12.10.2019

Как да изчислим производната на сложна функция. Производна на сложна функция


Комплексни производни. Логаритмична производна.
Производна на мощност експоненциална функция

Продължаваме да подобряваме нашата техника за диференциране. В този урок ще консолидираме материала, който сме покрили, ще разгледаме по-сложни производни, а също така ще се запознаем с нови техники и трикове за намиране на производна, по-специално с логаритмичната производна.

На онези читатели, които имат ниско нивоподготовка, трябва да се обърнете към статията Как да намерим производната? Примери за решения, което ще ви позволи да повишите уменията си почти от нулата. След това трябва внимателно да проучите страницата Производна на сложна функция, разберете и разрешите всичкопримерите, които дадох. Този урок логично е третият поред и след като го усвоите, вие уверено ще различавате доста сложни функции. Не е желателно да заемате позицията „Къде другаде? Да, това е достатъчно! ”, тъй като всички примери и решения са взети от реални тестовеи често се срещат в практиката.

Да започнем с повторение. На урока Производна на сложна функцияРазгледахме няколко примера с подробни коментари. В хода на изучаване на диференциално смятане и други клонове на математическия анализ ще трябва да диференцирате много често и не винаги е удобно (и не винаги е необходимо) да описвате примери в големи подробности. Затова ще се упражняваме да намираме производни устно. Най-подходящите „кандидати“ за това са производни на най-простите от сложните функции, например:

Според правилото за диференциация сложна функция :

При изучаване на други теми от матан в бъдеще най-често не се изисква такъв подробен запис; предполага се, че ученикът знае как да намира такива производни на автопилот. Нека си представим, че в 3 часа сутринта имаше a телефонно обаждане, и приятен глас попита: „Каква е производната на тангенса на две X?“ Това трябва да бъде последвано от почти мигновен и учтив отговор: .

Първият пример ще бъде незабавно предназначен за самостоятелно решение.

Пример 1

Намерете устно следните производни, в едно действие, например: . За да изпълните задачата, трябва само да използвате таблица с производни на елементарни функции(ако още не сте се сетили). Ако имате затруднения, препоръчвам ви да прочетете отново урока Производна на сложна функция.

, , ,
, , ,
, , ,

, , ,

, , ,

, , ,

, ,

Отговори в края на урока

Комплексни производни

След предварителна артилерийска подготовка, примерите с 3-4-5 влагане на функции ще бъдат по-малко страшни. Следващите два примера може да изглеждат сложни за някои, но ако ги разберете (някой ще пострада), тогава почти всичко останало в диференциалното смятане ще изглежда като детска шега.

Пример 2

Намерете производната на функция

Както вече беше отбелязано, при намиране на производната на сложна функция, на първо място, е необходимо вярноРАЗБЕРЕТЕ вашите инвестиции. В случаите, когато има съмнения, напомням полезен трик: вземаме експерименталното значение на „x“ например и се опитваме (мислено или в чернова) да заменим това значение в „ужасния израз“.

1) Първо трябва да изчислим израза, което означава, че сумата е най-дълбокото вграждане.

2) След това трябва да изчислите логаритъма:

4) След това кубирайте косинуса:

5) На петата стъпка разликата:

6) И накрая, най-външната функция е Корен квадратен:

Формула за диференциране на сложна функция ще се прилагат в обратен ред, от най-много външна функция, до най-вътрешното. Ние решаваме:

Изглежда, че няма грешки...

(1) Вземете производната на корен квадратен.

(2) Вземаме производната на разликата, използвайки правилото

(3) Производната на тройка е нула. Във втория член вземаме производната на степента (куб).

(4) Вземете производната на косинуса.

(5) Вземете производната на логаритъма.

(6) И накрая, вземаме производната на най-дълбокото вграждане.

Може да изглежда твърде трудно, но това не е най-жестокият пример. Вземете например колекцията на Кузнецов и ще оцените цялата красота и простота на анализираната производна. Забелязах, че обичат да дават подобно нещо на изпит, за да проверят дали студентът разбира как се намира производната на сложна функция или не разбира.

Следващият пример трябва да решите сами.

Пример 3

Намерете производната на функция

Съвет: Първо прилагаме правилата за линейност и правилото за диференциране на продукта

Пълно решение и отговор в края на урока.

Време е да преминем към нещо по-малко и по-хубаво.
Не е необичайно примерът да показва произведението не на две, а на три функции. Как да намерим производната на произведението на три фактора?

Пример 4

Намерете производната на функция

Първо разглеждаме, възможно ли е да превърнем произведението на три функции в произведение на две функции? Например, ако имаме два полинома в произведението, тогава можем да отворим скобите. Но в разглеждания пример всички функции са различни: степен, степен и логаритъм.

В такива случаи е необходимо последователноприложете правилото за диференциране на продукта два пъти

Номерът е, че с “y” означаваме произведението на две функции: , а с “ve” означаваме логаритъма: . Защо може да се направи това? Наистина ли е – това не е произведение на два фактора и правилото не работи?! Няма нищо сложно:

Сега остава правилото да се приложи втори път в скоби:

Можете също така да се изкривите и да поставите нещо извън скоби, но в този случай е по-добре да оставите отговора точно в тази форма - ще бъде по-лесно да се провери.

Разглежданият пример може да бъде решен по втория начин:

И двете решения са абсолютно равностойни.

Пример 5

Намерете производната на функция

Това е пример за независимо решение, в примера се решава по първия метод.

Нека да разгледаме подобни примери с дроби.

