27.10.2018

Короткие, сильно ветвящиеся отростки нервных клеток. Как свойства и строение нервной клетки обеспечивает основные функции НС


а) дендриты;

б) аксоны;

9. Основной структурно-функциональной и генетической единицей живого организма является:

б) клетка;

г) аппарат органов;

д) система органов.

10. Вспомогательный аппарат мышц, построенный из соединительной ткани называется... Может быть поверхностным и глубоким:

а) синовиальная сумка;

б) фасция;

в) сесамовидная кость.

11. Непрерывное движение крови по замкнутой системе полостей сердца и сосудов:

а) крововыделение;

б) кровообращение;

в) кровеобразование.

12. Эластическая ткань построена из:

а) эластических волокон;

б) ресничек и коллагеновых волокон;

в) млечных сосудов и эластических волокон.

13. Этот органоид осуществляет преобразование энергии в биологически полезную форму, «Электростанция» клетки:

а) митохондрии;

б) рибосомы;

14. Отделение желудочного сока в результате раздражения рецепторов ротовой полости пищей является:

а) безусловным сокоотделительным рефлексом;

б) условным сокоотделительным рефлексом.

15. Из этого вида ткани развиваются позвонки:

а) костной;

б) соединительной;

в) хрящевой.

16. В спинном мозге наблюдают 2 утолщения, это:

а) грудное и крестцовое;

б) шейное и крестцовое;

в) шейное и пояснично-крестцовое

17. Назовите отличие яичек от желез внутренней секреции:

а) наличие протоков;

б) выделение половых клеток.

18. На здоровье человека положительно влияют:

а) трудовые движения;

б) трудовые и спортивные движения;

в) спортивные движения,

19. Этот отдел мозга состоит из поперечных волокон и соединяет оба полушария головного мозга:

а) подкорковый отдел;

б) кора больших полушарий;

в) мозолистое тело.

20. Гладкая мышечная ткань находится:

а) в стенках внутренних органов, кровеносных лимфатических сосудов, протоков желез;

б) в костях и скелетных мышцах;

в) в глубоких слоях кожи.

21. Сложная целостная, саморегулирующая и самообновляющаяся система, для которой характерна определенная организация ее структур, называется:

б) клетка;

г) организм;

д) аппарат органов.

22. ОЦТ при положении «вис на прямых руках» находится:

а) выше площади опоры;

б) в плечевых суставах;

в) ниже площади опоры,

23. Секреция – это …

а) способность крови вырабатывать тела, защищающих организм;

б) способность мышц сокращаться;

в) способность клеток вырабатывать и выделять вещества, необходимые для жизнедеятельности организма.

24. От одной клетки может отходить до … дендритов:

25. Так называется мышца, чьи волокна располагаются по одну сторону сухожилия:

а) двуперистая;

б) одноперистая.

26. Перечислите фазы сердечного сокращения по порядку:

а) сокращение предсердий; 1

б) расслабление желудочков; 4

в) сокращение (систола) желудочков; 3

г) общая пауза (диастола); 5

д) расслабление предсердий. 2

27. Различают хрящи:

а) костный;

б) гиалиновый;

в) эластический.

28. Вещество, находящееся внутри плазматической мембраны и вне ядра называется:

а) эндоплазматическая сеть;

б) хромосомы;

в) цитоплазма.

29. Грудную клетку составляют грудина и …:

а) 18 пар рёбер;

б) 10 пар рёбер;

в) 12 пар ребер.

30. Эта пара слюнных желез выделяет самую вязкую слюну:

а) подъязычные;

б) околоушные;

в) поднижнечелюстные.

31. Назовите отдел В.Н.С., о котором идёт речь: этот отдел состоит из клеток боковых рогов грудного и поясничного отдела спинного мозга, их отростков, пограничного ствола и симпатических нервных скоплений:

а) парасимпатический;

б) симпатический;

в) периферический.

а) паутинная;

б) твёрдая мозговая;

в) мягкая мозговая.

33.Тело сильно изогнуто и образует свод. Какие внешние силы действуют на тело:

а) F упруг., F реакция опоры, F оталкив., F тяж.;

б) F оталкив., F тяж.;

в) F тяж., F реакция опоры F трения.

34. У человека выделяют... типа тканей:

35. Назовите образование, из которого развивается кора больших полушарий:

а) из крыльной пластинки;

б) из мозолистого тела;

в) из межуточного мозга.

36. Фазой опорной конечности является:

а) задний шаг, момент вертикали, передний шаг;

б) передний шаг, задний шаг;

в) передний шаг, момент вертикали, задний шаг.

37. Клетки мерцательного эпителия располагаются:

а) на базальной мембране;

б) в ядре;

в) в кишечнике.

38. Назовите компоненты нервной ткани:

а) клетки- спутники;

б) нейроны и клетки - спутники;

Основной единицей нервной системы является нейрон - специализированная клетка, передающая нервные импульсы или сигналы другим нейронам, железам и мышцам. Понимать работу нейронов важно потому, что, без сомнения, именно в них таятся секреты функционирования мозга и, соответственно, секреты человеческого сознания. Нам известна их роль в передаче нервных импульсов, и мы знаем, как работают некоторые нервные механизмы; но мы только начинаем узнавать об их более сложных функциях в процессах памяти, эмоций и мышления.

