит, острый нефрит (нарушение фильтрации в почках), гипотериоз.
Содержание железа в сыворотке крови в норме ммоль/л.
Повышение содержание железа в сыворотке крови: апластическая и гемолитическая анемии, гемохроматоз, острый гепатит и стеатоз, цирроз печени, талассемия, повторные трансфузии.
Снижение содержания железа в сыворотке крови: железодефицитная анемия, острые и хронические инфекции, опухоли, заболевания почек, кровопотеря, беременность, нарушение всасывания железа в кишечнике.

КУРС ЛЕКЦИЙ

ПО ОБЩЕЙ БИОХИМИИ

Модуль 8. Биохимия водно-солевого обмена и кислотно-основного состояния

Екатеринбург,

ЛЕКЦИЯ № 24

Тема: Водно-солевой и минеральный обмен

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический.

Водно-солевой обмен – обмен воды и основных электролитов организма (Na + ,K + ,Ca 2+ ,Mg 2+ ,Cl - ,HCO 3 - ,H 3 PO 4).

Электролиты – вещества, диссоциирующие в растворе на анионы и катионы. Их измеряют в моль/л.

Неэлектролиты – вещества, недиссоциирующие в растворе (глюкоза, креатинин, мочевина). Их измеряют в г/л.

Минеральный обмен – обмен любых минеральных компонентов, в том числе и тех, которые не влияют на основные параметры жидкой среды в организме.

Вода – основной компонент всех жидкостей организма.

Биологическая роль воды

    Вода является универсальным растворителем для большинства органических (кроме липидов) и неорганических соединений.

    Вода и растворенные в ней вещества создают внутреннюю среду организма.

    Вода обеспечивает транспорт веществ и тепловой энергии по организму.

    Значительная часть химических реакций организма протекает в водной фазе.

    Вода участвует в реакциях гидролиза, гидратации, дегидратации.

    Определяет пространственное строение и свойства гидрофобных и гидрофильных молекул.

    В комплексе с ГАГ вода выполняет структурную функцию.

Общие свойства жидкостей организма

Все жидкости организма характеризуются общими свойствами: объемом, осмотическим давлением и величиной рН.

Объем. У всех наземных животных жидкости составляет около 70% от массы тела.

Распределение воды в организме зависит от возраста, пола, мышечной массы, телосложения и количества жира. Содержание воды в различных тканях распределяется следующим образом: легкие, сердце и почки (80%), скелетная мускулатура и мозг (75%), кожа и печень (70%), кости (20%), жировая ткань (10%). В целом, у худых людей меньше жира и больше воды. У мужчин на воду приходится 60%, у женщин - 50% от массы тела. У пожилых людей больше жира и меньше мышц. В среднем в организме мужчин и женщин старше 60 лет содержится соответственно 50% и 45% воды.

При полном лишении воды смерть наступает через 6-8 дней, когда количество воды в организме снижается на 12%.

Вся жидкость организма разделена на внутриклеточный (67%) и внеклеточный (33%) бассейны.

Внеклеточный бассейн (экстрацеллюлярное пространство) состоит из:

    Внутрисосудистой жидкости;

    Интерстициальной жидкости (межклеточная);

    Трансцеллюлярной жидкости (жидкость плевральной, перикардиальной, перитонеальной полостей и синовиального пространства, цереброспинальная и внутриглазная жидкость, секрет потовых, слюнных и слезных желез, секрет поджелудочной железы, печени, желчного пузыря, ЖКТ и дыхательных путей).

Между бассейнами жидкости интенсивно обмениваются. Перемещение воды из одного сектора в другой происходит при изменении осмотического давления.

Осмотическое давление – это давление, которое создают все растворенные в воде вещества. Осмотическое давление внеклеточной жидкости определяется главным образом концентрациейNaCl.

Внеклеточная и внутриклеточная жидкости значительно отличаются по составу и концентрации отдельных компонентов, но общая суммарная концентрация осмотически активных веществ примерно одинакова.

рН – отрицательный десятичный логарифм концентрации протонов. Величина рН зависит от интенсивности образования в организме кислот и оснований, их нейтрализации буферными системами и удалением из организма с мочой, выдыхаемым воздухом, потом и калом.

В зависимости от особенности обмена, величина рН может заметно отличаться как внутри клеток разных тканей, так и в разных отсеках одной клетки (в цитозоле кислотность нейтральная, в лизосомах и в межмембранном пространстве митохондрий - сильно кислая). В межклеточной жидкости разных органов и тканей и плазме крови величина рН, как и осмотическое давление, относительно постоянная величина.

Концентрация кальция во внеклеточной жидкости в норме поддерживается на строго постоянном уровне, редко повышаясь или снижаясь на несколько процентов относительно нормальных величин, составляющих 9,4 мг/дл, что эквивалентно 2,4 ммоль кальция на литр. Такой строгий контроль очень важен в связи с основной ролью кальция во многих физиологических процессах, включая сокращение скелетных, сердечной и гладких мышц, свертывание крови, передачу нервных импульсов. Возбудимые ткани, в том числе нервная, очень чувствительны к изменениям концентрации кальция, и увеличение концентрации ионов кальция по сравнению с нормой (гипсркальциемия) вызывает нарастающее поражение нервной системы; напротив, снижение концентрации кальция (гипокальциемия) повышает возбудимость нервной системы.

Важная особенность регуляции концентрации внеклеточного кальция: только около 0,1% общего количества кальция организма присутствует во внеклеточной жидкости, около 1 % - находится внутри клеток, а остальное количество хранится в костях, поэтому кости могут рассматриваться в качестве большого хранилища кальция, выделяющего его во внеклеточное пространство, если концентрация кальция там снижается, и, напротив, забирающего избыток кальция на хранение.

Приблизительно 85% фосфатов организма хранится в костях, от 14 до 15% - в клетках, и только менее 1% присутствует во внеклеточной жидкости. Концентрация фосфатов во внеклеточной жидкости не так строго регулируется, как концентрация кальция, хотя они выполняют разнообразные важные функции, контролируя многие процессы совместно с кальцием.

