12.10.2019

Derivácie komplexnej funkcie si pozrite na príkladoch. Derivácia funkcie. Komplexný sprievodca (2019)


Definícia. Nech je funkcia \(y = f(x) \) definovaná v nejakom intervale obsahujúcom bod \(x_0 \) vo vnútri. Zväčšíme \(\Delta x \) na argument, aby sme neopustili tento interval. Nájdite zodpovedajúci prírastok funkcie \(\Delta y \) (pri prechode z bodu \(x_0 \) do bodu \(x_0 + \Delta x \)) a zostavte vzťah \(\frac(\Delta y )(\Delta x) \). Ak existuje limita tohto vzťahu v \(\Delta x \rightarrow 0 \), potom sa zadaná limita nazýva derivačná funkcia\(y=f(x) \) v bode \(x_0 \) a označte \(f"(x_0) \).

$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x_0) $$

Symbol y sa často používa na označenie derivácie. Všimnite si, že y" = f(x) je nová funkcia, ale prirodzene spojená s funkciou y = f(x), definovanou vo všetkých bodoch x, v ktorých existuje vyššie uvedená limita. Táto funkcia sa volá takto: derivácia funkcie y \u003d f (x).

Geometrický význam derivácie pozostáva z nasledujúceho. Ak je možné nakresliť dotyčnicu, ktorá nie je rovnobežná s osou y, ku grafu funkcie y \u003d f (x) v bode s os x \u003d a, potom f (a) vyjadruje sklon dotyčnice:
\(k = f"(a)\)

Keďže \(k = tg(a) \), platí rovnosť \(f"(a) = tg(a) \).

A teraz interpretujeme definíciu derivátu z hľadiska približných rovnosti. Nech funkcia \(y = f(x) \) má deriváciu v určitom bode \(x \):
$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x) $$
To znamená, že v blízkosti bodu x je približná rovnosť \(\frac(\Delta y)(\Delta x) \približne f"(x)\), t.j. \(\Delta y \približne f"(x) \cdot \Deltax\). Zmysluplný význam získanej približnej rovnosti je nasledovný: prírastok funkcie je „takmer úmerný“ prírastku argumentu a koeficient úmernosti je hodnota derivácie v daný bod X. Napríklad pre funkciu \(y = x^2 \) platí približná rovnosť \(\Delta y \cca 2x \cdot \Delta x \). Ak dôkladne analyzujeme definíciu derivátu, zistíme, že obsahuje algoritmus na jeho nájdenie.

Poďme to sformulovať.

Ako nájsť deriváciu funkcie y \u003d f (x) ?

1. Opravte hodnotu \(x \), nájdite \(f(x) \)
2. Zvýšte \(x \) argument \(\Delta x \), presuňte sa do nového bodu \(x+ \Delta x \), nájdite \(f(x+ \Delta x) \)
3. Nájdite prírastok funkcie: \(\Delta y = f(x + \Delta x) - f(x) \)
4. Zostavte vzťah \(\frac(\Delta y)(\Delta x) \)
5. Vypočítajte $$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) $$
Táto limita je deriváciou funkcie v x.

Ak funkcia y = f(x) má deriváciu v bode x, potom sa nazýva diferencovateľná v bode x. Zavolá sa postup na nájdenie derivácie funkcie y \u003d f (x). diferenciácia funkcie y = f(x).

Poďme diskutovať o nasledujúcej otázke: ako súvisí spojitosť a diferencovateľnosť funkcie v bode?

Nech je funkcia y = f(x) diferencovateľná v bode x. Potom je možné nakresliť dotyčnicu ku grafu funkcie v bode M (x; f (x)) a, pripomíname, sklon dotyčnice sa rovná f "(x). Takýto graf sa nemôže "zlomiť" v bod M, t.j. funkcia musí byť spojitá v x.

