21.10.2019

Всички свойства на логаритмите. Логаритъм. Дефиниция на двоичен логаритъм, натурален логаритъм, десетичен логаритъм; експоненциална функция exp(x), число e. Дневник, Ln. Формули за степени и логаритми. Използване на логаритъм, децибели


Поддържането на вашата поверителност е важно за нас. Поради тази причина разработихме Политика за поверителност, която описва как използваме и съхраняваме вашата информация. Моля, прегледайте нашите практики за поверителност и ни уведомете, ако имате въпроси.

Събиране и използване на лична информация

Личната информация се отнася до данни, които могат да бъдат използвани за идентифициране определено лицеили връзка с него.

Може да бъдете помолени да предоставите вашата лична информация по всяко време, когато се свържете с нас.

По-долу са дадени някои примери за видовете лична информация, която можем да събираме и как можем да използваме тази информация.

Каква лична информация събираме:

  • Когато подадете заявление на сайта, може да съберем различна информация, включително вашето име, телефонен номер, имейл адрес и др.

Как използваме вашата лична информация:

  • Личната информация, която събираме, ни позволява да се свържем с вас с уникални оферти, промоции и други събития и предстоящи събития.
  • От време на време може да използваме вашата лична информация, за да изпращаме важни известия и съобщения.
  • Може също така да използваме лична информация за вътрешни цели, като например извършване на одити, анализ на данни и различни изследвания, за да подобрим услугите, които предоставяме, и да ви предоставим препоръки относно нашите услуги.
  • Ако участвате в теглене на награди, конкурс или подобна промоция, ние може да използваме предоставената от вас информация за администриране на такива програми.

Разкриване на информация на трети лица

Ние не разкриваме информацията, получена от вас, на трети страни.

Изключения:

  • При необходимост - в съответствие със закона, съдебната процедура, съдебното производство и/или въз основа на публични искания или искания от правителствени агенциина територията на Руската федерация - разкрийте вашата лична информация. Може също така да разкрием информация за вас, ако преценим, че такова разкриване е необходимо или подходящо за целите на сигурността, правоприлагането или други обществено значими цели.
  • В случай на реорганизация, сливане или продажба, можем да прехвърлим личната информация, която събираме, на съответната трета страна приемник.

Защита на личната информация

Ние вземаме предпазни мерки – включително административни, технически и физически – за да защитим вашата лична информация от загуба, кражба и злоупотреба, както и неоторизиран достъп, разкриване, промяна и унищожаване.

Зачитане на вашата поверителност на фирмено ниво

За да гарантираме, че вашата лична информация е защитена, ние съобщаваме стандартите за поверителност и сигурност на нашите служители и стриктно прилагаме практиките за поверителност.

Логаритмични изрази, решаване на примери. В тази статия ще разгледаме проблеми, свързани с решаването на логаритми. Задачите поставят въпроса за намиране на значението на израз. Трябва да се отбележи, че понятието логаритъм се използва в много задачи и разбирането на значението му е изключително важно. Що се отнася до Единния държавен изпит, логаритъмът се използва при решаване на уравнения, в приложни задачи, а също и в задачи, свързани с изучаването на функции.

Нека дадем примери, за да разберем самото значение на логаритъма:


Основи логаритмично тъждество:

Свойства на логаритмите, които винаги трябва да се запомнят:

*Логаритъм на произведението равно на суматалогаритми от фактори.

* * *

*Логаритъм на частното (фракция) равно на разликаталогаритми от фактори.

* * *

*Логаритъмът на степенна степен е равен на произведението на степенната степен и логаритъма на нейната основа.

* * *

*Преминаване към нова основа

* * *

Още имоти:

* * *

Изчисляването на логаритми е тясно свързано с използването на свойствата на показателите.

Нека изброим някои от тях:

Същността на това свойство е, че когато числителят се прехвърли в знаменателя и обратно, знакът на степента се променя на противоположния. Например:

Следствие от това свойство:

* * *

При повишаване на степен на степен основата остава същата, но показателите се умножават.