Пример 6

Намерете производната на функция

Има няколко начина, по които можете да отидете тук:

Или така:

Но решението ще бъде написано по-компактно, ако първо използваме правилото за диференциране на частното , като се вземе за целия числител:

По принцип примерът е решен и ако се остави така, няма да е грешка. Но ако имате време, винаги е препоръчително да проверите черновата, за да видите дали отговорът може да бъде опростен? Нека намалим израза на числителя до общ знаменател и да се отървем от триетажната част:

Недостатъкът на допълнителните опростявания е, че съществува риск от грешка не при намиране на производната, а при банални училищни трансформации. От друга страна, учителите често отхвърлят задачата и искат да „напомнят“ производната.

По-прост пример за самостоятелно решаване:

Пример 7

Намерете производната на функция

Продължаваме да овладяваме методите за намиране на производната и сега ще разгледаме типичен случай, когато "ужасният" логаритъм е предложен за диференциране

Пример 8

Намерете производната на функция

Тук можете да отидете по дългия път, като използвате правилото за разграничаване на сложна функция:

Но още първата стъпка веднага ви потапя в униние - трябва да вземете неприятната производна от дробна степен, а след това и от дроб.

Ето защо предикак да вземем производната на „сложен“ логаритъм, първо се опростява с помощта на добре познати училищни свойства:



! Ако имате учебна тетрадка под ръка, копирайте тези формули директно там. Ако нямате тетрадка, препишете ги на лист хартия, тъй като останалите примери от урока ще се въртят около тези формули.

Самото решение може да бъде написано по следния начин:

Нека трансформираме функцията:

Намиране на производната:

Предварителното преобразуване на самата функция значително опрости решението. По този начин, когато подобен логаритъм е предложен за диференциране, винаги е препоръчително да го „разбиете“.

А сега няколко прости примера, които можете да решите сами:

Пример 9

Намерете производната на функция

Пример 10

Намерете производната на функция

Всички трансформации и отговори са в края на урока.

Логаритмична производна

Ако производното на логаритмите е толкова сладка музика, тогава възниква въпросът: възможно ли е в някои случаи логаритъмът да се организира изкуствено? Мога! И дори необходимо.

Пример 11

Намерете производната на функция

Наскоро разгледахме подобни примери. Какво да правя? Можете последователно да приложите правилото за диференциране на частното и след това правилото за диференциране на продукта. Недостатъкът на този метод е, че в крайна сметка получавате огромна триетажна фракция, с която изобщо не искате да се занимавате.

Но на теория и практика има такова прекрасно нещо като логаритмичната производна. Логаритмите могат да бъдат организирани изкуствено, като ги "окачите" от двете страни:

Сега трябва да „разпаднете“ логаритъма на дясната страна колкото е възможно повече (формули пред очите ви?). Ще опиша този процес много подробно:

Да започнем с диференциацията.
Заключваме и двете части под премията:

Производната на дясната страна е доста проста, няма да я коментирам, защото ако четете този текст, трябва да можете да се справите уверено.

Какво ще кажете за лявата страна?

От лявата страна имаме сложна функция. Предвиждам въпроса: „Защо, има ли една буква „Y“ под логаритъма?“

Факт е, че тази „игра с една буква“ - САМОТО Е ФУНКЦИЯ(ако не е много ясно, вижте статията Производна на имплицитно посочена функция). Следователно логаритъмът е външна функция, а "y" е вътрешна функция. И използваме правилото за диференциране на сложна функция :

От лявата страна, сякаш с магия магическа пръчкаимаме производна. След това, съгласно правилото за пропорцията, прехвърляме "y" от знаменателя на лявата страна към горната част на дясната страна:

А сега нека си спомним за каква функция „играч“ говорихме по време на диференциацията? Нека да разгледаме състоянието:

Окончателен отговор:

Пример 12

Намерете производната на функция

Това е пример, който можете да решите сами. Примерен дизайн на пример от този тип е в края на урока.

С помощта на логаритмичната производна беше възможно да се реши всеки от примерите № 4-7, друго нещо е, че функциите там са по-прости и може би използването на логаритмичната производна не е много оправдано.

Производна на степенно-експоненциална функция

Все още не сме обмисляли тази функция. Степенно-експоненциална функция е функция, за която степента и основата зависят от "x". Класически пример, който ще ви бъде даден във всеки учебник или лекция:

Как да намерим производната на степенно-експоненциална функция?

Необходимо е да се използва току-що обсъдената техника - логаритмичната производна. Закачаме логаритми от двете страни:

Като правило от дясната страна степента се изважда от под логаритъма:

В резултат от дясната страна имаме произведението на две функции, които ще бъдат диференцирани по стандартната формула .

Намираме производната; за да направим това, поставяме двете части под черти:

Допълнителните действия са прости:

Накрая:

Ако някое преобразуване не е напълно ясно, моля, прочетете внимателно отново обясненията на Пример #11.

В практическите задачи степенно-експоненциалната функция винаги ще бъде по-сложна от разглеждания лекционен пример.

Пример 13

Намерете производната на функция

Използваме логаритмичната производна.

От дясната страна имаме константа и произведението на два фактора - “x” и “логаритъм от логаритъм x” (друг логаритъм е вложен под логаритъма). При диференциране, както си спомняме, е по-добре незабавно да преместите константата от производния знак, така че да не ви пречи; и, разбира се, прилагаме познатото правило :


Както можете да видите, алгоритъмът за използване на логаритмичната производна не съдържа никакви специални трикове или трикове и намирането на производната на степенна експоненциална функция обикновено не е свързано с „мъчение“.

Производна на сложна функция. Примери за решения

В този урок ще научим как да намираме производна на сложна функция. Урокът е логично продължение на урока Как да намерим производната?, в който разгледахме най-простите производни, а също така се запознахме с правилата за диференциране и някои технически техники за намиране на производни. Така че, ако не сте много добри с производните на функции или някои точки в тази статия не са напълно ясни, тогава първо прочетете горния урок. Моля, задайте сериозно настроение - материалът не е прост, но все пак ще се опитам да го представя просто и ясно.