Bolo to uvažovanie „na prstoch“. Uveďme prísnejší argument. Ak je funkcia y = f(x) diferencovateľná v bode x, potom platí približná rovnosť \(\Delta y \cca f"(x) \cdot \Delta x \) nula, potom \(\Delta y \ ) bude mať tiež tendenciu k nule, a to je podmienka spojitosti funkcie v bode.

takže, ak je funkcia diferencovateľná v bode x, potom je v tomto bode aj spojitá.

Opak nie je pravdou. Napríklad: funkcia y = |x| je všade spojitá, najmä v bode x = 0, ale dotyčnica ku grafu funkcie v „spoločnom bode“ (0; 0) neexistuje. Ak v určitom bode nie je možné nakresliť tangens ku grafu funkcie, potom v tomto bode neexistuje žiadna derivácia.

Ešte jeden príklad. Funkcia \(y=\sqrt(x) \) je spojitá na celej číselnej osi, vrátane bodu x = 0. A dotyčnica ku grafu funkcie existuje v akomkoľvek bode, vrátane bodu x = 0 Ale v tomto bode sa dotyčnica zhoduje s osou y, to znamená, že je kolmá na os x, jej rovnica má tvar x \u003d 0. Svah taký riadok neexistuje, čo znamená, že neexistuje ani \(f"(0) \).

Zoznámili sme sa teda s novou vlastnosťou funkcie – diferencovateľnosťou. Ako môžete zistiť, či je funkcia diferencovateľná od grafu funkcie?

Odpoveď je vlastne uvedená vyššie. Ak sa v určitom bode dá nakresliť dotyčnica ku grafu funkcie, ktorá nie je kolmá na os x, potom je funkcia v tomto bode diferencovateľná. Ak v určitom bode dotyčnica ku grafu funkcie neexistuje alebo je kolmá na os x, potom v tomto bode funkcia nie je diferencovateľná.

Pravidlá diferenciácie

Operácia nájdenia derivátu sa nazýva diferenciácia. Pri vykonávaní tejto operácie musíte často pracovať s kvocientmi, súčtami, súčinmi funkcií, ako aj s „funkciami funkcií“, teda komplexnými funkciami. Na základe definície derivátu vieme odvodiť pravidlá diferenciácie, ktoré túto prácu uľahčujú. Ak je C konštantné číslo a f=f(x), g=g(x) sú niektoré diferencovateľné funkcie, potom platí nasledovné pravidlá diferenciácie:

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ ( Cf)"=Cf" $$ $$ \left(\frac(f)(g) \right) " = \frac(f"g-fg")(g^2) $$ $$ \left(\frac (C)(g) \right) " = -\frac(Cg")(g^2) $$ Derivát komplexná funkcia:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Tabuľka derivácií niektorých funkcií

$$ \left(\frac(1)(x) \right) " = -\frac(1)(x^2) $$ $$ (\sqrt(x)) " = \frac(1)(2\ sqrt(x)) $$ $$ \left(x^a \right) " = a x^(a-1) $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac(1)(x) $$ $$ (\log_a x)" = \frac (1)(x\ln a) $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text(tg) x) " = \frac(1)(\cos^2 x) $$ $$ (\text(ctg) x)" = -\frac(1)(\sin^2 x) $$ $$ (\arcsin x) " = \frac(1)(\sqrt(1-x^2)) $$ $$ (\arccos x)" = \frac(-1)(\sqrt(1-x^2)) $$ $$ (\text(arctg) x)" = \frac(1)(1+x^2) $$ $$ (\text(arctg) x)" = \frac(-1)(1+x^2) $ $

Po predbežnej delostreleckej príprave budú príklady s 3-4-5 prílohami funkcií menej desivé. Možno sa niekomu budú zdať nasledujúce dva príklady komplikované, ale ak budú pochopené (niekto trpí), potom takmer všetko ostatné v diferenciálnom počte bude pôsobiť ako detský vtip.

Príklad 2

Nájdite deriváciu funkcie

Ako už bolo uvedené, pri hľadaní derivácie komplexnej funkcie je to predovšetkým potrebné Správny ROZUMIEŤ INVESTÍCIÁM. V prípadoch, keď existujú pochybnosti, pripomínam užitočná technika: vezmeme napríklad experimentálnu hodnotu „x“ a pokúsime sa (mentálne alebo na koncepte) nahradiť túto hodnotu do „strašného výrazu“.