В нервной системе существует два типа нейронов: очень мелкие нейроны, известные как локальные нейроны, и более крупные нейроны, называемые макронейронами. Хотя большинство нейронов являются локальными, мы лишь недавно начали понимать, как они функционируют. Фактически на протяжении долгого времени многие исследователи полагали, что эти крохотные нейроны вовсе не являются нейронами или что они являются незрелыми и неспособными к передаче информации. Сегодня мы знаем, что на самом деле локальные нейроны передают сигналы другим нейронам. Однако они обмениваются сигналами преимущественно с соседними нейронами и не передают информацию на большие расстояния в пределах организма, как это делают макронейроны.

С другой стороны, макронейроны были детально изучены, и поэтому наше внимание будет сосредоточено на этих нейронах. Хотя макронейроны значительно различаются по своим размерам и внешнему виду, все они обладают некоторыми общими характеристиками (см. рис. 2.1) От тела клетки отходит множество коротких отростков, называемых дендритами (от греческого дендрон - дерево). К дендритам и телу клетки поступают нервные импульсы от соседних нейронов. Эти сообщения передаются другим нейронам (или мышцам и железам) через тонкое трубчатое удлинение клетки, которое называется аксоном. Окончание аксона делится на ряд тонких веточек, разветвлений, на концах которых имеются небольшие утолщения, называемые синаптическими окончаниями.

Рис. 2.1.

Стрелками показано направление движения нервного импульса. Некоторые аксоны разветвляются. Эти ответвления называются коллатералями. Аксоны многих нейронов покрыты изолирующей миелиновой оболочкой, что позволяет увеличить скорость передачи нервного импульса.

На самом деле синаптическое окончание не касается возбуждаемого им нейрона. Между синаптическим окончанием и телом или дендритом воспринимающей клетки существует небольшой промежуток. Такое сопряжение называется синапсом, а сам промежуток называется синаптической щелью. Когда нервный импульс, проходя по аксону, достигает синаптического окончания, он запускает выделение химического вещества, называемого нейромедиатором (или просто медиатором). Медиатор проникает через синаптическую щель и стимулирует следующий нейрон, передавая тем самым сигнал от одного нейрона к другому. Аксоны от очень многих нейронов синаптически контактируют с дендритами и телом клетки отдельного нейрона (рис. 2.2).


Рис. 2.2.

Множество различных аксонов, каждый из которых многократно разветвляется, синаптически контактируют с дендритами и телом клетки отдельного нейрона. Каждое концевое ответвление аксона имеет утолщение, которое называется синаптическим окончанием и содержит химическое вещество, высвобождаемое и передаваемое нервным импульсом через синапс к дендритом или телу клетки воспринимающего нейрона.

Хотя все нейроны обладают этими общими признаками, они весьма разнообразны по форме и величине (рис. 2.3). У нейрона спинного мозга аксон может достигать 3-4 футов длины и идти от конца позвоночника до мышц большого пальца ступни; нейрон головного мозга может иметь размер всего лишь в несколько тысячных долей дюйма.

Рис. 2.3.

Аксон нейрона спинного мозга может достигать нескольких футов длины (на рисунке показан не полностью).

В зависимости от выполняемых ими общих функций нейроны делятся на три категории. Сенсорные нейроны передают импульсы от рецепторов в центральную нервную систему. Рецепторы - это специализированные клетки органов чувств, мышц, кожи и суставов, способные обнаруживать физические или химические изменения и преобразовывать их в импульсы, проходящие по сенсорным нейронам. Моторные нейроны несут сигналы, выходящие из головного или спинного мозга, к исполнительным органам, т. е. к мышцам и железам. Промежуточные нейроны получают сигналы от сенсорных нейронов и посылают импульсы к другим промежуточным нейронам и к моторным нейронам. Промежуточные нейроны обнаружены только в головном мозге, глазах и спинном мозге.

Нерв - это пучок длинных аксонов, принадлежащих сотням или тысячам нейронов. Один нерв может содержать аксоны как от сенсорных, так и от моторных нейронов.

Помимо нейронов в нервной системе есть множество клеток, не являющихся нервными, но рассеянных между - и часто вокруг - нейронов; их называют глиальными клетками. Количество глиальных клеток превосходит число нейронов в 9 раз, и они занимают больше половины объема мозга. Их название (от греческого glia - клей) определяется одной из их функций - закреплением нейронов на их местах. Кроме того, они вырабатывают питательные вещества, необходимые для здоровья нейронов, и как бы «ведут хозяйство», очищая нейрональную среду (на синаптических участках), тем самым поддерживая сигнальную способность нейронов. Бесконтрольное разрастание глиальных клеток - причина почти всех опухолей мозга.