* * *

Както видяхте, самата концепция за логаритъм е проста. Основното е, че имате нужда от добра практика, която ви дава определено умение. Разбира се, изисква се познаване на формулите. Ако умението за преобразуване на елементарни логаритми не е развито, тогава при решаване на прости задачи лесно можете да направите грешка.

Практикувайте, решавайте първо най-простите примери от курса по математика, след това преминете към по-сложните. В бъдеще определено ще покажа как се решават „грозни“ логаритми, те няма да се появят на Единния държавен изпит, но представляват интерес, не ги пропускайте!

Това е всичко! Късмет!

С уважение, Александър Крутицких

P.S: Ще съм благодарен, ако ми разкажете за сайта в социалните мрежи.

Логаритъмът на положително число b при основа a (a>0, a не е равно на 1) е число c, такова че a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       

Имайте предвид, че логаритъма на неположително число е недефиниран. Освен това основата на логаритъма трябва да е положително число, което не е равно на 1. Например, ако повдигнем на квадрат -2, получаваме числото 4, но това не означава, че логаритъма при основа -2 от 4 е равно на 2.

Основно логаритмично тъждество

a log a b = b (a > 0, a ≠ 1) (2)

Важно е обхватът на дефиницията на дясната и лявата страна на тази формула да е различен. Лява странаопределени само за b>0, a>0 и a ≠ 1. Дясна часте дефинирано за всяко b, но изобщо не зависи от a. По този начин прилагането на основното логаритмично „тъждество” при решаване на уравнения и неравенства може да доведе до промяна в OD.

Две очевидни следствия от дефиницията на логаритъм

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Наистина, при повишаване на числото a на първа степен получаваме същото число, а при повдигане на нулева степен получаваме единица.

Логаритъм от произведението и логаритъм от частното

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Бих искал да предупредя учениците да не прилагат необмислено тези формули при решаването логаритмични уравненияи неравенства. Когато ги използвате „отляво надясно“, ODZ се стеснява, а когато се движите от сумата или разликата на логаритмите към логаритъма на произведението или частното, ODZ се разширява.

Наистина, изразът log a (f (x) g (x)) е дефиниран в два случая: когато и двете функции са строго положителни или когато f(x) и g(x) са и двете по-малки от нула.

Преобразувайки този израз в сумата log a f (x) + log a g (x), ние сме принудени да се ограничим само до случая, когато f(x)>0 и g(x)>0. Има стесняване на областта приемливи стойности, а това е категорично недопустимо, защото може да доведе до загуба на решения. Подобен проблем съществува и за формула (6).

Степента може да бъде извадена от знака на логаритъма

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

И отново искам да призова за точност. Разгледайте следния пример:

Log a (f (x) 2 = 2 log a f (x)

Лявата страна на равенството очевидно е дефинирана за всички стойности на f(x) с изключение на нула. Дясната страна е само за f(x)>0! Като извадим степента от логаритъма, ние отново стесняваме ODZ. Обратната процедура води до разширяване на обхвата на допустимите стойности. Всички тези забележки се отнасят не само за степен 2, но и за всяка четна степен.

Формула за преминаване към нова основа

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Че рядък случай, когато ОДЗ не се променя по време на трансформацията. Ако сте избрали разумно база c (положителна и не равна на 1), формулата за преминаване към нова база е напълно безопасна.

Ако изберем числото b като нова основа c, получаваме важно специален случайформули (8):

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Няколко прости примера с логаритми

Пример 1. Изчислете: log2 + log50.
Решение. log2 + log50 = log100 = 2. Използвахме формулата за сумата от логаритми (5) и дефиницията на десетичния логаритъм.


Пример 2. Изчислете: lg125/lg5.
Решение. log125/log5 = log 5 125 = 3. Използвахме формулата за преместване към нова база (8).