Всасывание кальция и фосфатов в кишечнике и их экскреция с калом. Обычная скорость поступления кальция и фосфатов составляет приблизительно 1000 мг/сут, что соответствует количеству, извлекаемому из 1 л молока. Обычно двухвалентные катионы, такие как ионизированный кальций, плохо абсорбируются в кишечнике. Однако, как обсуждается далее, витамин D способствует всасыванию кальция в кишечнике, и почти 35% (около 350 мг/сут) потребленного кальция абсорбируется. Оставшийся в кишечнике кальций попадает в каловые массы и удаляется из организма. Дополнительно около 250 мг/сут кальция попадает в кишечник в составе пищеварительных соков и слущивающихся клеток. Таким образом, около 90% (900 мг/сут) из ежесуточного поступления кальция выводится с калом.

Гипокальциемия вызывает возбуждение нервной системы и тетанию. Если концентрация ионов кальция во внеклеточной жидкости падает ниже нормальных значений, нервная система постепенно становится все более возбудимой, т.к. это изменение приводит к повышению проницаемости для ионов натрия, облегчая генерацию потенциала действия. В случае падения концентрации ионов кальция до уровня, составляющего 50% нормы, возбудимость периферических нервных волокон становится так велика, что они начинают спонтанно разряжаться.

Гиперкальциемия понижает возбудимость нервной системы и мышечную активность. Если концентрация кальция в жидких средах организма превышает норму, возбудимость нервной системы снижается, что сопровождается замедлением рефлекторных ответов. Увеличение концентрации кальция приводит к снижению интервала QT на электрокардиограмме, снижению аппетита и запорам, возможно, вследствие снижения контрактильной активности мышечной стенки гастроинтестинального тракта.

Эти депрессивные эффекты начинают проявляться, когда уровень кальция поднимается выше 12 мг/дл, и становятся заметными, когда уровень кальция превышает 15 мг/дл.

Формирующиеся нервные импульсы достигают скелетных мышц, вызывая тетанические сокращения. Следовательно, гипокальциемия вызывает тетанию, иногда она провоцирует эпилептиформные приступы, поскольку гипокальциемия повышает возбудимость мозга.

Всасывание фосфатов в кишечнике осуществляется легко. Кроме тех количеств фосфатов, которые выводятся с калом в виде солей кальция, почти все содержащиеся в дневном рационе фосфаты всасываются из кишечника в кровь и затем экскретируются с мочой.

Экскреция кальция и фосфатов почкой. Приблизительно 10% (100 мг/сут) поступившего в организм кальция экскретируются с мочой, около 41% кальция в плазме связано с белками и поэтому не фильтруется из гломерулярных капилляров. Оставшееся количество объединяется с анионами, например с фосфатами (9%), или ионизируется (50%) и фильтруется клубочками в почечные канальцы.

В норме в канальцах почки реабсорбируется 99% отфильтрованного кальция, поэтому в сутки экскретируются с мочой почти 100 мг кальция. Приблизительно 90% кальция, содержащегося в гломерулярном фильтрате, реабсорбируется в проксимальных канальцах, петле Генле и в начале дистальных канальцев. Затем в конце дистальных канальцев и в начале собирательных протоков реабсорбируются оставшиеся 10% кальция. Реабсорбция становится высокоизбирательной и зависит от концентрации кальция в крови.

Если концентрация кальция в крови низка, реабсорбция возрастает, в итоге кальций почти не теряется с мочой. Напротив, когда концентрация кальция в крови незначительно превышает нормальные значения, экскреция кальция значительно увеличивается. Наиболее важным фактором, контролирующим реабсорбцию кальция в дистальных отделах нефрона и, следовательно, регулирующим уровень экскреции кальция, является паратгормон.

Почечная экскреция фосфатов регулируется механизмом обильного потока. Это означает, что когда концентрация фосфатов в плазме снижается ниже критического значения (около 1 ммоль/л), все фосфаты из гломеруляр-ного фильтрата реабсорбируются и перестают выводиться с мочой. Но если концентрация фосфатов превышает значение нормы, потери его с мочой прямо пропорциональны дополнительному увеличению его концентрации. Почки регулируют концентрацию фосфатов в экстрацеллюлярном пространстве, изменяя скорость экскреции фосфатов соответственно их концентрации в плазме и скорости фильтрации фосфатов в почке.

Однако, как мы увидим далее, паратгормон может существенно увеличить экскрецию фосфатов почками, поэтому он играет важную роль в регуляции концентрации фосфатов в плазме наряду с контролем концентрации кальция. Паратгормон является мощным регулятором концентрации кальция и фосфатов, осуществляющим свои влияния, управляя процессами реабсорбции в кишечнике, экскрецией в почке и обменом этих ионов между внеклеточной жидкостью и костью.

Избыточная активность паращитовидных желез вызывает быстрое вымывание солей кальция из костей с последующим развитием гиперкальциемии во внеклеточной жидкости; напротив, гипофункция паращитовидных желез приводит к гипокальциемиии, часто - с развитием тетании.

Функциональная анатомия паращитовидных желез. В норме у человека существуют четыре паращитовидные железы. Они расположены сразу после щитовидной железы, попарно у верхнего и нижнего ее полюсов. Каждая паращитовидная железа является образованием около 6 мм длиной, 3 мм шириной и 2 мм высотой.

Макроскопически паращитовидные железы выглядят как темный бурый жир, определить их местонахождение во время операции на щитовидной железе затруднительно, т.к. они часто выглядят, как дополнительная доля щитовидной железы. Именно поэтому до момента, когда была установлена важность этих желез, тотальная или субтотальная тиреоидэктомия заканчивалась одновременным удалением паращитовидных желез.

Удаление половины околощитовидных желез не вызывает серьезных физиологических нарушений, удаление трех или всех четырех желез приводит к транзиторному гипопаратиреоидизму. Но даже небольшое количество оставшейся ткани паращитовидной железы способно за счет гиперплазии обеспечить нормальную функцию паращитовидных желез.

Паратиреоидные железы взрослого человека состоят преимущественно из главных клеток и из большего или меньшего количества оксифильных клеток, которые отсутствуют у многих животных и у молодых людей. Главные клетки предположительно секретируют большее, если не все количество паратгормона, а у оксифильных клеток - свое предназначение.

Считается, что они являются модификацией или исчерпавшей свой ресурс формой главных клеток, которые больше не синтезируют гормон.

Химическая структура паратгормона. ПТГ выделен в очищенном виде. Первоначально он синтезируется на рибосомах в виде препрогормона, полипептидной цепочки из ПО аминокислотных остатков. Затем расщепляется до прогормона, состоящего из 90 аминокислотных остатков, потом - до стадии гормона, который включает 84 аминокислотных остатка. Процесс этот осуществляется в эндоплазматическом ретикулуме и аппарате Гольджи.