1) Najprv musíme vypočítať výraz, takže súčet je najhlbšie vnorenie.

2) Potom musíte vypočítať logaritmus:

4) Potom položte kosínus na kocku:

5) V piatom kroku rozdiel:

6) A nakoniec to najviac vonkajšia funkcia je druhá odmocnina:

Vzorec na diferenciáciu zložených funkcií sa aplikujú v opačnom poradí, od vonkajšej funkcie po najvnútornejšiu. Rozhodujeme sa:

Zdá sa, že bez chýb:

1) Vezmeme deriváciu druhej odmocniny.

2) Zoberieme deriváciu rozdielu pomocou pravidla

3) Derivácia trojky sa rovná nule. V druhom člene vezmeme deriváciu stupňa (kocku).

4) Vezmeme deriváciu kosínusu.

6) A nakoniec vezmeme derivát najhlbšieho hniezdenia .

Môže sa to zdať príliš ťažké, ale toto nie je najbrutálnejší príklad. Vezmite si napríklad Kuznecovovu zbierku a oceníte všetko čaro a jednoduchosť analyzovaného derivátu. Všimol som si, že podobnú vec radi dávajú na skúške, aby si overili, či študent rozumie, ako nájsť deriváciu komplexnej funkcie, alebo nerozumie.

Nasledujúci príklad je pre samostatné riešenie.

Príklad 3

Nájdite deriváciu funkcie

Pomôcka: Najprv použijeme pravidlá linearity a pravidlo diferenciácie súčinu

Úplné riešenie a odpoveď na konci hodiny.

Je čas prejsť na niečo kompaktnejšie a krajšie.
Nie je nezvyčajné, že v príklade je uvedený súčin nie dvoch, ale troch funkcií. Ako nájsť deriváciu súčinu troch faktorov?

Príklad 4

Nájdite deriváciu funkcie

Najprv sa pozrieme, ale je možné premeniť súčin troch funkcií na súčin dvoch funkcií? Napríklad, ak by sme v súčine mali dva polynómy, mohli by sme otvoriť zátvorky. Ale v tomto príklade sú všetky funkcie odlišné: stupeň, exponent a logaritmus.

V takýchto prípadoch je to nevyhnutné postupne uplatňovať pravidlo diferenciácie produktov dvakrát

Trik je v tom, že pre "y" označujeme súčin dvoch funkcií: a pre "ve" - ​​logaritmus:. Prečo sa to dá urobiť? je to? - to nie je súčin dvoch faktorov a pravidlo nefunguje?! Nie je nič zložité:


Teraz zostáva použiť pravidlo druhýkrát do zátvorky:

Stále môžete prevrátiť a niečo vyňať zo zátvoriek, ale v tomto prípade je lepšie ponechať odpoveď v tejto forme - bude ľahšie kontrolovať.

Vyššie uvedený príklad možno vyriešiť druhým spôsobom:

Obe riešenia sú absolútne rovnocenné.

Príklad 5

Nájdite deriváciu funkcie

Toto je príklad na nezávislé riešenie, v ukážke je to riešené prvým spôsobom.

Zvážte podobné príklady so zlomkami.

Príklad 6

Nájdite deriváciu funkcie

Tu môžete ísť niekoľkými spôsobmi:

Alebo takto:

Riešenie však možno napísať kompaktnejšie, ak najskôr použijeme pravidlo diferenciácie kvocientu , pričom za celého čitateľa:

V zásade je príklad vyriešený a ak sa nechá v tejto podobe, nebude to chyba. Ale ak máte čas, vždy je vhodné skontrolovať návrh, ale je možné zjednodušiť odpoveď?