Таблица с формули, свързани с логаритми

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

Логаритъм на число н базиран на А наречен експонента х , към който трябва да изградите А за да получите номера н

При условие че
,
,

От определението за логаритъм следва, че
, т.е.
- това равенство е основното логаритмично тъждество.

Логаритмите при основа 10 се наричат ​​десетични логаритми. Вместо
пишете
.

Логаритми към основата д се наричат ​​естествени и се обозначават
.

Основни свойства на логаритмите.

    Логаритъмът от едно е равен на нула за всяка основа.

    Логаритъмът на произведението е равен на сумата от логаритмите на факторите.

3) Логаритъмът на частното е равен на разликата на логаритмите


Фактор
наречен модул на преход от логаритмите към основата а до логаритми в основата b .

Използвайки свойства 2-5, често е възможно да се намали логаритъма на сложен израз до резултата от прости аритметични операции върху логаритми.

Например,

Такива трансформации на логаритъм се наричат ​​логаритми. Трансформациите, обратни на логаритмите, се наричат ​​потенциране.

Глава 2. Елементи на висшата математика.

1. Граници

Граница на функцията
е крайно число A, ако, като xx 0 за всеки предварително определен
, има такъв номер
че веднага щом
, Че
.

Функция, която има граница, се различава от нея с безкрайно малка сума:
, където- б.м.в., т.е.
.

Пример. Помислете за функцията
.

При стремеж
, функция г клони към нула:

1.1. Основни теореми за границите.

    Границата на постоянна стойност е равна на тази постоянна стойност

.

    Границата на сумата (разликата) на краен брой функции е равна на сумата (разликата) на границите на тези функции.

    Границата на произведението на краен брой функции е равна на произведението на границите на тези функции.

    Границата на частното на две функции е равна на частното на границите на тези функции, ако границата на знаменателя не е нула.

Прекрасни граници

,
, Където

1.2. Примери за изчисляване на лимити

Не всички лимити обаче се изчисляват толкова лесно. По-често изчисляването на лимита се свежда до разкриване на несигурност от вида: или .

.

2. Производна на функция

Нека имаме функция
, непрекъснат на сегмента
.

Аргумент получи известно увеличение
. Тогава функцията ще получи увеличение
.

Стойност на аргумента съответства на стойността на функцията
.

Стойност на аргумента
съответства на стойността на функцията.

Следователно, .

Нека намерим границата на това отношение при
. Ако тази граница съществува, тогава тя се нарича производна на дадената функция.

Определение 3 Производна на дадена функция
по аргумент се нарича границата на съотношението на увеличението на функция към увеличението на аргумента, когато увеличението на аргумента произволно клони към нула.

Производна на функция
може да се обозначи, както следва:

; ; ; .

Определение 4Операцията за намиране на производната на функция се нарича диференциация.

2.1. Механично значение на производната.

Нека разгледаме праволинейното движение на някакво твърдо тяло или материална точка.

Нека в някакъв момент от времето подвижна точка
беше на разстояние от изходна позиция
.

След известен период от време
тя се премести на разстояние
. Поведение =- Средната скоростматериална точка
. Нека намерим границата на това отношение, като вземем предвид това
.

Следователно определянето на моментната скорост на движение на материална точка се свежда до намиране на производната на пътя по отношение на времето.

2.2. Геометрична стойност на производната

Нека имаме графично дефинирана функция
.

Ориз. 1. Геометричен смисъл на производната

Ако
, след това точка
, ще се движи по кривата, приближавайки се до точката
.

Следователно
, т.е. стойността на производната за дадена стойност на аргумента числено равен на тангенса на ъгъла, образуван от допирателната в дадена точка с положителната посока на оста
.

2.3. Таблица с основни формули за диференциране.

Силова функция

Експоненциална функция

Логаритмична функция

Тригонометрична функция

Обратна тригонометрична функция

2.4. Правила за диференциране.