В итоге гормон упаковывается в секреторные гранулы в цитоплазме клеток. Окончательная форма гормона имеет молекулярную массу 9500; более мелкие соединения, состоящие из 34 аминокислотных остатков, примыкающие к N-концу молекулы паратгормона, также выделенные из паращитовидных желез, обладают активностью ПТГ в полной мере. Установлено, что почки полностью выводят форму гормона, состоящую из 84 аминокислотных остатков, очень быстро, в течение нескольких минут, в то время как оставшиеся многочисленные фрагменты длительное время обеспечивают поддержание высокой степени гормональной активности.

Тиреокальцитонин - гормон, вырабатываемый у млекопитающих и у человека парафолликулярными клетками щитовидной железой, паращитовидной железой и вилочковой железой. У многих животных, например, рыб, аналогичный по функциям гормон производится не в щитовидной железе (хотя она есть у всех позвоночных животных), а в ултимобранхиальных тельцах и потому называется просто кальцитонином. Тиреокальцитонин принимает участие в регуляции фосфорно-кальциевого обмена в организме, а также баланса активности остеокластов и остеобластов, функциональный антагонист паратгормона. Тиреокальцитонин понижает содержание кальция и фосфата в плазме крови за счёт усиления захвата кальция и фосфата остеобластами. Он также стимулирует размножение и функциональную активность остеобластов. Одновременно тиреокальцитонин тормозит размножение и функциональную активность остеокластов и процессы резорбции кости. Тиреокальцитонин является белково-пептидным гормоном, с молекулярной массой3600. Усиливает отложение фосфорно-кальциевых солей на коллагеновую матрицу костей. Тиреокальцитонин, как и паратгормон, усиливает фосфатурию.

Кальцитриол

Строение: Представляет собой производное витамина D и относится к стероидам.

Синтез: Образующийся в коже под действием ультрафиолета и поступающие с пищей холекальциферол (витамин D3) и эргокальциферол (витамин D2) гидроксилируются в печени по С25 и в почках по С1. В результате формируется 1,25-диоксикальциферол (кальцитриол).

Регуляция синтеза и секреции

Активируют: Гипокальциемия повышает гидроксилирование по С1 в почках.

Уменьшают: Избыток кальцитриола подавляет гидроксилирование по С1 в почках.

Механизм действия: Цитозольный.

Мишени и эффекты: Эффект кальцитриола заключается в увеличении концентрации кальция и фосфора в крови:

в кишечнике индуцирует синтез белков, отвечающих за всасывание кальция и фосфатов, в почках повышает реабсорбцию кальция и фосфатов, в костной ткани усиливает резорбцию кальция. Патология: Гипофункция Соответствует картине гиповитаминоза D. Роль 1.25-дигидроксикальци-ферола в обмене Ca и P.: Усиливает всасывание Ca и P из кишечника, Усиливает реабсорбцию Ca и P почками, Усиливает минерализацию молодой кости, Стимулирует остеокласты и выход Ca из старой кости.

Витамин D (кальциферол, антирахитический)

Источники: Имеется два источника поступления витамина D:

печень, дрожжи, жирномолочные продукты (сливочное масло, сливки, сметана), желток яиц,

образуется в коже при ультрафиолетовом облучении из 7-дегидрохолестерола в количестве 0,5-1,0 мкг/сут.

Суточная потребность: Для детей – 12-25 мкг или 500-1000 МЕ, у взрослых потребность гораздо меньше.

С
троение:
Витамин представлен двумя формами – эргокальциферол и холекальциферол. Химически эргокальциферол отличается от холекальциферола наличием в молекуле двойной связи между С22 и С23 и метильной группой при С24.

После всасывания в кишечнике или после синтеза в коже витамин попадает в печень. Здесь он гидроксилируется по С25 и кальциферолтранспортным белком переносится к почкам, где еще раз гидроксилируется, уже по С1. Образуется 1,25-дигидроксихолекальциферол или кальцитриол. Реакция гидроксилирования в почках стимулируется паратгормоном, пролактином, соматотропным гормоном и подавляется высокими концентрациями фосфатов и кальция.

Биохимические функции: 1. Увеличение концентрации кальция и фосфатов в плазме крови. Для этого кальцитриол: стимулирует всасывание ионов Ca2+ и фосфат-ионов в тонком кишечнике (главная функция), стимулирует реабсорбцию ионов Ca2+ и фосфат-ионов в проксимальных почечных канальцах.

2. В костной ткани роль витамина D двояка:

стимулирует выход ионов Ca2+ из костной ткани, так как способствует дифференцировке моноцитов и макрофагов в остеокласты и снижению синтеза коллагена I типа остеобластами,

повышает минерализацию костного матрикса, так как увеличивает производство лимонной кислоты, образующей здесь нерастворимые соли с кальцием.

3. Участие в реакциях иммунитета, в частности в стимуляции легочных макрофагов и в выработке ими азотсодержащих свободных радикалов, губительных, в том числе, для микобактерий туберкулеза.

4. Подавляет секрецию паратиреоидного гормона через повышение концентрации кальция в крови, но усиливает его эффект на реабсорбцию кальция в почках.

Гиповитаминоз. Приобретенный гиповитаминоз.Причина.

Часто встречается при пищевой недостаточности у детей, при недостаточной инсоляции у людей, не выходящих на улицу или при национальных особенностях одежды. Также причиной гиповитаминоза может быть снижение гидроксилирования кальциферола (заболевания печени и почек) и нарушение всасывания и переваривания липидов (целиакия, холестаз).

Клиническая картина: У детей от 2 до 24 месяцев проявляется в виде рахита, при котором, несмотря на поступление с пищей, кальций не усваивается в кишечнике, а в почках теряется. Это ведет к снижению концентрации кальция в плазме крови, нарушению минерализации костной ткани и, как следствие, к остеомаляции (размягчение кости). Остеомаляция проявляется деформацией костей черепа (бугристость головы), грудной клетки (куриная грудь), искривление голени, рахитические четки на ребрах, увеличение живота из‑за гипотонии мышц, замедляется прорезывание зубов и зарастание родничков.