Prinášame vyjadrenie čitateľa k spoločnému menovateľovi a zbavíme sa trojposchodového zlomku:

Nevýhodou dodatočných zjednodušení je, že existuje riziko, že sa pomýlime nie pri hľadaní derivátu, ale pri banálnych transformáciách škôl. Na druhej strane učitelia často úlohu odmietajú a žiadajú, aby im „pripomenuli“ derivát.

Jednoduchší príklad riešenia „urob si sám“:

Príklad 7

Nájdite deriváciu funkcie

Pokračujeme v ovládaní techník na nájdenie derivácie a teraz zvážime typický prípad, keď sa na diferenciáciu navrhuje „strašný“ logaritmus.

V „starých“ učebniciach sa tomu hovorí aj „reťazové“ pravidlo. Ak teda y \u003d f (u) a u \u003d φ (x), tj

y \u003d f (φ (x))

    komplexná – zložená funkcia (zloženie funkcií) vtedy

Kde , po výpočte sa uvažuje pri u = φ(x).



Všimnite si, že tu sme prevzali „iné“ kompozície z rovnakých funkcií a výsledok diferenciácie sa prirodzene ukázal ako závislý od poradia „miešania“.

Reťazové pravidlo sa prirodzene rozširuje na zloženie troch alebo viacerých funkcií. V tomto prípade budú tri alebo viac „odkazov“ v „reťazci“, ktorý tvorí derivát, resp. Tu je analógia s násobením: „máme“ - tabuľku derivátov; "tam" - tabuľka násobenia; „s nami“ je reťazové pravidlo a „tam“ je pravidlo násobenia so „stĺpcom“. Pri výpočte takýchto „komplexných“ derivátov sa samozrejme nezavádzajú žiadne pomocné argumenty (u¸v atď.), Ale keď si všimnú počet a postupnosť funkcií zúčastňujúcich sa na kompozícii, „naviažu“ zodpovedajúce odkazy v uvedené poradie.

. Tu sa vykoná päť operácií s „x“ na získanie hodnoty „y“, to znamená, že sa uskutoční zloženie piatich funkcií: „externá“ (posledná z nich) – exponenciálna – e ; potom v opačnom poradí je mocenský zákon. (♦) 2; trigonometrický hriech (); moc. () 3 a nakoniec logaritmický ln.(). Preto

Nasledujúce príklady „zabijú páry vtákov jednou ranou“: precvičíme si rozlišovanie zložitých funkcií a doplníme tabuľku derivácií elementárne funkcie. Takže:

4. Pre funkciu napájania - y \u003d x α - ju prepíšte pomocou známeho „základného logaritmická identita» - b=e ln b - dostaneme v tvare x α = x α ln x

5. Pre svojvoľné exponenciálna funkcia pomocou rovnakej metódy, budeme mať

6. Pre ľubovoľnú logaritmickú funkciu pomocou známeho vzorca pre prechod na novú bázu postupne získame

.

7. Na diferenciáciu tangensu (kotangens) použijeme pravidlo pre diferenciáciu kvocientu:

Na získanie derivácií inverzných goniometrických funkcií použijeme vzťah, ktorý spĺňajú derivácie dvoch vzájomne inverzných funkcií, teda funkcie φ (x) a f (x), ktoré sú spojené vzťahmi:

Tu je pomer

Je to z tohto vzorca pre vzájomne inverzné funkcie

A
,

Na záver zhrnieme tieto a niektoré ďalšie, rovnako ľahko získané deriváty, v nasledujúcej tabuľke.

Derivácia komplexnej funkcie. Príklady riešení

V tejto lekcii sa naučíme, ako nájsť derivácia komplexnej funkcie. Hodina je logickým pokračovaním lekcie Ako nájsť derivát?, na ktorej sme rozoberali najjednoduchšie derivácie a zoznámili sa aj s pravidlami diferenciácie a niektorými technickými metódami hľadania derivácií. Ak teda nie ste veľmi dobrí s derivátmi funkcií alebo niektoré body tohto článku nie sú úplne jasné, prečítajte si najprv vyššie uvedenú lekciu. Prosím, nalaďte sa na vážnu náladu - materiál nie je jednoduchý, ale aj tak sa ho pokúsim podať jednoducho a zrozumiteľne.