Производно на

Производна на сумата (разликата) на функциите


Производна на произведението на две функции


Производна на частното на две функции


2.5. Производно на сложна функция.

Нека функцията е дадена
така че да може да бъде представен във формата

И
, където променливата тогава е междинен аргумент

Производната на сложна функция е равна на произведението на производната на дадената функция по отношение на междинния аргумент и производната на междинния аргумент по отношение на x.

Пример 1.

Пример 2.

3. Диференциална функция.

Нека има
, диференцируеми на някакъв интервал
остави при тази функция има производна

,

тогава можем да пишем

(1),

Където - безкрайно малко количество,

откога

Умножавайки всички членове на равенство (1) по
ние имаме:

Където
- б.м.в. по-висок ред.

величина
наречен диференциал на функцията
и е обозначен

.

3.1. Геометрична стойност на диференциала.

Нека функцията е дадена
.

Фиг.2. Геометрично значение на диференциала.

.

Очевидно диференциалът на функцията
е равно на увеличението на ординатата на допирателната в дадена точка.

3.2. Производни и диференциали от различен порядък.

Ако има
, Тогава
се нарича първа производна.

Производната на първата производна се нарича производна от втори ред и се записва
.

Производна от n-ти ред на функцията
се нарича производна от (n-1) ред и се записва:

.

Диференциалът на диференциала на функция се нарича втори диференциал или диференциал от втори ред.

.

.

3.3 Решаване на биологични проблеми с помощта на диференциация.

Задача 1. Проучванията показват, че растежът на колония от микроорганизми се подчинява на закона
, Където н – брой микроорганизми (в хиляди), T – време (дни).

б) Ще се увеличи ли или ще намалее населението на колонията през този период?

Отговор. Размерът на колонията ще се увеличи.

Задача 2. Водата в езерото периодично се изследва за съдържанието на патогенни бактерии. През T дни след изследването концентрацията на бактерии се определя от съотношението

.

Кога езерото ще има минимална концентрация на бактерии и ще може ли да се плува в него?

Решение: Функция достига max или min, когато нейната производна е нула.

,

Нека определим максимума или минимума ще бъде след 6 дни. За да направим това, нека вземем втората производна.


Отговор: След 6 дни ще има минимална концентрация на бактерии.

основни свойства.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

идентични основания

Log6 4 + log6 9.

Сега нека усложним малко задачата.

Примери за решаване на логаритми

Ами ако основата или аргументът на логаритъм е степен? Тогава показателят на тази степен може да бъде изваден от знака на логаритъма съгласно следните правила:

Разбира се, всички тези правила имат смисъл, ако се спазва ODZ на логаритъма: a > 0, a ≠ 1, x >

Задача. Намерете значението на израза:

Преход към нова основа

Нека е даден логаритъм logax. Тогава за всяко число c, такова че c > 0 и c ≠ 1, равенството е вярно:

Задача. Намерете значението на израза:

Вижте също:


Основни свойства на логаритъма

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Показателят е 2,718281828…. За да запомните показателя, можете да изучите правилото: показателят е равен на 2,7 и два пъти годината на раждане на Лев Николаевич Толстой.

Основни свойства на логаритмите

Познавайки това правило, вие ще знаете и точна стойностизложители и датата на раждане на Лев Толстой.


Примери за логаритми

Логаритмични изрази

Пример 1.
А). x=10ac^2 (a>0,c>0).

Използвайки свойства 3.5, изчисляваме

2.

3.

4. Където .



Пример 2. Намерете x if


Пример 3. Нека е дадена стойността на логаритмите

Изчислете log(x), ако




Основни свойства на логаритмите

Логаритмите, като всички числа, могат да се събират, изваждат и трансформират по всякакъв начин. Но тъй като логаритмите не са съвсем обикновени числа, тук има правила, които се наричат основни свойства.

Определено трябва да знаете тези правила - без тях не може да се реши нито една сериозна логаритмична задача. Освен това има много малко от тях - можете да научите всичко за един ден. Така че да започваме.