Оценки количества нейронов и глиальных клеток в нервной системе человека широко варьируются и зависят от метода подсчета; пока ученые не пришли к единому мнению об их количестве. Только в самом мозге человека, по разным оценкам, насчитывается от 10 миллиардов до 1 триллиона нейронов; независимо от предполагаемого количества нейронов количество глиальных клеток примерно в 9 раз больше (Groves & Rebec, 1992). Эти цифры кажутся астрономическими, но такое количество клеток бесспорно необходимо, учитывая всю сложность поведения человека.

Потенциалы действия

Информация передается по нейрону в виде нейронного импульса, называемого потенциалом действия - электрохимическим импульсом, проходящим от дендритовой области к окончанию аксона. Каждый потенциал действия является результатом движения электрически заряженных молекул, называемых ионами, осуществляемого внутри и снаружи нейрона. Описанные ниже электрические и химические процессы приводят к формированию потенциала действия.

Клеточная мембрана является полупроницаемой; это означает, что некоторые химические вещества могут легко проходить через клеточную мембрану, тогда как другие не пропускаются через нее, за исключением тех случаев, когда специальные проходы в мембране открыты. Ионные каналы - это белковые молекулы наподобие пончиков, образующие поры в клеточной мембране (рис. 2.4). Открывая или закрывая поры, эти белковые структуры регулируют поток электрически заряженных ионов, таких как натрий (Na+), калий (K+), кальций (Са++) или хлор (Сl-). Каждый ионный канал действует избирательно: когда он открыт, то пропускает через себя только один тип ионов.

Рис. 2.4.

Такие химические вещества, как натрий, калий, кальций и хлор, проходят сквозь клеточную мембрану через торообразные протеиновые молекулы, называемые ионными каналами.

Нейрон, когда он не передает информацию, называют покоящимся нейроном. В покоящемся нейроне отдельные протеиновые структуры, называемые ионными насосами, помогают поддерживать неравномерное распределение различных ионов по клеточной мембране путем перекачивания их внутрь или вне клетки. Например, ионные насосы транспортируют Na+ за пределы нейрона каждый раз, когда он проникает в нейрон, и закачивают K+ обратно в нейрон каждый раз, когда он выходит наружу. Таким образом, у нейрона в состоянии покоя поддерживается высокая концентрация Na+ снаружи и низкая концентрация внутри клетки. Действие этих ионных каналов и насосов создает поляризацию клеточной мембраны, которая имеет положительный заряд с наружной и отрицательный заряд с внутренней стороны.

Когда нейрон, находящийся в состоянии покоя, стимулируется, разность потенциалов на клеточной мембране уменьшается. Если падение напряжения достаточное, натриевые каналы в точке стимуляции на короткое время открываются и ионы Na+ проникают внутрь клетки. Этот процесс называется деполяризацией; теперь внутренняя сторона мембраны в этом участке оказывается заряженной положительно относительно внешней. Соседние натриевые каналы чувствуют это падение напряжения и в свою очередь открываются, вызывая деполяризацию прилежащих участков. Такой самоподдерживаемый процесс деполяризации, распространяющейся вдоль тела клетки, называется нервным импульсом. По мере продвижения этого импульса по нейрону натриевые каналы за ним закрываются и включаются ионные насосы, быстро восстанавливающие в клеточной мембране исходное состояние покоя (рис. 2.5).


Рис. 2.5.

А) В течение действия потенциала натриевые шлюзы в мембране нейрона открыты и ионы натрия входят внутрь аксона, неся с собой положительный заряд, б) Когда потенциал действия возникает в какой-либо точке аксона, натриевые шлюзы закрываются в этой точке и открываются в следующей, расположенной по длине аксона. Когда натриевые шлюзы закрыты, открыты калиевые шлюзы и ионы калия выходят из аксона, унося с собой положительный заряд (по материалам Starr & Taggart, 1989).

Скорость продвижения нервного импульса по аксону может меняться от 3 до 300 км/час, в зависимости от диаметра аксона: как правило, чем больше диаметр, тем выше скорость. Скорость может зависеть также от того, есть ли у аксона миелиновое покрытие. Это покрытие состоит из специальных глиальных клеток, окутывающих аксон и идущих одна за другой с небольшими перехватами (промежутками) (как на рис. 2.1). Эти маленькие промежутки называют узлами Ранвьера. Благодаря изолирующим свойствам миелинового покрытия нервный импульс как бы прыгает от одного узла Ранвьера к другому - процесс, известный как салтаторная проводимость, что значительно повышает скорость передачи по аксону. (Термин салтаторная происходит от латинского слова saltare, что означает «прыгать».) Наличие миелиновых покрытий характерно для высших животных и особенно широко распространено в тех частях нервной системы, где скорость передачи - решающий фактор. Рассеянный склероз, сопровождаемый серьезными сенсомоторными дисфункциями нервной системы, - это заболевание, при котором организм разрушает свой собственный миелин.

Синаптическая передача импульсов

Синаптическое сопряжение между нейронами чрезвычайно важно, поскольку именно здесь клетки передают свои сигналы. Отдельный нейрон разряжается или возбуждается, когда приходящая к нему через множество синапсов стимуляция превышает определенный порог. Нейрон разряжается одним коротким импульсом и затем несколько тысячных долей секунды остается инактивным. Величина нервного импульса постоянна, и он не может быть вызван до тех пор, пока стимул не достигнет порогового уровня; это называется законом «все или ничего». Нервный импульс, раз начавшись, распространяется по аксону, достигая множества его окончаний.