На практика трябва да се справяте с производната на сложна функция много често, дори бих казал, почти винаги, когато ви дават задачи да намирате производни.

Разглеждаме таблицата на правилото (№ 5) за разграничаване на сложна функция:

Нека да го разберем. Първо, нека обърнем внимание на влизането. Тук имаме две функции - и , като функцията, образно казано, е вложена във функцията . Функция от този тип (когато една функция е вложена в друга) се нарича сложна функция.

Ще извикам функцията външна функция, и функцията – вътрешна (или вложена) функция.

! Тези определения не са теоретични и не трябва да присъстват в окончателния дизайн на задачите. Използвам неофициални изрази „външна функция“, „вътрешна“ функция само за да ви улесня при разбирането на материала.

За да изясните ситуацията, помислете за:

Пример 1

Намерете производната на функция

Под синуса имаме не само буквата „X“, а цял израз, така че намирането на производната веднага от таблицата няма да работи. Също така забелязваме, че тук е невъзможно да се приложат първите четири правила, изглежда има разлика, но факт е, че синусът не може да бъде „разкъсан на парчета“:

В този пример вече интуитивно става ясно от моите обяснения, че функцията е сложна функция, а полиномът е вътрешна функция (вграждане) и външна функция.

Първа стъпкатова, което трябва да направите, когато намирате производната на сложна функция, е да разберете коя функция е вътрешна и коя външна.

Кога прости примериИзглежда ясно, че под синуса е вграден полином. Но какво ще стане, ако всичко не е очевидно? Как точно да определим коя функция е външна и коя вътрешна? За да направите това, предлагам да използвате следната техника, която може да се направи наум или на чернова.

Нека си представим, че трябва да изчислим стойността на израза при на калкулатор (вместо единица може да има произволно число).

Какво ще изчислим първо? Преди всичкоще трябва да извършите следното действие: , следователно полиномът ще бъде вътрешна функция:

Второще трябва да се намери, така че синус – ще бъде външна функция:

След като ние ПРОДАДЕНОС вътрешни и външни функции е време да приложим правилото за разграничаване на сложни функции.

Да започнем да решаваме. От класа Как да намерим производната?ние помним, че дизайнът на решение за всяка производна винаги започва така - затваряме израза в скоби и поставяме черта горе вдясно:

Първонамерете производната на външната функция (синус), погледнете таблицата с производни елементарни функциии забелязваме, че. Всички таблични формули са приложими и ако „x“ се замени със сложен израз, в такъв случай:

Моля, имайте предвид, че вътрешната функция не се е променило, не го пипаме.

Е, това е съвсем очевидно

Крайният резултат от прилагането на формулата изглежда така:

Константният фактор обикновено се поставя в началото на израза:

Ако има някакво недоразумение, запишете решението на хартия и прочетете отново обясненията.

Пример 2

Намерете производната на функция

Пример 3

Намерете производната на функция

Както винаги, ние записваме:

Нека разберем къде имаме външна функция и къде имаме вътрешна. За да направим това, ние се опитваме (мислено или в чернова) да изчислим стойността на израза при . Какво трябва да направите първо? Първо, трябва да изчислите на какво е равна основата: следователно полиномът е вътрешната функция:

И едва тогава се извършва степенуването, следователно степенната функция е външна функция:

Според формулата първо трябва да намерите производната на външната функция, в този случай степента. Търсим необходимата формула в таблицата: . Пак повтаряме: всяка таблична формула е валидна не само за „X“, но и за сложен израз. По този начин резултатът от прилагането на правилото за диференциране на сложна функция е следният:

Отново подчертавам, че когато вземем производната на външната функция, нашата вътрешна функция не се променя:

Сега всичко, което остава, е да се намери много проста производна на вътрешната функция и да се промени малко резултата:

Пример 4

Намерете производната на функция

Това е пример, който можете да решите сами (отговорете в края на урока).

За да консолидирам вашето разбиране за производната на сложна функция, ще дам пример без коментари, опитайте се да го разберете сами, помислете къде е външната и къде вътрешната функция, защо задачите се решават по този начин?

Пример 5

а) Намерете производната на функцията

б) Намерете производната на функцията

Пример 6

Намерете производната на функция

Тук имаме корен и за да разграничим корена, той трябва да бъде представен като степен. Така първо привеждаме функцията във формата, подходяща за диференциране:

Анализирайки функцията, стигаме до извода, че сумата от трите члена е вътрешна функция, а повдигането на степен е външна функция. Прилагаме правилото за диференциране на сложни функции:

Отново представяме степента като радикал (корен), а за производната на вътрешната функция прилагаме просто правило за диференциране на сумата:

Готов. Можете също да намалите израза до общ знаменател в скоби и да запишете всичко като една дроб. Красиво е, разбира се, но когато получите тромави дълги производни, е по-добре да не правите това (лесно е да се объркате, да направите ненужна грешка и ще бъде неудобно за учителя да проверява).

Пример 7

Намерете производната на функция

Това е пример, който можете да решите сами (отговорете в края на урока).

Интересно е да се отбележи, че понякога вместо правилото за диференциране на сложна функция можете да използвате правилото за диференциране на частно , но такова решение ще изглежда като смешно извращение. Ето типичен пример:



Пример 8

Намерете производната на функция

Тук можете да използвате правилото за диференциране на частното , но е много по-изгодно да се намери производната чрез правилото за диференциране на сложна функция:

Подготвяме функцията за диференциране - преместваме минуса от знака за производна и повдигаме косинуса в числителя:

Косинусът е вътрешна функция, степенуването е външна функция.
Нека използваме нашето правило:

Намираме производната на вътрешната функция и нулираме косинуса обратно надолу:

Готов. В разглеждания пример е важно да не се объркате в знаците. Между другото, опитайте се да го решите с помощта на правилото , отговорите трябва да съвпадат.