Събиране и изваждане на логаритми

Помислете за два логаритма с еднакви основи: logax и logay. След това те могат да се събират и изваждат и:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

И така, сумата от логаритми е равна на логаритъма от произведението, а разликата е равна на логаритъма от частното. Забележка: ключов моментТук - идентични основания. Ако причините са различни, тези правила не работят!

Тези формули ще ви помогнат да изчислите логаритмичен израздори когато отделните му части не се броят (вижте урока „Какво е логаритъм“). Разгледайте примерите и вижте:

Тъй като логаритмите имат еднакви основи, ние използваме формулата за сумата:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Задача. Намерете стойността на израза: log2 48 − log2 3.

Базите са еднакви, използваме формулата за разликата:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Задача. Намерете стойността на израза: log3 135 − log3 5.

Отново основите са същите, така че имаме:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Както можете да видите, оригиналните изрази са съставени от „лоши“ логаритми, които не се изчисляват отделно. Но след трансформациите се получават напълно нормални числа. Много от тях са изградени върху този факт тестови работи. Да, изрази, подобни на тестове, се предлагат напълно сериозно (понякога почти без промени) на Единния държавен изпит.

Извличане на показателя от логаритъма

Лесно се вижда, че последното правило следва първите две. Но все пак е по-добре да го запомните - в някои случаи това значително ще намали количеството на изчисленията.

Разбира се, всички тези правила имат смисъл, ако се спазва ODZ на логаритъма: a > 0, a ≠ 1, x > 0. И още нещо: научете се да прилагате всички формули не само отляво надясно, но и обратно , т.е. Можете да въведете числата преди знака за логаритъм в самия логаритъм. Това е, което най-често се изисква.

Задача. Намерете стойността на израза: log7 496.

Нека се отървем от степента в аргумента, използвайки първата формула:
log7 496 = 6 log7 49 = 6 2 = 12

Задача. Намерете значението на израза:

Обърнете внимание, че знаменателят съдържа логаритъм, чиято основа и аргумент са точни степени: 16 = 24; 49 = 72. Имаме:

Мисля, че последният пример изисква известно пояснение. Къде изчезнаха логаритмите? До последния момент работим само със знаменателя.

Логаритмични формули. Логаритми примерни решения.

Представихме основата и аргумента на логаритъма, който стои там под формата на степени и извадихме показателите - получихме "триетажна" дроб.

Сега нека разгледаме основната фракция. Числителят и знаменателят съдържат едно и също число: log2 7. Тъй като log2 7 ≠ 0, можем да намалим дробта - 2/4 ще остане в знаменателя. Според правилата на аритметиката четворката може да се прехвърли в числителя, което и беше направено. Резултатът беше отговорът: 2.

Преход към нова основа

Говорейки за правилата за събиране и изваждане на логаритми, специално подчертах, че те работят само с еднакви основи. Ами ако причините са различни? Ами ако не са точни степени на едно и също число?

Формулите за преход към нова основа идват на помощ. Нека ги формулираме под формата на теорема:

Нека е даден логаритъм logax. Тогава за всяко число c, такова че c > 0 и c ≠ 1, равенството е вярно:

По-специално, ако зададем c = x, получаваме:

От втората формула следва, че основата и аргументът на логаритъма могат да се разменят, но в този случай целият израз се „обръща“, т.е. логаритъма се появява в знаменателя.

Тези формули рядко се срещат в конвенционалните числови изрази. Възможно е да се оцени колко са удобни само при решаване на логаритмични уравнения и неравенства.

Има обаче проблеми, които изобщо не могат да бъдат решени, освен чрез преминаване към нова основа. Нека да разгледаме няколко от тях:

Задача. Намерете стойността на израза: log5 16 log2 25.