У взрослых тоже наблюдается остеомаляция, т.е. остеоид продолжает синтезироваться, но не минерализуется. Развитие остеопороза частично также связывают с витамин D-‑недостаточностью.

Наследственный гиповитаминоз

Витамин D-зависимый наследственный рахит I типа, при котором имеется рецессивный дефект почечной α1-гидроксилазы. Проявляется задержкой развития, рахитическими особенностями скелета и т.д. Лечение – препараты кальцитриола или большие дозы витамина D.

Витамин D-зависимый наследственный рахит II типа, при котором наблюдается дефект тканевых рецепторов кальцитриола. Клинически заболевание схоже с I типом, но дополнительно отмечаются аллопеция, milia, эпидермальные кисты, мышечная слабость. Лечение варьирует в зависимости от тяжести заболевания, помогают большие дозы кальциферола.

Гипервитаминоз. Причина

Избыточное потребление с препаратами (не менее 1,5 млн МЕ в сутки).

Клиническая картина: Ранними признаками передозировки витамина D являются тошнота, головная боль, потеря аппетита и веса тела, полиурия, жажда и полидипсия. Могут быть запоры, гипертензия, мышечная ригидность. Хронический избыток витамина D приводит к гипервитаминозу, при котором отмечается: деминерализация костей, приводящая к их хрупкости и переломам.увеличение концентрации ионов кальция и фосфора в крови, приводящее к кальцификации сосудов, ткани легких и почек.

Лекарственные формы

Витамин D – рыбий жир, эргокальциферол, холекальциферол.

1,25-Диоксикальциферол (активная форма) – остеотриол, оксидевит, рокальтрол, форкал плюс.

58. Гормоны, производные жирных кислот. Синтез. Функции.

По химической природе гормональные молекулы относят к трем группам соединений:

1)белки и пептиды; 2) производные аминокислот; 3) стероиды и производные жирных кислот.

К эйкозаноидам (είκοσι, греч.-двадцать) относят окисленные производные эйкозановых к-т: эйкозотриеновой (С20:3), арахидоновой (С20:4), тимнодоновой (С20:5) ж-х к-т. Активность эйкозаноидов значительно разнится от числа двойных связей в молекуле, которое зависит от строения исходной ж-ой к-ы. Эйкозаноиды называют гормоноподобными вещ-ми, т.к. они могут оказывать только местное действие, сохраняясь в крови в течение неск-х сек. Обр-ся во всех органах и тканях практически всеми типами кл. Депонироваться эйкозаноиды не могут, разрушаются в течение неск-их сек, и поэтому кл должна синтезировать их постоянно из поступающих жирных кислот ω6- и ω3-ряда. Выделяют три основные группы:

Простагландины (Pg) – синтезируются практически во всех клетках, кроме эритроцитов и лимфоцитов. Выделяют типы простагландинов A, B, C, D, E, F. Функции простагландинов сводятся к изменению тонуса гладких мышц бронхов, мочеполовой и сосудистой системы, желудочно-кишечного тракта, при этом направленность изменений различна в зависимости от типа простагландинов, типа клетки и условий. Они также влияют на температуру тела. Могут активировать аденилатциклазу Простациклины являются подвидом простагландинов (Pg I), вызывают дилатацию мелких сосудов, но еще обладают особой функцией – ингибируют агрегацию тромбоцитов. Их активность возрастает при увеличении числа двойных связей. Синтезируются в эндотелии сосудов миокарда, матки, слизистой желудка. Тромбоксаны (Tx) образуются в тромбоцитах, стимулируют их агрегацию и вызывают сужение сосудов. Их активность снижается при увеличении числа двойных связей. Увеличивают активность фосфоинозитидного обмена Лейкотриены (Lt) синтезируются в лейкоцитах, в клетках легких, селезенки, мозга, сердца. Выделяют 6 типов лейкотриенов A, B, C, D, E, F. В лейкоцитах они стимулируют подвижность, хемотаксис и миграцию клеток в очаг воспаления, в целом они активируют реакции воспаления, предотвращая его хронизацию. Также вызывают сокращение мускулатуры бронхов (в дозах в 100-1000 раз меньших, чем гистамин). повышают проницаемость мембран для ионов Са2+. Поскольку цАМФ и ионы Са 2+ стимулируют синтез эйкозаноидов, замыкается положительная обратная связь в синтезе этих специфических регуляторов.

И
сточником
свободных эйкозановых кислот являются фосфолипиды клеточной мембраны. Под влиянием специфических и неспецифических стимулов активируются фосфолипаза А 2 или комбинация фосфолипазы С и ДАГ-липазы, которые отщепляют жирную кислоту из положения С2 фосфолипидов.

П

олиненасыщенная ж-я к-та метаболизирует в основном 2я путями: циклооксигеназным и липоксигеназным, активность которых в разных клетках выражена в разной степени. Циклооксигеназный путь отвечает за синтез простагландинов и тромбоксанов, липоксигеназный – за синтез лейкотриенов.

Биосинтез большинства эйкозаноидов начинается с отщепления арахидоновой к-ты от мембранного фосфолипида или диацил-глицерина в плазматической мембране. Синтетазный комплекс представляет собой полиферментную систему, функ-ую преимущественно на мембранах ЭПС. Обр-ся эйкозаноиды легко проникают ч/з плазматическую мембрану кл, а затем ч/з межклеточное простр-во переносятся на соседние кл или выходят в кровь и лимфу. Скорость синтеза эйкозаноидов увел-ся под влиянием гормонов и нейромедиаторов, акт-их аденилатциклазу или повышающих концентрацию ионов Са 2+ в кл. Наиболее интенсивно обр-е простагландинов происходит в семенниках и яичниках. Во многих тканях кортизол тормозит осв-ие арахидоновой к-ты, что приводит к подавлению обр-я эйкозаноидов, и тем самым оказывает противовосп-е действие. Простагландин E1 является мощным пирогеном. Подавлением синтеза этого простагландина объясняют терапевтическое действие аспирина. Период полураспада эйкозаноидов составляет 1-20 с. Ферменты, инактивирующие их, имеются пр-ки во всех тканях, но наибольшее их кол-во сод-ся в легких. Лек-я рег-я синтеза: Глюкокортикоиды, опосредованно ч/з синтез специфич белков, блокируют синтез эйкозаноидов, за счет снижения связывания фосфолипидов фосфолипазой А 2 , что предотвращает высвобождение полиненасыщенной к-ты из фосфолипида. Нестероидные противовос-е средства (аспирин, индометацин, ибупрофен) необратимо ингиб-т циклооксигеназу и снижают выработку простагландинов и тромбоксанов.