V praxi sa musíte s deriváciou komplexnej funkcie zaoberať veľmi často, dokonca by som povedal, že takmer vždy, keď dostanete úlohy na nájdenie derivácií.

V tabuľke sa pozrieme na pravidlo (č. 5) na diferenciáciu komplexnej funkcie:

Rozumieme. Najprv sa pozrime na zápis. Tu máme dve funkcie - a , pričom funkcia je, obrazne povedané, vnorená do funkcie . Funkcia tohto druhu (keď je jedna funkcia vnorená do inej) sa nazýva komplexná funkcia.

Zavolám funkciu vonkajšia funkcia a funkciu – vnútorná (alebo vnorená) funkcia.

! Tieto definície nie sú teoretické a nemali by sa objaviť v konečnom návrhu zadaní. Neformálne výrazy „vonkajšia funkcia“, „vnútorná“ funkcia používam len preto, aby som vám uľahčil pochopenie látky.

Ak chcete objasniť situáciu, zvážte:

Príklad 1

Nájdite deriváciu funkcie

Pod sínusom nemáme len písmeno "x", ale celý výraz, takže hľadanie derivátu okamžite z tabuľky nebude fungovať. Všimli sme si tiež, že tu nie je možné použiť prvé štyri pravidlá, zdá sa, že existuje rozdiel, ale faktom je, že nie je možné „roztrhnúť“ sínus:

V tomto príklade, už z mojich vysvetlení, je intuitívne jasné, že funkcia je komplexná funkcia a polynóm je vnútorná funkcia (vloženie) a vonkajšia funkcia.

Prvý krok, ktorý je potrebné vykonať pri hľadaní derivácie komplexnej funkcie je to pochopiť, ktorá funkcia je vnútorná a ktorá vonkajšia.

V prípade jednoduchých príkladov sa zdá byť jasné, že pod sínus je vnorený polynóm. Ale čo ak to nie je zrejmé? Ako presne určiť, ktorá funkcia je vonkajšia a ktorá vnútorná? Na tento účel navrhujem použiť nasledujúcu techniku, ktorú možno vykonať mentálne alebo na návrh.

Predstavme si, že potrebujeme vypočítať hodnotu výrazu pomocou kalkulačky (namiesto jednej môže byť ľubovoľné číslo).

Čo vypočítame ako prvé? Po prvé budete musieť vykonať nasledujúcu akciu: , takže polynóm bude internou funkciou:

Po druhé budete musieť nájsť, takže sínus - bude externá funkcia:

Po nás ROZUMIEŤ Pri vnútorných a vonkajších funkciách je čas použiť pravidlo diferenciácie zložených funkcií.

Začíname sa rozhodovať. Z lekcie Ako nájsť derivát? pamätáme si, že návrh riešenia akejkoľvek derivácie vždy začína takto - výraz uzavrieme do zátvoriek a vpravo hore umiestnime ťah:

Najprv nájdeme deriváciu vonkajšej funkcie (sínus), pozrieme sa na tabuľku derivácií elementárnych funkcií a všimneme si, že . Všetky tabuľkové vzorce sú použiteľné, aj keď je "x" nahradené zložitým výrazom, v tomto prípade:

poznač si to vnútorná funkcia sa nezmenil, nedotýkame sa ho.

No to je celkom zrejmé

Konečný výsledok použitia vzorca vyzerá takto:

Konštantný faktor je zvyčajne umiestnený na začiatku výrazu:

Ak dôjde k nejakému nedorozumeniu, zapíšte si rozhodnutie na papier a znova si prečítajte vysvetlenia.