Обърнете внимание, че аргументите на двата логаритма съдържат точни степени. Нека извадим индикаторите: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Сега нека "обърнем" втория логаритъм:

Тъй като продуктът не се променя при пренареждане на множителите, ние спокойно умножихме четири и две и след това се справихме с логаритмите.

Задача. Намерете стойността на израза: log9 100 lg 3.

Основата и аргументът на първия логаритъм са точни степени. Нека запишем това и да се отървем от индикаторите:

Сега нека се отървем от десетичния логаритъм, като преминем към нова основа:

Основно логаритмично тъждество

Често в процеса на решаване е необходимо да се представи число като логаритъм на дадена основа. В този случай ще ни помогнат следните формули:

В първия случай числото n става експонента в аргумента. Числото n може да бъде абсолютно всичко, защото е само логаритъм.

Втората формула всъщност е перифразирана дефиниция. Така се казва: .

Всъщност, какво се случва, ако числото b се повдигне на такава степен, че числото b на тази степен дава числото a? Точно така: резултатът е същото число a. Прочетете внимателно този параграф отново - много хора се забиват в него.

Подобно на формулите за преминаване към нова база, основното логаритмично тъждество понякога е единственото възможно решение.

Задача. Намерете значението на израза:

Обърнете внимание, че log25 64 = log5 8 - просто взе квадрат от основата и аргумента на логаритъма. Разглеждане на правилата за умножение на степени с същата основа, получаваме:

Ако някой не знае, това беше истинска задача от Единния държавен изпит :)

Логаритмична единица и логаритмична нула

В заключение ще дам две тъждества, които трудно могат да бъдат наречени свойства - по-скоро те са следствия от дефиницията на логаритъма. Те постоянно се появяват в проблеми и, изненадващо, създават проблеми дори за „напреднали“ ученици.

  1. logaa = 1 е. Запомнете веднъж завинаги: логаритъмът при всяка основа а на самата тази основа е равен на едно.
  2. log 1 = 0 е. Основата a може да бъде всякаква, но ако аргументът съдържа единица, логаритъма е равен на нула! Тъй като a0 = 1 е пряко следствие от определението.

Това са всички имоти. Не забравяйте да се упражнявате да ги прилагате на практика! Изтеглете измамника в началото на урока, разпечатайте го и решете задачите.

Вижте също:

Логаритъмът от b при основа а означава израза. Да се ​​изчисли логаритъм означава да се намери степен x (), при която равенството е изпълнено

Основни свойства на логаритъма

Необходимо е да се знаят горните свойства, тъй като почти всички задачи и примери, свързани с логаритми, се решават на тяхна основа. Останалите екзотични свойства могат да бъдат извлечени чрез математически манипулации с тези формули

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Когато изчислявате формулата за сбора и разликата на логаритмите (3.4), срещате доста често. Останалите са малко сложни, но в редица задачи са незаменими за опростяване на сложни изрази и изчисляване на техните стойности.

Често срещани случаи на логаритми

Някои от често срещаните логаритми са тези, при които основата е дори десет, експоненциална или две.
Логаритъмът по основа десет обикновено се нарича десетичен логаритъм и се означава просто с lg(x).

От записа става ясно, че основното не е написано в записа. Например

Натурален логаритъм е логаритъм, чиято основа е показател (обозначен с ln(x)).

Показателят е 2,718281828…. За да запомните показателя, можете да изучите правилото: показателят е равен на 2,7 и два пъти годината на раждане на Лев Николаевич Толстой. Познавайки това правило, вие ще знаете както точната стойност на експонента, така и датата на раждане на Лев Толстой.

И друг важен логаритъм при основа две е означен с

Производната на логаритъма на функция е равна на единица, разделена на променливата

Интегралният или противопроизводният логаритъм се определя от връзката

Даденият материал е достатъчен, за да решите широк клас задачи, свързани с логаритми и логаритми. За да ви помогна да разберете материала, ще дам само няколко общи примера от училищна програмаи университети.