Пример 9

Намерете производната на функция

Това е пример, който можете да решите сами (отговорете в края на урока).

Досега разглеждахме случаи, в които имахме само едно влагане в сложна функция. В практическите задачи често можете да намерите производни, където, подобно на кукли, една в друга, 3 или дори 4-5 функции са вложени наведнъж.

Пример 10

Намерете производната на функция

Нека разберем прикачените файлове на тази функция. Нека се опитаме да изчислим израза, като използваме експерименталната стойност. Как ще разчитаме на калкулатор?

Първо трябва да намерите , което означава, че арксинусът е най-дълбокото вграждане:

След това този арксинус от едно трябва да бъде повдигнат на квадрат:

И накрая, повдигаме седем на степен:

Тоест в този пример имаме три различни функции и две вграждания, докато най-вътрешната функция е арксинусът, а най-външната функция е експоненциалната функция.

Да започнем да решаваме

Според правилото първо трябва да вземете производната на външната функция. Разглеждаме таблицата с производни и намираме производната на експоненциалната функция: Единствената разлика е, че вместо “x” имаме сложен израз, което не отрича валидността на тази формула. И така, резултатът от прилагането на правилото за диференциране на сложна функция е следният:

Под щриха отново имаме сложна функция! Но вече е по-просто. Лесно е да се провери, че вътрешната функция е арксинусът, а външната функция е степента. Съгласно правилото за диференциране на сложна функция, първо трябва да вземете производната на степента.

В „старите“ учебници се нарича още „верижно“ правило. Така че, ако y = f (u) и u = φ (x), това е

y = f (φ (x))

    комплексно - съставна функция (композиция от функции) тогава

Където , след изчисление се разглежда при u = φ (x).



Имайте предвид, че тук взехме „различни“ композиции от едни и същи функции и резултатът от диференциацията естествено се оказа, че зависи от реда на „смесване“.

Верижното правило естествено се разпростира до композиции от три или повече функции. В този случай ще има три или повече „връзки“ във „веригата“, която съставлява производното. Ето една аналогия с умножението: „имаме“ таблица с производни; “там” - таблица за умножение; „при нас“ е верижното правило, а „там“ е правилото за умножение в „колона“. При изчисляването на такива „сложни“ производни, разбира се, не се въвеждат спомагателни аргументи (u¸v и т.н.), но след като са отбелязали за себе си броя и последователността на функциите, участващи в състава, съответните връзки са „нанизани“ по посочения ред.

. Тук с “x” за получаване на стойността на “y” се извършват пет операции, тоест има композиция от пет функции: “външна” (последната от тях) - експоненциална - e  ; след това в обратен ред, мощност. (♦) 2; тригонометричен sin(); успокоен. () 3 и накрая логаритмичен ln.(). Ето защо

Със следните примери ще „убием няколко заека с един камък“: ще упражним диференцирането на сложни функции и ще добавим към таблицата с производни на елементарни функции. Така:

4. За степенна функция - y = x α - пренаписвайки я с помощта на добре познатата „основна логаритмично тъждество" - b=e ln b - във формата x α = x α ln x получаваме

5. За произволна експоненциална функция, използвайки същата техника, която ще имаме

6. За произволна логаритмична функция, използвайки добре известната формула за преход към нова база, последователно получаваме

.

7. За диференциране на тангенса (котангенса) използваме правилото за диференциране на коефициентите:

За да получим производните на обратни тригонометрични функции, ние използваме връзката, която е изпълнена от производните на две взаимно обратни функции, тоест функциите φ (x) и f (x), свързани с отношенията:

Това е съотношението

Тя е от тази формула за взаимно обратни функции

И
,

И накрая, нека обобщим тези и някои други производни, които също лесно се получават в следващата таблица.

Първо ниво

Производна на функция. Изчерпателно ръководство (2019)

Нека си представим прав път, минаващ през хълмиста местност. Тоест върви нагоре и надолу, но не завива надясно или наляво. Ако оста е насочена хоризонтално по протежение на пътя и вертикално, тогава линията на пътя ще бъде много подобна на графиката на някаква непрекъсната функция:

Оста е определено ниво на нулева надморска височина; в живота ние използваме морското равнище като него.

Докато се движим напред по такъв път, ние също се движим нагоре или надолу. Можем също да кажем: когато аргументът се промени (движение по абсцисната ос), стойността на функцията се променя (движение по ординатната ос). Сега нека помислим как да определим „стръмността“ на нашия път? Каква стойност може да бъде това? Много е просто: колко ще се промени височината, когато се движите напред на определено разстояние. Наистина, на различни участъци от пътя, придвижвайки се напред (по оста x) с един километър, ще се издигаме или падаме с различен брой метри спрямо морското равнище (по оста y).

Нека обозначим напредъка (прочетете „делта x“).

Гръцката буква (делта) обикновено се използва в математиката като префикс, означаващ "промяна". Тоест - това е промяна в количеството, - промяна; тогава какво е? Точно така, промяна в големината.

Важно: изразът е едно цяло, една променлива. Никога не отделяйте "делта" от "х" или друга буква! Това е, например,.

И така, ние се придвижихме напред, хоризонтално, с. Ако сравним линията на пътя с графиката на функцията, тогава как ще означим издигането? Разбира се,. Тоест, докато вървим напред, се издигаме по-високо.

Стойността е лесна за изчисляване: ако в началото сме били на височина и след преместване сме се озовали на височина, тогава. Ако крайната точка е по-ниска от началната, тя ще бъде отрицателна - това означава, че не се изкачваме, а слизаме.