60. Витамины Е. К и убихинон, их участие в обмене веществ.

Витамины группы Е (токоферолы). Название «токоферол» витамина Е - от греческого «токос» - «рождение» и «ферро» - носить. Его обнаружили в масле из проросших зерен пшеницы. В настоящее время известно семейство токоферолов и токотриенолов, найденных в природных источниках. Все они - метальные производные исходного соединения токола, по строению очень близки и обозначаются буквами греческого алфавита. Наибольшую биологическую активность проявляет α-токоферол.

Токоферол нерастворим в воде; как и витамины А и D, он растворим в жирах, устойчив к воздействию кислот, щелочей и высокой температуре. Обычное кипячение на него почти не влияет. А вот свет, кислород, ультрафиолетовые лучи или химические окислители действуют губительно.

Витамин Е содержится гл. обр. в липопротеиновых мембранах клеток и субклеточных органелл, где локализован благодаря межмол. взаимод. с ненасыщ. жирными к-тами.Его биол. активность основана на способности образовывать устойчивые своб. радикалы в результате отщепления атома Н от гидроксильной группы. Эти радикалы могут вступать во взаимод. со своб. радикалами, участвующими в образовании орг. пероксидов. Тем самым витамин Е предотвращает окисление ненасыщ. липидов и предохраняет от разрушения биол. мембраны и другие молекулы, например ДНК.

Токоферол повышает биологическую активность витамина А, защищая от окисления ненасыщенную боковую цепь.

Источники: для человека - растительные масла, салат, капуста, семена злаков, сливочное масло, яичный желток.

Суточная потребность взрослого человека в витамине примерно 5 мг.

Клинические проявления недостаточности у человека до конца не изучены. Известно положительное влияние витамина Е при лечении нарушения процесса оплодотворения, при повторяющихся непроизвольных абортах, некоторых форм мышечной слабости и дистрофии. Показано применение витамина Е для недоношенных детей и детей, находящихся на искусственном вскармливании, так как в коровьем молоке в 10 раз меньше витамина Е, чем в женском. Дефицит витамина Е проявляется развитием гемолитической анемии, возможно из-за разрушения мембран эритроцитов в результате ПОЛ.

У
БИХИНОНЫ (коферменты Q)
–широко распространенное вещество и был обнаружен в растениях, грибах, животных и м/о. Относят к группе жирорастворимых витаминоподобных соединений, плохо растворяется в воде, но разрушается при воздействии кислорода и высоких температур. В классическом понимании убихинон не витамин, так как в достаточном количестве синтезируется в организме. Но при некоторых заболеваниях естественный синтез кофермента Q уменьшается и его не хватает для удовлетворения потребности, тогда он становится незаменимым фактором.

У
бихиноны играют важную роль в биоэнергетике клетки большинства прокариот и всех эукариот. Осн. ф-ция убихинонов- перенос электронов и протонов от разл. субстратов к цитохромам при дыхании и окислительном фосфорилировании. Убихиноны, гл. обр. в восстановленной форме (убихинолы, Q n H 2), выполняют ф-цию антиоксидантов. Могут быть простетич. группой белков. Выделены Q-связывающие белки трех классов, действующие в дыхат. цепи на участках функционирования ферментов сукцинату-бихинонредуктазы, НАДН-убихинонредуктазы и цитохромов в и с 1 .

В процессе переноса электронов с NADH-дегидрогеназы через FeS на убихинон он обратимо превращается в гидрохинон. Убихинон выполняет коллекторную функцию, присоединяя электроны от NADH-дегидрогеназы и других флавинзависимых дегидрогеназ, в частности, от сукцинат-дегидрогеназы. Убихинон участвует в реакциях типа:

Е (FMNH 2) + Q → Е (FMN) + QH 2 .

Симптомы дефицита : 1) анемия2) изменения в скел мускулатуре 3) сердечная недост 4) изменения в костном мозге

Симптомы передозировки: возможна только при избыточном введении и обычно проявляется тошнотой, нарушениями стула и болями в животе.

Источники: Растительные - Зародыши пшеницы, растительные масла, орехи, капуста. Животные - Печень, сердце, почки, говядина, свинина, рыба, яйца, курятина. Синтезируется микрофлорой кишечника.

С
уточная потребность:
Считается, что при обычных условиях организм покрывает потребность полностью, но есть мнение, что это необходимое суточное количество составляет 30-45 мг.

Структурные формулы рабочей части коферментов FAD и FMN. В ходе реакции FAD и FMN присоединяют 2 электрона и, в отличие от NAD+, оба теряемых субстратом протона.

63. Витамины С и Р, строение, роль. Цинга.

Витамин Р (биофлавоноиды; рутин, цитрин; витамин проницаемости)

В настоящее время известно, что понятие "витамин Р" объединяет семейство биофлавоноидов (катехины, флавононы, флавоны). Это очень разнообразная группа растительных полифенольных соединений, влияющих на проницаемость сосудов сходным образом с витамином С.

Под термином «витамин Р», повышающим резистентность капилляров (от лат. permeability – проницаемость), объединяется группа веществ со сходной биологической активностью: катехины, халконы, дигидрохалконы, флавины, флавононы, изофлавоны, флавонолы и др. Все они обладают Р-витаминной активностью, и в основе их структуры лежит дифенилпропановый углеродный «скелет» хромона или флавона. Этим объясняется их общее название «биофлавоноиды».

Витамин Р усваивается лучше в присутствии аскорбиновой кислоты, а высокая температура легко её разрушает.

Источники: лимоны, гречиха, черноплодная рябина, чёрная смородина, листья чая, плоды шиповника.

Суточная потребность для человека Составляет, в зависимости от образа жизни, 35-50 мг в день.

Биологическая роль флавоноидов заключается в стабилизации межклеточного матрикса соединительной ткани и уменьшении проницаемости капилляров. Многие представители группы витамина Р обладают гипотензивным действием.