Как мы уже говорили, в синапсе нейроны не контактируют непосредственно; здесь есть небольшая щель, через которую сигнал и должен быть передан (рис. 2.6). Когда нервный импульс продвигается по аксону и достигает синаптического окончания, он стимулирует находящиеся там синаптические пузырьки. Они представляют собой маленькие шарики, в которых содержатся нейротрансмиттеры; при стимуляции пузырьки выпускают эти нейротрансмиттеры. Нейротрансмиттеры проникают через синаптическую щель-зазор и захватываются молекулами воспринимающего нейрона, находящимися в его клеточной мембране. Молекулы медиатора и рецептора подходят друг к другу примерно так, как кусочки разрезной головоломки или ключ к замку. На основе соотношения двух молекул по принципу «ключ-замок» изменяется проницаемость мембраны воспринимающего нейрона. Некоторые медиаторы, находящиеся в связке со своими рецепторами, оказывают возбуждающее действие и увеличивают проницаемость в сторону деполяризации, а некоторые оказывают тормозящее действие и уменьшают проницаемость. При возбуждающем действии вероятность возбуждения нейрона увеличивается, а при тормозящем - уменьшается.

Рис. 2.6.

Медиатор доставляется к пресинаптической мембране в синаптических пузырьках, которые смешиваются с этой мембраной, высвобождая свое содержимое в синаптическую щель. Молекулы медиатора проникают через щель и соединяются с рецепторными молекулами постсинаптической мембраны.

Один нейрон может иметь многие тысячи синапсов с сетью других нейронов. Некоторые из этих нейронов высвобождают возбуждающие медиаторы, другие - тормозящие. В зависимости от характерного для них паттерна передачи импульсов (firing) различные аксоны высвобождают различные вещества-медиаторы в разное время. Если в определенное время и на определенном участке клеточной мембраны возбуждающие воздействия на воспринимающий нейрон начинают превышать тормозящие, то происходит деполяризация и нейрон разряжается импульсом соответственно закону «все или ничего».

.

После высвобождения молекул медиатора и прохождения их через синаптическую щель их действие должно быть очень коротким. В противном случае воздействие медиатора будет длиться слишком долго и точный контроль станет невозможным. Кратковременность действия достигается одним из двух путей. Некоторые медиаторы почти мгновенно удаляются из синапса посредством обратного захвата - процесса, при котором медиатор снова поглощается синаптическими окончаниями, откуда он был выпущен. Обратный захват прекращает действие медиатора и избавляет окончания аксона от необходимости дополнительно производить это вещество. Действие других медиаторов прекращается благодаря деградации - процессу, при котором ферменты, содержащиеся в мембране воспринимающего нейрона, инактивируют медиатор, химически разрушая его.

Нейротрансмиттеры

Известно более 70 различных медиаторов, и нет сомнений, что будут открыты еще. Помимо этого, некоторые медиаторы могут связываться более чем с одним типом рецепторных молекул и вызывать при этом различные эффекты. Например, нейротрансмиттер глутамат может активизировать как минимум 16 различных типов рецепторных молекул, позволяя нейронам реагировать различным образом на этот один и тот же нейротрансмиттер (Westbrook, 1994). Некоторые нейротрансмиттеры являются возбуждающими в одних зонах и тормозящими в других, так как в этих процессах участвуют два различных типа рецепторных молекул. В этой главе мы, конечно, не сможем рассказать о всех нейротрансмиттерах, обнаруженных в нервной системе, поэтому подробно остановимся на некоторых из них, оказывающих существенное влияние на поведение.

Ацетилхолин (АЦХ) обнаружен во многих синапсах по всей нервной системе. Вообще, это возбуждающий нейротрансмиттер, но он может быть и тормозящим, в зависимости от того, какой тип молекулы рецептора находится в мембране воспринимающего нейрона. Особенно часто АЦХ встречается в гиппокампе - зоне переднего мозга, играющей ключевую роль в формировании новых следов памяти (Squire, 1987).

Болезнь Альцгеймера (предстарческий склероз мозга. - Прим. перев.) - тяжелое нарушение, часто встречающееся в пожилом возрасте и сопровождающееся нарушениями памяти и других когнитивных функций. Было показано, что при болезни Альцгеймера вырождаются нейроны переднего мозга, производящие АЦХ, и соответственно снижается способность мозга производить АЦХ; чем меньше АЦХ производится передним мозгом, тем обширнее потеря памяти.