Да се ​​върнем към "стръмнина": това е стойност, която показва колко (стръмно) се увеличава височината, когато се движите напред с една единица разстояние:

Да приемем, че на някакъв участък от пътя, при движение напред с километър, пътят се издига с километър. Тогава наклонът на това място е равен. И ако пътят, докато се движи напред с m, падна с km? Тогава наклонът е равен.

Сега нека погледнем върха на един хълм. Ако вземете началото на участъка на половин километър преди върха и края на половин километър след него, можете да видите, че височината е почти същата.

Тоест, според нашата логика се оказва, че наклонът тук е почти равен на нула, което явно не е вярно. Само на разстояние от километри много може да се промени. Необходимо е да се вземат предвид по-малки площи за по-адекватна и точна оценка на стръмността. Например, ако измервате промяната във височината, докато се движите с един метър, резултатът ще бъде много по-точен. Но дори тази точност може да не ни е достатъчна - в крайна сметка, ако има стълб по средата на пътя, можем просто да го подминем. Какво разстояние да изберем тогава? сантиметър? Милиметър? По-малко е по-добре!

IN Истински животИзмерването на разстояния до най-близкия милиметър е повече от достатъчно. Но математиците винаги се стремят към съвършенство. Следователно концепцията е измислена безкрайно малък, тоест абсолютната стойност е по-малка от всяко число, което можем да назовем. Например, казвате: една трилионна! Колко по-малко? И разделяте това число на - и ще бъде още по-малко. И така нататък. Ако искаме да напишем, че дадено количество е безкрайно малко, пишем така: (четем „х клони към нула“). Много е важно да се разбере че това число не е нула!Но много близо до него. Това означава, че можете да разделите по него.

Концепцията, противоположна на безкрайно малкото, е безкрайно голямо (). Вероятно вече сте го срещали, когато сте работили върху неравенства: това число е по модул по-голямо от всяко число, за което можете да се сетите. Ако излезете с възможно най-голямото число, просто го умножете по две и ще получите още по-голямо число. А безкрайността е дори по-голяма от това, което се случва. Всъщност безкрайно голямото и безкрайно малкото са обратни едно на друго, тоест at, и обратно: at.

Сега да се върнем на нашия път. Идеално изчисленият наклон е наклонът, изчислен за безкрайно малък сегмент от пътя, тоест:

Отбелязвам, че при безкрайно малко преместване промяната във височината също ще бъде безкрайно малка. Но нека ви напомня, че безкрайно малко не означава равно на нула. Ако разделите безкрайно малки числа едно на друго, можете да получите съвсем обикновено число, например . Тоест една малка стойност може да бъде точно пъти по-голяма от друга.

За какво е всичко това? Пътят, стръмнината... Ние не ходим на автомобилно рали, но учим математика. И в математиката всичко е абсолютно същото, само се нарича по различен начин.

Понятие за производна

Производната на функция е отношението на нарастването на функцията към нарастването на аргумента за безкрайно малко увеличение на аргумента.

Постепеннов математиката те наричат ​​промяна. Извиква се степента, до която аргументът () се променя, докато се движи по оста увеличение на аргументаи се обозначава Колко се е променила функцията (височината) при движение напред по оста на разстояние се нарича увеличение на функциятаи е обозначен.

И така, производната на функция е съотношението към кога. Производната означаваме със същата буква като функцията, само че с просто число горе вдясно: или просто. И така, нека напишем формулата за производна, използвайки тези обозначения:

Както и в аналогията с пътя, тук при нарастване на функцията производната е положителна, а при намаляване е отрицателна.

Може ли производната да е равна на нула? Със сигурност. Например, ако се движим по равен хоризонтален път, стръмността е нула. И това е вярно, височината изобщо не се променя. Така е и с производната: производната на постоянна функция (константа) е равна на нула:

тъй като увеличението на такава функция е равно на нула за всяка.

Нека си спомним примера на хълма. Оказа се, че е възможно да се подредят краищата на сегмента от противоположните страни на върха по такъв начин, че височината в краищата да се окаже еднаква, т.е. сегментът да е успореден на оста:

Но големите сегменти са знак за неточно измерване. Ще повдигнем нашия сегмент нагоре успоредно на себе си, след което дължината му ще намалее.

В крайна сметка, когато сме безкрайно близо до върха, дължината на сегмента ще стане безкрайно малка. Но в същото време тя остава успоредна на оста, тоест разликата във височините в нейните краища е равна на нула (не клони към, но е равна). Така че производното

Това може да се разбере по следния начин: когато стоим на самия връх, едно малко изместване наляво или надясно променя височината ни незначително.

Има и чисто алгебрично обяснение: вляво от върха функцията нараства, а вдясно намалява. Както разбрахме по-рано, когато една функция расте, производната е положителна, а когато намалява, тя е отрицателна. Но се променя плавно, без скокове (тъй като пътят никъде не променя рязко наклона си). Следователно трябва да има между отрицателни и положителни стойности. То ще бъде там, където функцията нито нараства, нито намалява - в точката на върха.

Същото важи и за дъното (областта, където функцията отляво намалява, а отдясно се увеличава):

Още малко за увеличенията.

Така че променяме аргумента на величина. Променяме от каква стойност? В какво се превърна (аргументът) сега? Можем да изберем всяка точка и сега ще танцуваме от нея.

Помислете за точка с координата. Стойността на функцията в него е равна. След това правим същото увеличение: увеличаваме координатата с. Какъв е аргументът сега? Много лесно: . Каква е стойността на функцията сега? Където отива аргументът, отива и функцията: . Какво ще кажете за увеличаване на функцията? Нищо ново: това все още е сумата, с която функцията се е променила:

Практикувайте намирането на увеличения:

  1. Намерете увеличението на функцията в точка, когато увеличението на аргумента е равно на.
  2. Същото важи и за функцията в точка.