-Витамин Р "оберегает" гиалуроновую кислоту, которая укрепляет стенки сосудов и является основным компонентом биологической смазки суставов, от разрушающего действия ферментов гиалуронидаз. Биофлавоноиды стабилизируют основное вещество соединительной ткани путем ингибирования гиалуронидазы, что подтверждается данными о положительном влиянии Р-витаминных препаратов, как и аскорбиновой кислоты, в профилактике и лечении цинги, ревматизма, ожогов и др. Эти данные указывают на тесную функциональную связь витаминов С и Р в окислительно-восстановительных процессах организма, образующих единую систему. Об этом косвенно свидетельствует лечебный эффект, оказываемый комплексом витамина С и биофлавоноидов, названный аскорутином. Витамин Р и витамин С тесно связаны между собой.

Рутин повышает активность аскорбиновой кислоты. Защищая от окисления, помогает лучшему её усвоению, он по праву считается "главный партнёр" аскорбинки. Укрепляя стенки кровеносных сосудов и уменьшая их ломкость, он тем самым снижает риск внутренних кровоизлияний, предупреждает образование атеросклеротических бляшек.

Нормализует повышенное артериальное давление, способствуя расширению сосудов. Способствует формированию соединительной ткани, а следовательно быстрому заживлению ран и ожогов. Способствует профилактике варикозного расширения вен.

Положительно влияет на работу эндокринной системы. Используется для профилактики и дополнительного средства в лечении артрита ― тяжелого заболевания суставов и подагры.

Повышает иммунитет, обладает противовирусной активностью.

Заболевания: Клиническое проявление гипоавитаминоза витамина Р характеризуется повышенной кровоточивостью дёсен и точечными подкожными кровоизлияниями, общей слабостью, быстрой утомляемостью и болями в конечностях.

Гипервитаминоз: Флавоноиды не токсичны и случаев передозировки не замечено, поступившие с пищей излишки легко выводятся из организма.

Причины: Недостаток биофлавоноидов может возникать на фоне длительного приема антибиотиков (или в больших дозах) и других сильнодействующих препаратов, при любом неблагоприятном воздействии на организм, например, травма или хирургическое вмешательство.

ФУНКЦИОНАЛЬНАЯ БИОХИМИЯ

(Водно-солевой обмен. Биохимия почек и мочи)

УЧЕБНОЕ ПОСОБИЕ

Рецензент: профессор Н.В. Козаченко

Утверждена на заседании кафедры пр.№ _____ от _______________2004 г.

Утверждена зав. кафедрой ________________________________________

Утверждена на МК медико-биологического и фармацевтического факультетов

пр.№ _____ от _______________2004 г.

Председатель________________________________________________

Водно-солевой обмен

Одним из наиболее часто нарушающихся при патологии видов обмена веществ является водно-солевой. Он связан с постоянным движением воды и минеральных веществ из внешней среды организма во внутреннюю, и наоборот.

В организме взрослого человека на воду приходится 2/3 (58- 67%) массы тела. Около половины ее объема сосредоточено в мышцах. Потребность в воде (человек ежесуточно получает до 2,5-3 л жидкости) покрывается за счет поступления ее в виде питья (700-1700 мл), преформированной воды, входящей в состав пищи (800-1000 мл), и воды, образующейся в организме при обмене веществ - 200-300 мл (при сгорании 100 г жиров, белков и углеводов образуется соответственно 107,41 и 55 г воды). Эндогенная вода в относительно большом количестве синтезируется при активации процесса окисления жиров, что наблюдается при различных, прежде всего пролонгированных стрессовых состояниях, возбуждении симпатико-адреналовой системы, разгрузочной диетотерапии (нередко используемой для лечения больных ожирением).

Благодаря постоянно происходящим обязательным водным потерям внутренний объем жидкости в организме сохраняется неизмененным. К числу таких потерь относят ренальные (1,5 л) и экстраренальные, связанные с выделением жидкости через желу-дочно-кишечный тракт (50-300 мл), дыхательные пути и кожу (850-1200 мл). В целом объем обязательных потерь воды составляет 2,5-3 л, во многом зависят от количества выводимых из организма шлаков.

Участие воды в процессах жизнедеятельности весьма разнообразно. Вода является растворителем многих соединений, непосредственным компонентом ряда физико-химических и биохимических превращений, транспортером эндо- и экзогенных веществ. Кроме того, она выполняет механическую функцию, ослабляя трение связок, мышц, поверхности хрящей суставов (тем самым облегчая их подвижность), участвует в терморегуляции. Вода поддерживает гомеостаз, зависящий от величины осмотического давления плазмы (изоосмия) и объема жидкости (изоволемия), функционирования механизмов регуляции кислотно-основного состояния, протекания процессов, обеспечивающих постоянство температуры (изотермию).

В организме человека вода пребывает в трех основных физико-химических состояниях, в соответствии с которыми выделяют: 1) свободную, или мобильную, воду (составляет основную часть внутриклеточной жидкости, а также крови, лимфы, интерстициальной жидкости); 2) воду, связанную гидрофильными коллоидами, и 3) конституциональную, входящую в структуру молекул белков, жиров и углеводов.

В организме взрослого человека массой 70 кг объем свободной воды и воды, связанной гидрофильными коллоидами, составляет примерно 60% массы тела, т.е. 42 л. Эта жидкость представлена внутриклеточной водой (на ее долю приходится 28 л, или 40% массы тела), составляющей внутриклеточный сектор, и внеклеточной водой (14 л, или 20% массы тела), образующей внеклеточный сектор. В состав последнего входит внутрисосудистая (интраваскулярная) жидкость. Этот внутрисосудистый сектор образован плазмой (2,8 л), на долю которой приходится 4-5% массы тела, и лимфой.

Интерстициальная вода включает в себя собственно межклеточную воду (свободную межклеточную жидкость) и организованную внеклеточную жидкость (составляющую 15-16% массы тела, или 10,5 л), т.е. воду связок, сухожилий, фасций, хрящей и т.д. Кроме того, к внеклеточному сектору относят воду, находящуюся в некоторых полостях (брюшной и плевральной полости, перикарда, суставов, желудочков мозга, камерах глаза и др.), а также в желудочно-кишечном тракте. Жидкость этих полостей не принимает активного участия в метаболических процессах.

Вода человеческого организма не застаивается в различных его отделах, а постоянно движется, непрерывно обмениваясь с другими секторами жидкости и с внешней средой. Передвижение воды во многом осуществляется благодаря выделению пищеварительных соков. Так, со слюной, с соком поджелудочной железы в кишечную трубку направляется около 8 л воды в сутки,ноэта вода вследствие всасывания в более низких участках пищеварительного тракта практически не теряется.