АЦХ выделяется также во всех синапсах, образованных между нервными окончаниями и волокнами скелетной мускулатуры. АЦХ подводится к концевым пластинкам - небольшим образованиям, расположенным на клетках мышц. Концевые пластинки покрыты молекулами рецептора, которые при активации их ацетилхолином запускают химическую реакцию между молекулами внутри мышечных клеток, заставляя их сокращаться. Некоторые препараты, влияющие на АЦХ, могут вызывать паралич мышц. Например, яд ботулин, выделяемый некоторыми видами бактерий в плохо закрытых консервах, блокирует выделение АЦХ в нервно-мышечных синапсах и может вызвать смерть от паралича дыхательных мышц. Некоторые нервные газы военного назначения, а также многие пестициды вызывают паралич путем разрушения ферментов, расщепляющих АЦХ после включения нейрона; когда процесс расщепления нарушен, в нервной системе происходит неконтролируемое накопление АЦХ и нормальная синаптическая передача становится невозможной.

Норэпинефрин (НЭ) - это медиатор, продуцируемый многими нейронами ствола мозга. Такие хорошо известные препараты, как кокаин и амфетамины, продлевают действие норэпинефрина путем замедления его обратного захвата. Из-за задержки обратного захвата воспринимающий нейрон активируется дольше, чем и объясняется психостимулирующий эффект этих препаратов. Литий, наоборот, ускоряет обратный захват НЭ, вызывая у человека подавленное настроение. Всякое вещество, повышающее или понижающее уровень НЭ в мозге, соответственно повышает или снижает настроение человека.

Допамин. Химически допамин очень близок к норэпинефрину. Высвобождение допамина в определенных зонах головного мозга вызывает интенсивное ощущение удовольствия, и в настоящий момент проводятся исследования, изучающие роль допамина в развитии пристрастий. Избыток допамина в определенных зонах мозга может вызывать шизофрению, тогда как его недостаток в других зонах может приводить к болезни Паркинсона. Лекарства, используемые для лечения шизофрении, например торазин или клозапин, блокируют рецепторы допамина. В противовес им препарат L-dopa, чаще всего прописываемый страдающим болезнью Паркинсона, увеличивает количество допамина в мозге.

Серотонин. Серотонин принадлежит к той же группе химических препаратов, называемых моноаминами, что и допамин и норэпинефрин. Как и норэпинефрин, серотонин играет важную роль в регулировании настроения. Так, низкий уровень серотонина ассоциируется с ощущением депрессии. Были разработаны специфические антидепрессанты, называемые селективными ингибиторами обратного захвата серотонина (СИОЗС), повышающие уровень серотонина в мозге путем блокирования обратного захвата серотонина пресинаптическими окончаниями нейронов. Прозак, Золофт и Паксил, лекарственные препараты, как правило прописываемые для лечения депрессии, - являются ингибиторами обратного захвата серотонина. Серотонин также играет важную роль в регуляции сна и аппетита, а потому используется также при лечении расстройства питания - булимии. Изменяющий настроение препарат ЛСД оказывает свое воздействие, повышая уровень серотонина в мозге. ЛСД по своему химическому строению похож на медиатор серотонин. влияющий на эмоции. Данные показывают, что ЛСД накапливается в некоторых клетках мозга, где имитирует действие серотонина и тем самым создает повышенную стимуляцию этих клеток.

ГАМК. Еще один широкоизвестный медиатор - гамма-аминомасляная кислота (ГАМК), являющаяся одним из основных тормозных медиаторов в нервной системе. Например, препарат пикротоксин блокирует рецепторы ГАМК и вызывает конвульсии, поскольку из-за недостатка тормозного действия ГАМК контроль за движением мышц становится затрудненным. Некоторые транквилизаторы, основанные на свойстве ГАМК усиливать торможение, применяются для лечения пациентов, страдающих тревожностью.

Глутамат. Возбуждающий медиатор глутамат присутствует в большем количестве нейронов центральной нервной системы, чем любой другой медиатор. Существует как минимум три подтипа глутаматовых рецепторов, и один из них, как полагают, играет роль в научении и памяти. Он называется рецептором НМДА - по названию вещества, применяемого для его обнаружения (N-метил D-аспартат). Больше всего НМДА-рецепторов содержится в нейронах гиппокампа (участка около середины мозга), и есть различные данные, показывающие, что эта зона играет решающую роль в формировании новых следов памяти.

Рецепторы НМДА отличаются от других рецепторов тем, что для их активации нужны последовательные сигналы от двух различных нейронов. Сигнал от первого из них повышает чувствительность клеточной мембраны, в которой находится рецептор НМДА. После повышения чувствительности второй сигнал (глутаминовый медиатор от другого нейрона) сможет активировать этот рецептор. При получении такого сдвоенного сигнала рецептор НМДА пропускает в нейрон очень много ионов кальция. Их приток вызывает долговременное изменение в мембране нейрона, делая ее более чувствительной к первоначальному сигналу, когда тот повторится в следующий раз; это явление называют долговременной потенциацией, или ДП (рис. 2.7).


Рис. 2.7.