Príklad 2

Nájdite deriváciu funkcie

Príklad 3

Nájdite deriváciu funkcie

Ako vždy píšeme:

Zisťujeme, kde máme vonkajšiu funkciu a kde vnútornú. Aby sme to dosiahli, snažíme sa (mentálne alebo na koncepte) vypočítať hodnotu výrazu pre . Čo je potrebné urobiť ako prvé? Najprv musíte vypočítať, čomu sa základ rovná:, čo znamená, že polynóm je vnútorná funkcia:

A až potom sa vykoná umocnenie, teda výkonová funkcia je externá funkcia:

Podľa vzorca musíte najskôr nájsť deriváciu vonkajšej funkcie, v tomto prípade stupeň. Požadovaný vzorec hľadáme v tabuľke:. Znova opakujeme: akýkoľvek tabuľkový vzorec platí nielen pre "x", ale aj pre komplexný výraz. Výsledkom aplikácie pravidla diferenciácie komplexnej funkcie je teda:

Opäť zdôrazňujem, že keď vezmeme deriváciu vonkajšej funkcie, vnútorná funkcia sa nemení:

Teraz zostáva nájsť veľmi jednoduchú deriváciu vnútornej funkcie a výsledok trochu „učesať“:

Príklad 4

Nájdite deriváciu funkcie

Toto je príklad na samoriešenie (odpoveď na konci hodiny).

Pre upevnenie pochopenia derivácie komplexnej funkcie uvediem príklad bez komentárov, skúste si na to prísť sami, rozumujte, kde je vonkajšia a kde vnútorná funkcia, prečo sa úlohy riešia tak?

Príklad 5

a) Nájdite deriváciu funkcie

b) Nájdite deriváciu funkcie

Príklad 6

Nájdite deriváciu funkcie

Tu máme koreň a na rozlíšenie koreňa musí byť reprezentovaný ako stupeň. Najprv teda uvedieme funkciu do správnej formy na diferenciáciu:

Pri analýze funkcie dospejeme k záveru, že súčet troch členov je vnútorná funkcia a umocňovanie je vonkajšia funkcia. Aplikujeme pravidlo diferenciácie komplexnej funkcie:

Stupeň je opäť reprezentovaný ako radikál (odmocnina) a pre deriváciu vnútornej funkcie použijeme jednoduché pravidlo na derivovanie súčtu:

Pripravený. Môžete tiež uviesť výraz do spoločného menovateľa v zátvorkách a napísať všetko ako jeden zlomok. Je to, samozrejme, krásne, ale keď sa získajú ťažkopádne dlhé deriváty, je lepšie to nerobiť (je ľahké sa zmiasť, urobiť zbytočnú chybu a pre učiteľa bude nepohodlné to kontrolovať).

Príklad 7

Nájdite deriváciu funkcie

Toto je príklad na samoriešenie (odpoveď na konci hodiny).

Je zaujímavé poznamenať, že niekedy namiesto pravidla na diferenciáciu komplexnej funkcie možno použiť pravidlo na derivovanie kvocientu , ale takéto riešenie by vyzeralo ako zvrátenosť vtipná. Tu je typický príklad:



Príklad 8

Nájdite deriváciu funkcie

Tu môžete použiť pravidlo diferenciácie kvocientu , ale je oveľa výnosnejšie nájsť deriváciu pomocou pravidla diferenciácie komplexnej funkcie:

Pripravíme funkciu na diferenciáciu - vyberieme znamienko mínus derivácie a zvýšime kosínus do čitateľa:

Kosínus je vnútorná funkcia, umocňovanie je vonkajšia funkcia.
Využime naše pravidlo:

Nájdeme deriváciu vnútornej funkcie, resetujeme kosínus späť nadol:

Pripravený. V uvažovanom príklade je dôležité nenechať sa zmiasť v znameniach. Mimochodom, skúste to vyriešiť pravidlom , odpovede sa musia zhodovať.

Príklad 9

Nájdite deriváciu funkcie

Toto je príklad na samoriešenie (odpoveď na konci hodiny).

Doteraz sme zvažovali prípady, keď sme mali len jedno hniezdenie v komplexnej funkcii. V praktických úlohách sa často dajú nájsť odvodeniny, kde sa ako hniezdiace bábiky jedna do druhej vnorí naraz 3 alebo aj 4-5 funkcií.