Жизненно необходимые элементы подразделяются на макроэлементы (суточная потребность >100 мг) и микроэлементы (суточная потребность <100 мг). К макроэлементам относятся натрий (Na), калий (К), кальций (Ca), магний (Мg), хлор (Cl), фосфор (Р), сера (S) и иод (I). К жизненно важным микроэлементам, необходимым лишь в следовых количествах, относятся железо (Fe), цинк (Zn), марганец (Μn), медь (Cu), кобальт (Со), хром (Сr), селен (Se) и молибден (Мо). Фтор (F) не принадлежит к этой группе, однако он необходим для поддержания в здоровом состоянии костной и зубной ткани. Вопрос относительно принадлежности к жизненно важным микроэлементам ванадия, никеля, олова, бора и кремния остается открытым. Такие элементы принято называть условно эссенциальными.

В таблице 1 (колонка 2) приведено среднее содержание минеральных веществ в организме взрослого человека (в расчете на массу 65 кг).Среднесуточная потребность взрослого человека в указанных элементах приведена в колонке 4. У детей и женщин в период беременности и кормления ребенка, а также у больных потребность в микроэлементах обычно выше.

Так как многие элементы могут запасаться в организме, отклонение от суточной нормы компенсируется во времени. Кальций в форме апатита запасается в костной ткани, иод - в составе тиреоглобулина в щитовидной железе, железо - в составе ферритина и гемосидерина в костном мозге, селезенке и печени. Местом хранения многих микроэлементов служит печень.

Обмен минеральных веществ контролируется гормонами. Это относится, например, к потреблению Н 2 О, Ca 2+ , PO 4 3- , связыванию Fe 2+ , I - , экскреции H 2 O, Na + , Ca 2+ , PO 4 3- .

Количество минеральных веществ, абсорбированных из пищи, как правило, зависит от метаболических потребностей организма и в ряде случаев от состава пищевых продуктов. В качестве примера влияния состава пищи можно рассмотреть кальций. Всасыванию ионов Ca 2+ способствуют молочная и лимонная кислоты, в то время как фосфат-ион, оксалат-ион и фитиновая кислота ингибируют всасывание кальция из-за комплексообразования и образования плохо растворимых солей (фитин).

Дефицит минеральных веществ - явление не столь редкое: оно возникает по различным причинам, например из-за однообразного питания, нарушения усвояемости, при различных заболеваниях. Недостаток кальцияможет наступить в период беременности, а также при рахите или остеопорозе. Хлородефицит наступает из-за большой потери ионов Сl - при сильной рвоте.

Из-за недостаточного содержания иода в пищевых продуктах во многих районах Центральной Европы распространенным явлением стали иододефицитные состояния и зобная болезнь. Дефицит магния может возникать из-за диареи или из-за однообразного питания при алкоголизме. Недостаток в организме микроэлементов часто проявляется нарушением кроветворения, т. е. анемией.

В последней колонке перечислены функции, выполняемые в организме указанными минеральными веществами. Из данных таблицы видно, что почти все макроэлементы функционируют в организме как структурные компоненты и электролиты. Сигнальные функции выполняют иод (в составе иодтиронина) и кальций. Большинство микроэлементов являются кофакторами белков, главным образом ферментов. В количественном отношении в организме преобладают железосодержащие белки гемоглобин, миоглобин и цитохром, а также более 300 цинксодержащих белков.

Таблица 1


Похожая информация.


Первые живые организмы появились в воде около 3 млрд лет тому назад, и до настоящего времени вода является главнейшим биорастворителем.

Вода - жидкая среда, которая является главным компонентом живого организма, обеспечивающая его жизненно важные физико-химические процессы: осмотическое давление, величину pH, минеральный состав. Вода составляет в среднем 65% общей массы тела взрослого животного и более 70% новорожденного. Более половины количества этой воды находится внутри клеток организма. Учитывая очень малую молекулярную массу воды, рассчитано, что около 99% всех молекул в клетке являются молекулами воды (Бохински Р., 1987).

Высокая теплоемкость воды (требуется 1 кал на нагревание 1 г воды на 1°С) позволяет организму поглощать значительное количество тепла без существенного повышения внутренней температуры. За счет высокой теплоты испарения воды (540 кал/г) организм рассеивает часть тепловой энергии, избегая перегрева.

Для молекул воды характерна сильная поляризация. В молекуле воды каждый атом водорода образует электронную пару с центральным атомом кислорода. Поэтому молекула воды имеет два постоянных диполя, так как высокая электронная плотность вблизи кислорода придает ему отрицательный заряд, тогда как каждый атом водорода характеризуется пониженной электронной плотностью и несет частичный положительный заряд. В результате возникают электростатические связи между атомом кислорода одной молекулы воды и водородом другой молекулы, получившие название водородных связей. Эта структура воды объясняет ее высокие значения теплоты испарения и температуры кипения.

Водородные связи сравнительно слабые. Их энергия диссоциации (энергия разрыва связи) в жидкой воде равна 23 кДж/моль, по сравнению с 470 кДж для ковалентной связи О-Н в молекуле воды. Время существования водородной связи составляет от 1 до 20 пикосекунд (1 пикосекунда = 1(Г 12 с). Однако водородные связи не являются уникальными для воды. Они могут возникать и между атомом водорода и азота в других структурах.

В состоянии льда каждая молекула воды образует максимально четыре водородные связи, формируя кристаллическую решетку. Напротив, в жидкой воде при комнатной температуре каждая молекула воды имеет водородные связи в среднем с 3-4 другими молекулами воды. Эта кристаллическая решетка льда делает его менее плотным, чем жидкая вода. Поэтому лед плавает на поверхности жидкой воды, оберегая ее от замерзания.

Таким образом, водородные связи между молекулами воды обеспечивают связующие силы, которые сохраняют воду в форме жидкости при комнатной температуре и трансформируют молекулы в кристаллы льда. Отметим, что, помимо водородных связей, для биомолекул характерными являются другие типы нековалентных связей: ионные, гидрофобные, вандерва- альсовы силы, которые индивидуально являются слабыми, но совместно оказывают сильное влияние на структуры белков, нуклеиновых кислот, полисахариды и мембраны клеток.