На схеме показан возможный механизм влияния рецепторов НМДА на долговременное изменение силы синаптической связи (эффект ДП). Когда первый передающий нейрон высвобождает медиаторы, они активируют не-НМДА рецепторы воспринимающего нейрона (1), которые частично деполяризуют клеточную мембрану (2). Эта частичная деполяризация повышает чувствительность НМДА-рецепторов, так что теперь их могут активировать глутаматовые медиаторы, высвобождаемые вторым передающим нейроном (3). Активация НМДА-рецепторов заставляет открыться связанные с ними кальциевые каналы (4). Ионы кальция поступают в клетку и взаимодействуют с различными ферментами (5), что, как полагают, приводит к перестройке клеточной мембраны (6). В результате перестройки у воспринимающего нейрона повышается чувствительность к медиаторам, высвобождаемым первым нейроном, так что последний со временем сможет сам по себе активировать воспринимающий нейрон; так возникает эффект долговременной потенциации.

Такой механизм, в котором два конвергирующих сигнала усиливают синаптическую связь, может объяснить, как отдельные события ассоциируются в памяти. Например, в эксперименте с ассоциативным научением вслед за звуком колокольчика немедленно показывалась пища. Когда собака видит пищу, у нее выделяется слюна. Но при повторяющемся сочетании звука и пищи собака научается выделять слюну только на звук колокольчика: это может указывать на то, что сигнал «колокольчик» и сигнал «пища» конвергировали на синапсах, вызывающих слюноотделение. При достаточно многократном предъявлении пары «колокольчик-еда» эти синаптические связи усиливаются под влиянием ДП, и со временем один только звук колокольчика заставляет собаку выделять слюну. На основе механизма НМДА создана любопытная теория ассоциирования событий в памяти, которая сейчас активно развивается (Malonow, 1994; Zalutsky & Nicoll, 1990).

Исследования нейротрансмиттеров и рецепторов получили широкое практическое применение. Некоторые из сфер их применения описаны в рубрике «На переднем крае психологических исследований» на следующей странице.

Основная функция нервной системы – передача информации с помощью электрических стимулов. Для этого необходимо:

1. Обмен химическими веществами с окружающей средоймембрана –длительные информационные процессы.

2. Быстрый обмен сигналами – специальные участки на мембране –синапсы

3. Механизм быстрого обмена сигналами между клетками – специальные химические вещества – медиаторы , выделяемые одними клетками и воспринимаемые другими в синапсах

4.Клетка отвечает на изменения в синапсах, расположенных на коротких отросткахдендритах с помощью медленных изменений электрических потенциалов

5. Клетка передает сигналы на большие расстояния с помощью быстрых электрических сигналов по длинным отросткам – аксонам

Аксон - в нейроне один, имеет протяженное строение, проводит быстрые электрические импульсы от тела клетки

Дендриты - может быть много, ветвятся, короткие, проводит медленные градуальные электрические импульсы к телу клетки

Нервная клетка, или нейрон, состоит из тела и отростков двух видов. Тело нейрона представлено ядром и окружающей его областью цитоплазмы. Это метаболический центр нервной клетки; при его разрушении она погибает. Тела нейронов располагаются преимущественно в головном и спинном мозге, т. е. в центральной нервной системе (ЦНС), где их скопления образуют серое вещество мозга. Скопления тел нервных клеток за пределами ЦНС формируют нервные узлы, или ганглии.

Короткие, древовидно ветвящиеся отростки, отходящие от тела нейрона, называются дендритами. Они выполняют функции восприятия раздражения и передачи возбуждения в тело нейрона.

Самый мощный и длинный (до 1 м) неветвящийся отросток называется аксоном, или нервным волокном. Его функция состоит в проведении возбуждения от тела нервной клетки к концу аксона. Он покрыт особой белой липидной оболочкой (миелином), выполняющей роль защиты, питания и изоляции нервных волокон друг от друга. Скопления аксонов в ЦНС образуют белое вещество мозга. Сотни и тысячи нервных волокон, выходящих за пределы ЦНС, при помощи соединительной ткани объединяются в пучки - нервы, дающие многочисленные ответвления ко всем органам.

От концов аксонов отходят боковые ветви, заканчивающиеся расширениями - аксоппыми окончаниями, или терминалями. Это зона контакта с другими нервными, мышечными или железистыми метками. Она называется синапсом, функцией которого является передача возбуждения. Один нейрон через свои синапсы может соединяться с сотнями других клеток.

По выполняемым функциям различают нейроны трех видов. Чувствительные (центростремительные) нейроны воспринимают раздражение от рецепторов, возбуждающихся под действием раздражителей из внешней среды или из самого организма человека, и в форме нервного импульса передают возбуждение с периферии в ЦНС.Двигательные (центробежные) нейроны посылают нервный сигнал из ЦНС мышцам, железам, т. е. на периферию. Нервные клетки, воспринимающие возбуждение от других нейронов и передающие его также нервным клеткам, - это вставочные нейроны, или интернейроны. Они располагаются в ЦНС. Нервы, в состав которых входят как чувствительные, так и двигательные волокна, называются смешанными.


Аня: Нейроны, или нервные клетки, являются строительными блоками мозга. Хотя они имеют те же гены, то же общее строение и тот же биохимический аппарат, что и другие клетки, они обладают и уникальными особенностями, которые делают функцию мозга совершенно отличной от функций, скажем печени. Полагают, что мозг человека состоит из 10 в 10-й нейронов: примерно столько же, сколько звезд в нашей Галактике. Не найдется и двух нейронов, одинаковых по виду. Несмотря на это, их формы обычно укладываются в небольшое число категорий, и большинству нейронов присущи определенные структурные особенности, позволяющие выделить три области клетки: клеточное тело, дендриты и аксон.