Решения:

В различни точки с едно и също увеличение на аргумента увеличението на функцията ще бъде различно. Това означава, че производната във всяка точка е различна (обсъдихме това в самото начало - стръмността на пътя е различна в различните точки). Следователно, когато пишем производна, трябва да посочим в кой момент:

Силова функция.

Степенна функция е функция, при която аргументът е до известна степен (логичен, нали?).

Нещо повече – във всякаква степен: .

Най-простият случай е, когато показателят е:

Нека намерим производната му в точка. Нека си припомним дефиницията на производна:

Така аргументът се променя от на. Какво е нарастването на функцията?

Увеличението е това. Но функция във всяка точка е равна на своя аргумент. Ето защо:

Производната е равна на:

Производната на е равна на:

б) Сега помислете квадратична функция (): .

Сега нека си припомним това. Това означава, че стойността на увеличението може да бъде пренебрегната, тъй като е безкрайно малка и следователно незначителна на фона на другия член:

И така, измислихме друго правило:

в) Продължаваме логическия ред: .

Този израз може да бъде опростен по различни начини: отворете първата скоба, като използвате формулата за съкратено умножение на куба на сбора, или разложете на множители целия израз, като използвате формулата за разликата на кубовете. Опитайте се да го направите сами, като използвате някой от предложените методи.

И така, получих следното:

И отново нека си припомним това. Това означава, че можем да пренебрегнем всички термини, съдържащи:

Получаваме: .

г) Подобни правила могат да бъдат получени за големи мощности:

д) Оказва се, че това правило може да се обобщи за степенна функция с произволен показател, дори не цяло число:

(2)

Правилото може да се формулира с думите: „степента се изнася напред като коефициент и след това се намалява с .“

Ще докажем това правило по-късно (почти в самия край). Сега нека да разгледаме няколко примера. Намерете производната на функциите:

  1. (по два начина: чрез формула и чрез определението за производна - чрез изчисляване на приращението на функцията);
  1. . Вярвате или не, това е мощностна функция. Ако имате въпроси като „Как е това? Къде е дипломата?“, помнете темата „“!
    Да, да, коренът също е степен, само дробна: .
    Това означава, че нашият квадратен корен е просто степен с показател:
    .
    Търсим производната, използвайки наскоро научената формула:

    Ако в този момент пак стане неясно повторете темата “”!!! (за степен с отрицателен показател)

  2. . Сега степента:

    А сега през дефиницията (забравили ли сте още?):
    ;
    .
    Сега, както обикновено, пренебрегваме термина, съдържащ:
    .

  3. . Комбинация от предишни случаи: .

Тригонометрични функции.

Тук ще използваме един факт от висшата математика:

С израз.

Ще научите доказателството през първата година на института (и за да стигнете до там, трябва да издържите добре Единния държавен изпит). Сега просто ще го покажа графично:

Виждаме, че когато функцията не съществува - точката от графиката се изрязва. Но колкото по-близо до стойността, толкова по-близо е функцията. Това е, което „цели“.

Освен това можете да проверите това правило с помощта на калкулатор. Да, да, не се срамувайте, вземете калкулатор, все още не сме на Единния държавен изпит.

И така, нека опитаме: ;

Не забравяйте да превключите калкулатора си в режим на радиани!

и т.н. Виждаме, че колкото по-малък е, толкова по-близка е стойността на отношението до.

а) Разгледайте функцията. Както обикновено, нека намерим нарастването му:

Нека превърнем разликата на синусите в произведение. За целта използваме формулата (запомнете темата „”): .

Сега производното:

Да направим замяна: . Тогава за безкрайно малко също е безкрайно малко: . Изразът за приема формата:

И сега си спомняме това с израза. И също така, какво ще стане, ако едно безкрайно малко количество може да бъде пренебрегнато в сумата (тоест at).

И така, получаваме следното правило: производната на синуса е равна на косинуса:

Това са основни („таблични“) производни. Ето ги в един списък:

По-късно ще добавим още няколко към тях, но тези са най-важните, тъй като се използват най-често.

практика:

  1. Намерете производната на функцията в точка;
  2. Намерете производната на функцията.

Решения:

  1. Първо, нека намерим производната в общ изгледи след това заменете стойността му:
    ;
    .
  2. Тук имаме нещо подобно на степенна функция. Нека се опитаме да я доведем
    нормален изглед:
    .
    Страхотно, сега можете да използвате формулата:
    .
    .
  3. . Еееееее….. Какво е това????

Добре, прав си, все още не знаем как да намерим такива производни. Тук имаме комбинация от няколко вида функции. За да работите с тях, трябва да научите още няколко правила:

Експонента и натурален логаритъм.

В математиката има функция, чиято производна за всяка стойност е равна на стойността на самата функция в същото време. Нарича се „експонента“ и е експоненциална функция

Основата на тази функция е константа - тя е безкрайна десетичен знак, тоест ирационално число (като). Нарича се „число на Ойлер“, поради което се обозначава с буква.

И така, правилото:

Много лесен за запомняне.

Е, нека не отиваме далеч, нека го разгледаме веднага обратна функция. Коя функция е обратна на експоненциалната функция? Логаритъм:

В нашия случай основата е числото:

Такъв логаритъм (т.е. логаритъм с основа) се нарича „естествен“ и ние използваме специална нотация за него: пишем вместо това.

На какво е равно? Разбира се, .

Производната на естествения логаритъм също е много проста:

Примери:

  1. Намерете производната на функцията.
  2. Каква е производната на функцията?