Молекулы воды и продукты их ионизации (Н + и ОН) оказывают выраженное влияние на структуры и свойства компонентов клеток, включая нуклеиновые кислоты, белки, жиры. Помимо стабилизации структуры белков и нуклеиновых кислот, водородные связи участвуют в биохимической экспрессии генов.

Как основа внутренней среды клеток и тканей, вода определяет их химическую активность, являясь уникальным растворителем различных веществ. Вода повышает устойчивость коллоидных систем, участвует в многочисленных реакциях гидролиза и гидрирования в процессах окисления. Вода поступает в организм с кормами и питьевой водой.

Многие метаболические реакции в тканях приводят к образованию воды, которая получила название эндогенной (8-12% от общего количества жидкости организма). Источниками эндогенной воды организма в первую очередь служат жиры, углеводы, белки. Так окисление 1 г жиров, углеводов и белков приводит к образованию 1,07; 0,55 и 0,41 г воды соответственно. Поэтому животные в условиях пустыни могут обходиться какое-то время без приема воды (верблюды даже достаточно долго). Собака погибает без приема воды через 10 дней, а без кормов - через несколько месяцев. Потеря 15-20% воды организмом влечет за собой смерть животного.

Низкая вязкость воды определяет постоянное перераспределение жидкости внутри органов и тканей организма. Вода поступает в желудочно-кишечный тракт, а затем почти все количество этой воды всасывается обратно в кровь.

Транспорт воды через клеточные мембраны осуществляется быстро: спустя 30-60 мин после приема воды животным наступает новое осмотическое равновесие между внеклеточной и внутриклеточной жидкостью тканей. Объем внеклеточной жидкости имеет большое влияние на кровяное давление; увеличение или уменьшение объема внеклеточной жидкости приводит к нарушениям циркуляции крови.

Повышение количества воды в тканях (гипергидрия) имеет место при положительном водном балансе (избыток поступления воды при нарушении регуляции водно-солевого обмена). Гипергидрия приводит к скоплению жидкости в тканях (отеки). Обезвоживание организма отмечают при недостатке питьевой воды или при избыточности потери жидкости (диарея, кровотечение, усиленное потоотделение, гипервентиляция легких). Потеря воды животным происходит за счет поверхности тела, системы пищеварения, дыхания, мочевого тракта, молока у лактирующих животных.

Обмен воды между кровью и тканями происходит за счет разности гидростатического давления в артериальной и венозной кровеносной системе, а также и за счет разности онкоти- ческого давления в крови и тканях. Вазопрессин, гормон задней доли гипофиза, удерживает воду в организме за счет обратного всасывания ее в почечных канальцах. Альдостерон, гормон коры надпочечников, обеспечивает задержку натрия в тканях, а вместе с ним сохраняется вода. Потребность животного в воде составляет в среднем 35-40 г на кг массы тела в сутки.

Отметим, что химические вещества в организме животного находятся в ионизированной форме, в виде ионов. Ионы, в зависимости от знака заряда, относятся к анионам (отрицательно заряженный ион) или к катионам (положительно заряженный ион). Элементы, которые диссоциируют в воде, образуя анионы и катионы, классифицируются как электролиты. Соли щелочных металлов (NaCl, КС1, NaHC0 3), соли органических кислот (лактат натрия, например) при растворении в воде диссоциируют полностью и являются электролитами. Легко растворяющиеся в воде сахара и спирты не диссоциируют в воде и не несут заряда, поэтому рассматриваются как неэлектролиты. Сумма анионов и катионов в тканях организма в целом одинакова.

Ионы диссоциирующих веществ, обладая зарядом, ориентируются вокруг диполей воды. Вокруг катионов диполи воды располагаются своими отрицательными зарядами, а анионы окружаются положительными зарядами воды. При этом возникает явление электростатической гидратации. По причине гидратации эта часть воды в тканях находится в связанном состоянии. Другая часть воды связана с различными клеточными органеллами, составляя так называемую иммобильную воду.

Ткани организма включают 20 обязательных из всех природных химических элементов. Углерод, кислород, водород, азот, сера являются незаменимыми компонентами биомолекул, из которых по массе преобладает кислород.

Химические элементы в организме формируют соли (минералы) и входят в состав биологически активных молекул. Биомолекулы имеют низкую молекулярную массу (30-1500) или являются макромолекулами (белки, нуклеиновые кислоты, гликоген), молекулярные массы которых составляют миллионы единиц. Отдельные химические элементы (Na, К, Са, S, Р, С1) составляют в тканях около 10 " 2 % и более (макроэлементы), тогда как другие (Fe, Со, Си, Zn, J, Se, Ni, Мо), например, присутствуют в значительно меньших количествах - 10" 3 -10~ 6 % (микроэлементы). В организме животного минеральные вещества составляют 1-3% от общей массы тела и распределяются чрезвычайно неравномерно. В отдельных органах содержание микроэлементов может быть значительным, например йод в щитовидной железе.

После абсорбции минералов в большей мере в тонком кишечнике они поступают в печень, где некоторые из них депонируются, а другие распределяются по различным органам и тканям организма. Выделяются минеральные вещества из организма главным образом в составе мочи и каловых масс.

Обмен ионами между клетками и межклеточной жидкостью происходит на основе как пассивного, так и активного транспорта через полупроницаемые мембраны. Возникающее осмотическое давление обусловливает тургор клеток, поддерживая эластичность тканей и форму органов. Активный транспорт ионов или передвижение их в среду с меньшей концентрацией (против осмотического градиента) требует затрат энергии молекул АТФ. Активный транспорт ионов характерен для ионов Na + , Са 2 ~ и сопровождается усилением окислительных процессов, генерирующих АТФ.

Роль минеральных веществ заключается в поддержании определенного осмотического давления плазмы крови, кислотно-щелочного равновесия, проницаемости различных мембран, регуляции активности ферментов, сохранении структур биомолекул, включая белки и нуклеиновые кислоты, в поддержании моторной и секреторной функции пищеварительного тракта. Поэтому при многих нарушениях функций пищеварительного тракта животного рекомендуются в качестве лечебных средств различные составы минеральных солей.

Важным является как абсолютное количество, так и должное соотношение в тканях между определенными химическими элементами. В частности, оптимальное соотношение в тканях Na:K:Cl составляет в норме 100:1:1,5. Выраженной особенностью является «асимметрия» в распределении ионов солей между клеткой и внеклеточной средой тканей организма.