Клеточное тело - сома, содержит ядро и биохимический аппарат синтеза ферментов и разнообразных молекул, необходимых для жизнедеятельности клетки. Обычно тело имеет приблизительно сферическую или пирамидальную форму, размерами от 5 до 150 мкм в диаметре. Дендриты и аксон - отростки, отходящие от тела нейрона. Дендриты представляют собой тонкие трубчатые выросты, которые многократно ветвятся, образуя как бы крону дерева вокруг тела нейрона (dendron-дерево). По дендритам нервные импульсы поступают к телу нейрона. В отличие от многочисленных дендритов, аксон - единственный и отличается от дендритов как по строению, так и по свойствам своей наружной мембраны. Длина аксона может достигать одного метра, он практически не ветвится, образуя отростки лишь на конце волокна, его название происходит от слова ось (ass-ось). По аксону нервный импульс уходит из тела клетки и передается другим нервным клеткам либо исполнительным органам - мышцам и железам. Все аксоны заключены в оболочку из шванновских клеток (вид глиальных клеток). В некоторых случаях шванновские клетки просто окутывают аксон тонким слоем. Во многих же случаях шванновская клетка закручивается вокруг аксона, образуя несколько плотных слоев изоляции, называемой миелином. Миелиновая оболочка прерывается примерно каждый миллиметр по длине аксона узкими щелями - так называемыми перехватами Ранвье. В аксонах, имеющих оболочку такого типа, распространение нервного импульса, происходит путем его перескакивания от перехвата к перехвату, где внеклеточная жидкость оказывается в непосредственном контакте с клеточной мембраной. Такое проведение нервного импульса называется сальтотропным. Эволюционный смысл миелиновой оболочки, по-видимому, состоит в экономии метаболической энергии нейрона. Как правило, миелинизированные нервные волокна проводят нервные импульсы быстрее, чем немиелинизированные.

По количеству отростков нейроны делятся на униполярные, биполярные и мультиполярные.

По строению клеточного тела нейроны подразделяются на звездчатые, пирамидальные, зернистые, овальные и т.д.

Нервная ткань развивается изэктодермы , является основным компонентом нервной системы. Основными свойствами нервной ткани являются возбудимость и проводимость.

Нервная ткань состоит изнервных клеток (нейронов) и межклеточного вещества (нейроглии) . Нейроны способны воспринимать, анализировать раздражение, приходить в состояние возбуждения, генерировать нервные импульсы и передавать их другим нейронам либо рабочим органам, вырабатывать нейрогормоны и медиаторы.

Нейроны представляют собой отростчатые клетки, размеры которых колеблются в значительных пределах. Отростки являются проводниками нервных импульсов и заканчиваются нервными окончаниями .Различаютдва вида отростков :

· аксон – длинный отросток, обеспечивает проведение импульса от нервной клетки к рабочему органу или другой клетке; каждая нервная клетка имеет только один аксон;

· дендрит – короткий, древовидно-ветвящийся отросток, воспринимает импульсы и проводит к телу нейрона; количество дендритов у разных нейронов различное.

Нейрон имеет типичное клеточное строение.В цитоплазме клеток присутствуют специфические органеллы :

· нейрофибриллы участвуют в проведении нервного импульса;

· тигроидное (базофильное) вещество – представляет собой зернистость, образующую нерезко отграниченные глыбки, лежащие в теле клетки и дендритах. Оно меняется в зависимости от функционального состояния клетки. В условиях перенапряжения, травмы (перерезка отростков, отравление, кислородное голодание и др.) глыбки распадаются и исчезают. Этот процесс получил название хроматолиза, или тигролиза, т.е. растворения тигроидного вещества. По морфологическим изменениям базофильного вещества можно судить о состоянии нервных клеток в условиях патологии и эксперимента.

Нейроны классифицируют по трем основным группам признаков: морфологическим, функциональным и биохимическим.

Морфологическая классификация (по особенностям строения):

ü по количеству отростков нейроны делятся на:

- униполярные (с одним отростком) – встречаются в эмбриогенезе;

- биполярные (с двумя отростками) – некоторые нейроны сетчатки глаза, нейроны спирального и вестибулярного ганглиев;

- псевдоуниполярные (ложно униполярные) – к ним относятся все рецепторные нейроны спинальных и краниальных ганглиев. Аксон и дендрит начинается от общего выроста тела клетки с последующим Т-образным делением;

- мультиполярные (имеют три и более отростка) – преобладают во всех отделах ЦНС и в вегетативных ганглиях периферической нервной системы;

ü по форме – описано до 80 вариантов нейронов (звездчатые, пирамидальные, грушевидные, веретеновидные и др.).