Отговори: Изложител и натурален логаритъм- функциите са уникално прости по отношение на производни. Експоненциалните и логаритмичните функции с всяка друга основа ще имат различна производна, която ще анализираме по-късно, след като преминем през правилата за диференциране.

Правила за диференциране

Правила на какво? Пак нов мандат, пак?!...

Диференциацияе процесът на намиране на производната.

Това е всичко. Как иначе можете да наречете този процес с една дума? Не производна... Математиците наричат ​​диференциала същото нарастване на функция при. Този термин идва от латинския differentia - разлика. Тук.

Когато извличаме всички тези правила, ще използваме две функции, например и. Ще ни трябват и формули за техните увеличения:

Има общо 5 правила.

Константата се изважда от знака за производна.

Ако - някакво постоянно число (константа), тогава.

Очевидно това правило работи и за разликата: .

Нека го докажем. Нека бъде или по-просто.

Примери.

Намерете производните на функциите:

  1. в точка;
  2. в точка;
  3. в точка;
  4. в точката.

Решения:

  1. (производната е една и съща във всички точки, тъй като това линейна функция, помня?);

Производно на продукта

Тук всичко е подобно: нека въведем нова функция и да намерим нейното увеличение:

Производна:

Примери:

  1. Намерете производните на функциите и;
  2. Намерете производната на функцията в точка.

Решения:

Производна на експоненциална функция

Сега знанията ви са достатъчни, за да научите как да намирате производната на всяка експоненциална функция, а не само на експоненти (забравили ли сте вече какво е това?).

И така, къде е някакво число.

Вече знаем производната на функцията, така че нека се опитаме да намалим нашата функция до нова основа:

За това ще използваме просто правило: . Тогава:

Е, проработи. Сега опитайте да намерите производната и не забравяйте, че тази функция е сложна.

Се случи?

Ето, проверете сами:

Формулата се оказа много подобна на производната на експонента: както беше, остава същата, само се появи фактор, който е просто число, но не и променлива.

Примери:
Намерете производните на функциите:

Отговори:

Това е просто число, което не може да се изчисли без калкулатор, тоест не може да се запише в по-прост вид. Затова го оставяме в този вид в отговора.

Производна на логаритмична функция

Тук е подобно: вече знаете производната на естествения логаритъм:

Следователно, за да намерите произволен логаритъм с различна основа, например:

Трябва да намалим този логаритъм до основата. Как се променя основата на логаритъм? Надявам се, че помните тази формула:

Само сега вместо това ще напишем:

Знаменателят е просто константа (постоянно число, без променлива). Производната се получава много просто:

Производни на експоненциални и логаритмични функции почти никога не се срещат в Единния държавен изпит, но няма да е излишно да ги знаете.

Производна на сложна функция.

Какво е "сложна функция"? Не, това не е логаритъм и не е арктангенс. Тези функции могат да бъдат трудни за разбиране (въпреки че ако намирате логаритъма за труден, прочетете темата „Логаритми“ и ще се оправите), но от математическа гледна точка думата „комплексен“ не означава „труден“.

Представете си малка конвейерна лента: двама души седят и извършват някакви действия с някакви предмети. Например, първият увива шоколадово блокче в обвивка, а вторият го завързва с панделка. Резултатът е съставен обект: шоколадово блокче, увито и завързано с панделка. За да изядете блокче шоколад, трябва да направите обратните стъпки в обратен ред.

Нека създадем подобен математически конвейер: първо ще намерим косинуса на число и след това ще повдигнем на квадрат полученото число. И така, получаваме число (шоколад), аз намирам неговия косинус (обвивка), а след това вие повдигате на квадрат полученото (завързвате го с панделка). Какво стана? функция. Това е пример за сложна функция: когато, за да намерим нейната стойност, извършваме първото действие директно с променливата и след това второ действие с това, което е резултат от първото.

Можем лесно да направим същите стъпки в обратен ред: първо го повдигате на квадрат, а аз след това търся косинуса на полученото число: . Лесно е да се досетите, че резултатът почти винаги ще бъде различен. Важна характеристика на сложните функции: когато редът на действията се промени, функцията се променя.

С други думи, сложна функция е функция, чийто аргумент е друга функция: .

За първия пример,.

Втори пример: (същото нещо). .

Действието, което извършваме последно, ще бъде извикано "външна" функция, а първо извършеното действие - съотв "вътрешна" функция(това са неофициални имена, използвам ги само за да обясня материала на прост език).

Опитайте се да определите сами коя функция е външна и коя вътрешна:

Отговори:Разделянето на вътрешни и външни функции е много подобно на промяната на променливи: например във функция

  1. Какво действие ще извършим първо? Първо, нека изчислим синуса и едва след това го кубираме. Това означава, че това е вътрешна функция, но външна.
    И първоначалната функция е тяхната композиция: .
  2. Вътрешен: ; външен: .
    Преглед: .
  3. Вътрешен: ; външен: .
    Преглед: .
  4. Вътрешен: ; външен: .
    Преглед: .
  5. Вътрешен: ; външен: .
    Преглед: .

Променяме променливи и получаваме функция.

Е, сега ще извлечем нашето шоколадово блокче и ще потърсим производната. Процедурата винаги е обратна: първо търсим производната на външната функция, след това умножаваме резултата по производната на вътрешната функция. Във връзка с оригиналния пример изглежда така:

Друг пример:

И така, нека най-накрая формулираме официалното правило:

Алгоритъм за намиране на производната на сложна функция:

Изглежда просто, нали?

Нека проверим с примери:

Решения:

1) Вътрешен: ;

Външен: ;

2) Вътрешен: ;

(Само не се опитвайте да го отрежете досега! Нищо не излиза изпод косинуса, помните ли?)