Примери за логаритми

Логаритмични изрази

Пример 1.
А). x=10ac^2 (a>0,c>0).

Използвайки свойства 3.5, изчисляваме

2.
По свойството разлика на логаритмите имаме

3.
Използвайки свойства 3.5 намираме

4. Където .

По външния вид сложен изразизползването на редица правила е опростено да се формира

Намиране на логаритмични стойности

Пример 2. Намерете x if

Решение. За изчисление прилагаме към последния термин 5 и 13 свойства

Записваме го и скърбим

Тъй като основите са равни, приравняваме изразите

Логаритми. Първо ниво.

Нека е дадена стойността на логаритмите

Изчислете log(x), ако

Решение: Нека вземем логаритъм на променливата, за да запишем логаритъма чрез сумата от нейните членове


Това е само началото на нашето запознаване с логаритмите и техните свойства. Практикувайте изчисления, обогатете практическите си умения - скоро ще имате нужда от знанията, които придобивате, за решаване на логаритмични уравнения. След като изучихме основните методи за решаване на такива уравнения, ще разширим знанията ви към друга също толкова важна тема - логаритмичните неравенства...

Основни свойства на логаритмите

Логаритмите, като всички числа, могат да се събират, изваждат и трансформират по всякакъв начин. Но тъй като логаритмите не са съвсем обикновени числа, тук има правила, които се наричат основни свойства.

Определено трябва да знаете тези правила - без тях не може да се реши нито една сериозна логаритмична задача. Освен това има много малко от тях - можете да научите всичко за един ден. Така че да започваме.

Събиране и изваждане на логаритми

Помислете за два логаритма с еднакви основи: logax и logay. След това те могат да се събират и изваждат и:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

И така, сумата от логаритми е равна на логаритъма от произведението, а разликата е равна на логаритъма от частното. Моля, обърнете внимание: ключовият момент тук е идентични основания. Ако причините са различни, тези правила не работят!

Тези формули ще ви помогнат да изчислите логаритмичен израз, дори когато отделните му части не се вземат предвид (вижте урока „Какво е логаритъм“). Разгледайте примерите и вижте:

Задача. Намерете стойността на израза: log6 4 + log6 9.

Тъй като логаритмите имат еднакви основи, ние използваме формулата за сумата:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Задача. Намерете стойността на израза: log2 48 − log2 3.

Базите са еднакви, използваме формулата за разликата:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Задача. Намерете стойността на израза: log3 135 − log3 5.

Отново основите са същите, така че имаме:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Както можете да видите, оригиналните изрази са съставени от „лоши“ логаритми, които не се изчисляват отделно. Но след трансформациите се получават напълно нормални числа. Много тестове се основават на този факт. Да, изрази, подобни на тестове, се предлагат напълно сериозно (понякога почти без промени) на Единния държавен изпит.

Извличане на показателя от логаритъма

Сега нека усложним малко задачата. Ами ако основата или аргументът на логаритъм е степен? Тогава показателят на тази степен може да бъде изваден от знака на логаритъма съгласно следните правила:

Лесно се вижда, че последното правило следва първите две. Но все пак е по-добре да го запомните - в някои случаи това значително ще намали количеството на изчисленията.

Разбира се, всички тези правила имат смисъл, ако се спазва ODZ на логаритъма: a > 0, a ≠ 1, x > 0. И още нещо: научете се да прилагате всички формули не само отляво надясно, но и обратно , т.е. Можете да въведете числата преди знака за логаритъм в самия логаритъм.

Как се решават логаритми

Това е, което най-често се изисква.

Задача. Намерете стойността на израза: log7 496.

Нека се отървем от степента в аргумента, използвайки първата формула:
log7 496 = 6 log7 49 = 6 2 = 12

Задача. Намерете значението на израза:

Обърнете внимание, че знаменателят съдържа логаритъм, чиято основа и аргумент са точни степени: 16 = 24; 49 = 72. Имаме:

Мисля, че последният пример изисква известно пояснение. Къде изчезнаха логаритмите? До последния момент работим само със знаменателя. Представихме основата и аргумента на логаритъма, който стои там под формата на степени и извадихме показателите - получихме "триетажна" дроб.