Функциональная классификация (в зависимости от выполняемой функции и места в рефлекторной дуге различают нейроны):

- рецепторные (чувствительные, афферентные) – с помощью дендритов воспринимают воздействия внешней или внутренней среды, генерируют нервный импульс и передают его другим типам нейронов; встречаются только в спинальных ганглиях и чувствительных ядрах черепно-мозговых нервов;

- эффекторные (эфферентные) – передают возбуждение на рабочие органы (мышцы или железы); располагаются в передних рогах спинного мозга и вегетативных нервных ганглиях;

- вставочные (ассоциативные) – располагаются между рецепторными и эффекторными нейронами; по количеству их больше всего, особенно в ЦНС;

- секреторные (нейроэндокриноциты) – специализированные нейроны, по своей функции напоминающие эндокринные клетки. Они синтезируют и выделяют в кровь нейрогормоны, расположены в гипоталамической области головного мозга; регулируют деятельность гипофиза, а через него и многие периферические эндокринные железы.

Медиаторная классификация (по химической природе выделяемого медиатора):

- холинергические (медиатор ацетилхолин);

- аминергические (медиаторы – биогенные амины, например, норадреналин, серотонин, гистамин);

- ГАМК-эргические (медиатор – гамма-аминомасляная кислота);

- пептидергические (медиаторы – пептиды, например, опиодные пептиды, субстанция Р, холецистокинин и др.);

- пуринергические (медиаторы – пуриновые нуклеотиды, например, аденозин) и др., а также нейроны, которые в качестве медиатора используют аминокислоты (глицин, глутамат, аспартат).

Нейроглия(межклеточное вещество) органически связана с нервными клетками, имеет клеточное строение и осуществляет трофическую, секреторную, защитную, разграничительную и опорную функцию. Она поддерживает постоянство среды вокруг нейронов.Клетки нейроглии делятся на две группы: макроглию и микроглию.

Макроглия. Клетки макроглии бывают трех типов:

· эпендимоциты выстилают каналы и желудочки спинного и головного мозга, по которым циркулирует спинномозговая жидкость (ликвор). В желудочках мозга находятся сосудистые сплетения . Они покрыты специализированными секреторными эпендимоцитами, участвующими в образовании ликвора.

· астроциты различают протоплазматические и волокнистые астроциты.Протоплазматические астроциты имеют короткие толстые отростки. Они расположены в сером веществе мозга, выполняют разграничительную и трофическую функции.Волокнистые астроциты находятся в белом веществе, имеют многочисленные тонкие длинные отростки, которые оплетают кровеносные сосуды мозга, образуя периваскулярные глиальные пограничные мембраны. Их отростки также изолируют синапсы. Таким образом, они изолируют нейроны и кровеносные сосуды и участвуют в образовании гематоэнцефалического барьера, обеспечивают обмен веществ между кровью и нейронами. Они также участвуют в образовании оболочек мозга и выполняют опорную функцию (образуют каркас мозга).

· олигодендроциты имеют мало отростков, окружают нейроны, выполняя трофическую (участие в питании нейронов) и разграничительную функции. Олигодендроциты, расположенные вокруг тел нейронов, называются мантийными глиоцитами . Олигодендроциты, расположенные в периферической нервной системе и образующие оболочки вокруг отростков нейронов, называют леммоцитами (шванновскими клетками) .

Микроглия (глиальные макрофаги) – способны к амебовидному движению, осуществляют фагоцитоз. Образуются из моноцитов крови.

Нервные волокна – это отростки нейронов, покрытые глиальными оболочками. Отростки нейронов лежат внутри нервных волокон и называются осевыми цилиндрами . Их окружают глиальные клетки – олигодендроциты, которые здесь называются леммоцитами (оболочечными клетками), или шванновскими клетками.

По гистологическому строению нервные волокна бываютмиелиновые (мякотные) и безмиелиновые (безмякотные).

Миелиновые нервные волокна имеют оболочку из двух слоев: внутренний называется миелиновым (мякотным) и представлен липопротеидным веществом – миелином; наружный – шванновскими клетками и называется нейролеммой.Миелин служит для защиты, питания и изоляции нервных волокон. Через равные промежутки миелиновая оболочка прерывается, образуя перехваты Ранвье . Такие волокна образуют белое вещество спинного и головного мозга, входят в периферические нервы.

Безмиелиновые (безмякотные) нервные волокна преимущественно входят в состав вегетативной нервной системы. Оболочка состоит из клеток нейроглии – шванновских клеток, плотно прилегающих друг к другу.

По функции нервные волокна бывают двигательные и чувствительные .

Нервные волокна заканчиваются нервными окончаниями . По функции нервные окончания делятся на:

· рецепторы – чувствительные нервные окончания образованы концевыми разветвлениями дендритов чувствительных нейронов. Они воспринимают раздражения из внешней среды – экстерорецепторы и из внутренних органов – интерорецепторы .

· эффекторы – двигательные нервные окончания являются концевыми разветвлениями аксонов двигательных клеток, посредством которых импульс передается на ткани рабочих органов. Двигательные нервные окончания скелетных мышц называются моторными бляшками .

Особую группу нервных окончаний образуют соединения (контакты) между нервными клетками – межнейрональные синапсы .