3) Вътрешен: ;

Външен: ;

Веднага става ясно, че това е сложна функция на три нива: в крайна сметка това вече е сложна функция сама по себе си и ние също извличаме корена от нея, тоест извършваме третото действие (поставяме шоколада в обвивка и с панделка в куфарчето). Но няма причина да се страхувате: ние все пак ще „разопаковаме“ тази функция в същия ред, както обикновено: от края.

Тоест, първо диференцираме корена, след това косинуса и едва след това израза в скоби. И след това умножаваме всичко.

В такива случаи е удобно действията да се номерират. Тоест нека си представим това, което знаем. В какъв ред ще извършим действия за изчисляване на стойността на този израз? Да разгледаме един пример:

Колкото по-късно се извърши действието, толкова по-„външна“ ще бъде съответната функция. Последователността на действията е същата като преди:

Тук гнезденето обикновено е 4-степенно. Да определим хода на действие.

1. Радикален израз. .

2. Корен. .

3. Синус. .

4. Квадрат. .

5. Събираме всичко заедно:

ПРОИЗВОДНО. НАКРАТКО ЗА ГЛАВНОТО

Производна на функция- отношението на нарастването на функцията към увеличението на аргумента за безкрайно малко увеличение на аргумента:

Основни производни:

Правила за диференциация:

Константата се изважда от знака за производна:

Производна на сумата:

Производно на продукта:

Производна на коефициента:

Производна на сложна функция:

Алгоритъм за намиране на производната на сложна функция:

  1. Дефинираме „вътрешната“ функция и намираме нейната производна.
  2. Дефинираме „външната“ функция и намираме нейната производна.
  3. Умножаваме резултатите от първа и втора точка.

След предварителна артилерийска подготовка, примерите с 3-4-5 влагане на функции ще бъдат по-малко страшни. Следващите два примера може да изглеждат сложни за някои, но ако ги разберете (някой ще пострада), тогава почти всичко останало в диференциалното смятане ще изглежда като детска шега.

Пример 2

Намерете производната на функция

Както вече беше отбелязано, при намиране на производната на сложна функция, на първо място, е необходимо вярноРАЗБЕРЕТЕ вашите инвестиции. В случаите, когато има съмнения, напомням ви за полезна техника: вземаме експерименталната стойност на „x“ например и се опитваме (умствено или в чернова) да заменим тази стойност в „ужасния израз“.

1) Първо трябва да изчислим израза, което означава, че сумата е най-дълбокото вграждане.

2) След това трябва да изчислите логаритъма:

4) След това кубирайте косинуса:

5) На петата стъпка разликата:

6) И накрая, най-външната функция е корен квадратен:

Формула за диференциране на сложна функция се прилагат в обратен ред, от най-външната функция към най-вътрешната. Ние решаваме:

Изглежда без грешки:

1) Вземете производната на корен квадратен.

2) Вземете производната на разликата, като използвате правилото

3) Производната на тройка е нула. Във втория член вземаме производната на степента (куб).

4) Вземете производната на косинуса.

6) И накрая, вземаме производната на най-дълбокото вграждане.

Може да изглежда твърде трудно, но това не е най-жестокият пример. Вземете например колекцията на Кузнецов и ще оцените цялата красота и простота на анализираната производна. Забелязах, че обичат да дават подобно нещо на изпит, за да проверят дали студентът разбира как се намира производната на сложна функция или не разбира.

Следващият пример трябва да решите сами.

Пример 3

Намерете производната на функция

Съвет: Първо прилагаме правилата за линейност и правилото за диференциране на продукта

Пълно решение и отговор в края на урока.

Време е да преминем към нещо по-малко и по-хубаво.
Не е необичайно примерът да показва произведението не на две, а на три функции. Как да намерим производната на произведението на три фактора?

Пример 4

Намерете производната на функция

Първо разглеждаме, възможно ли е да превърнем произведението на три функции в произведение на две функции? Например, ако имаме два полинома в произведението, тогава можем да отворим скобите. Но в разглеждания пример всички функции са различни: степен, степен и логаритъм.

В такива случаи е необходимо последователноприложете правилото за диференциране на продукта два пъти

Номерът е, че с “y” означаваме произведението на две функции: , а с “ve” означаваме логаритъма: . Защо може да се направи това? Наистина ли е - това не е произведение на два фактора и правилото не работи?! Няма нищо сложно:


Сега остава правилото да се приложи втори път в скоби:

Можете също така да се изкривите и да поставите нещо извън скоби, но в този случай е по-добре да оставите отговора точно в тази форма - ще бъде по-лесно да се провери.

Разглежданият пример може да бъде решен по втория начин:

И двете решения са абсолютно равностойни.

Пример 5

Намерете производната на функция

Това е пример за независимо решение, в примера се решава по първия метод.

Нека да разгледаме подобни примери с дроби.

Пример 6

Намерете производната на функция

Има няколко начина, по които можете да отидете тук:

Или така:

Но решението ще бъде написано по-компактно, ако първо използваме правилото за диференциране на частното , като се вземе за целия числител:

По принцип примерът е решен и ако се остави така, няма да е грешка. Но ако имате време, винаги е препоръчително да проверите черновата, за да видите дали отговорът може да бъде опростен?

Нека сведем израза на числителя до общ знаменател и да се отървем от триетажната структура на дробта:

Недостатъкът на допълнителните опростявания е, че съществува риск от грешка не при намиране на производната, а при банални училищни трансформации. От друга страна, учителите често отхвърлят задачата и искат да „напомнят“ производната.

По-прост пример за самостоятелно решаване:

Пример 7

Намерете производната на функция

Продължаваме да овладяваме методите за намиране на производната и сега ще разгледаме типичен случай, когато "ужасният" логаритъм е предложен за диференциране