Сега нека разгледаме основната фракция. Числителят и знаменателят съдържат едно и също число: log2 7. Тъй като log2 7 ≠ 0, можем да намалим дробта - 2/4 ще остане в знаменателя. Според правилата на аритметиката четворката може да се прехвърли в числителя, което и беше направено. Резултатът беше отговорът: 2.

Преход към нова основа

Говорейки за правилата за събиране и изваждане на логаритми, специално подчертах, че те работят само с еднакви основи. Ами ако причините са различни? Ами ако не са точни степени на едно и също число?

Формулите за преход към нова основа идват на помощ. Нека ги формулираме под формата на теорема:

Нека е даден логаритъм logax. Тогава за всяко число c, такова че c > 0 и c ≠ 1, равенството е вярно:

По-специално, ако зададем c = x, получаваме:

От втората формула следва, че основата и аргументът на логаритъма могат да се разменят, но в този случай целият израз се „обръща“, т.е. логаритъма се появява в знаменателя.

Тези формули рядко се срещат в обикновени числови изрази. Възможно е да се оцени колко са удобни само при решаване на логаритмични уравнения и неравенства.

Има обаче проблеми, които изобщо не могат да бъдат решени, освен чрез преминаване към нова основа. Нека да разгледаме няколко от тях:

Задача. Намерете стойността на израза: log5 16 log2 25.

Обърнете внимание, че аргументите на двата логаритма съдържат точни степени. Нека извадим индикаторите: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Сега нека "обърнем" втория логаритъм:

Тъй като продуктът не се променя при пренареждане на множителите, ние спокойно умножихме четири и две и след това се справихме с логаритмите.

Задача. Намерете стойността на израза: log9 100 lg 3.

Основата и аргументът на първия логаритъм са точни степени. Нека запишем това и да се отървем от индикаторите:

Сега нека се отървем от десетичния логаритъм, като преминем към нова основа:

Основно логаритмично тъждество

Често в процеса на решаване е необходимо да се представи число като логаритъм на дадена основа. В този случай ще ни помогнат следните формули:

В първия случай числото n става експонента в аргумента. Числото n може да бъде абсолютно всичко, защото е само логаритъм.

Втората формула всъщност е перифразирана дефиниция. Така се казва: .

Всъщност, какво се случва, ако числото b се повдигне на такава степен, че числото b на тази степен дава числото a? Точно така: резултатът е същото число a. Прочетете внимателно този параграф отново - много хора се забиват в него.

Подобно на формулите за преминаване към нова база, основното логаритмично тъждество понякога е единственото възможно решение.

Задача. Намерете значението на израза:

Обърнете внимание, че log25 64 = log5 8 - просто взе квадрат от основата и аргумента на логаритъма. Като вземем предвид правилата за умножение на степени с една и съща основа, получаваме:

Ако някой не знае, това беше истинска задача от Единния държавен изпит :)

Логаритмична единица и логаритмична нула

В заключение ще дам две тъждества, които трудно могат да бъдат наречени свойства - по-скоро те са следствия от дефиницията на логаритъма. Те постоянно се появяват в проблеми и, изненадващо, създават проблеми дори за „напреднали“ ученици.

  1. logaa = 1 е. Запомнете веднъж завинаги: логаритъмът при всяка основа а на самата тази основа е равен на едно.
  2. log 1 = 0 е. Основата a може да бъде всякаква, но ако аргументът съдържа единица, логаритъма е равен на нула! Тъй като a0 = 1 е пряко следствие от определението.

Това са всички имоти. Не забравяйте да се упражнявате да ги прилагате на практика! Изтеглете измамника в началото на урока, разпечатайте го и решете задачите.