Príklad 10

Nájdite deriváciu funkcie

Rozumieme prílohám tejto funkcie. Výraz sa snažíme vyhodnotiť pomocou experimentálnej hodnoty . Ako by sme rátali s kalkulačkou?

Najprv musíte nájsť, čo znamená, že arcsínus je najhlbšie hniezdenie:

Tento arcsínus jednoty by sa potom mal odmocniť:

A nakoniec zdvihneme sedem k moci:

To znamená, že v tomto príklade máme tri rôzne funkcie a dve vnorenia, pričom najvnútornejšia funkcia je arcsínus a najvzdialenejšia funkcia je exponenciálna funkcia.

Začíname sa rozhodovať

Podľa pravidla musíte najprv vziať deriváciu externej funkcie. Pozrieme sa na tabuľku derivácií a nájdeme deriváciu exponenciálnej funkcie: Jediný rozdiel je v tom, že namiesto „x“ máme zložený výraz, čo neruší platnosť tohto vzorca. Takže výsledok aplikácie pravidla diferenciácie komplexnej funkcie je nasledujúci:

Pod prístrojovou doskou máme opäť ošemetnú funkciu! Ale už je to jednoduchšie. Je ľahké vidieť, že vnútorná funkcia je arcsínus a vonkajšia funkcia je stupeň. Podľa pravidla diferenciácie komplexnej funkcie musíte najprv vziať deriváciu stupňa.

Uvádzame príklady výpočtu derivácií pomocou vzorca pre deriváciu komplexnej funkcie.

Tu uvádzame príklady výpočtu derivácií nasledujúcich funkcií:
; ; ; ; .

Ak funkcia môže byť reprezentovaná ako komplexná funkcia v nasledujúcom tvare:
,
potom je jeho derivát určený vzorcom:
.
V nižšie uvedených príkladoch napíšeme tento vzorec v nasledujúcom tvare:
.
Kde .
Tu dolné indexy alebo , umiestnené pod znamienkom derivátu, označujú premennú, vzhľadom na ktorú sa vykonáva diferenciácia.

Zvyčajne sú v tabuľkách derivácií uvedené derivácie funkcií od premennej x. X je však formálny parameter. Premenná x môže byť nahradená akoukoľvek inou premennou. Preto pri derivácii funkcie z premennej jednoducho zmeníme v tabuľke derivácií premennú x na premennú u .

Jednoduché príklady

Príklad 1

Nájdite deriváciu komplexnej funkcie
.

Riešenie

Poďme si zapísať danú funkciu v ekvivalentnej forme:
.
V tabuľke derivátov nájdeme:
;
.

Podľa vzorca pre deriváciu komplexnej funkcie máme:
.
Tu .

Odpoveď

Príklad 2

Nájdite derivát
.

Riešenie

Vyberieme konštantu 5 za znamienkom derivácie a z tabuľky derivácií nájdeme:
.


.
Tu .

Odpoveď

Príklad 3

Nájdite derivát
.

Riešenie

Vyberieme konštantu -1 pre znamienko derivácie a z tabuľky derivácií nájdeme:
;
Z tabuľky derivátov zistíme:
.

Použijeme vzorec pre deriváciu komplexnej funkcie:
.
Tu .

Odpoveď

Zložitejšie príklady

Vo viac ťažké príklady pravidlo diferenciácie komplexnej funkcie aplikujeme niekoľkokrát. Pritom vypočítame deriváciu od konca. To znamená, že funkciu rozdelíme na jednotlivé časti a pomocou nich nájdeme deriváty najjednoduchších častí derivačná tabuľka. Uplatňujeme aj my pravidlá diferenciácie súčtu, produkty a frakcie . Potom urobíme substitúcie a použijeme vzorec pre deriváciu komplexnej funkcie.

Príklad 4

Nájdite derivát
.

Riešenie

Vyberieme najjednoduchšiu časť vzorca a nájdeme jeho deriváciu. .



.
Tu sme použili notáciu
.

Nájdeme deriváciu ďalšej časti pôvodnej funkcie použitím získaných výsledkov. Aplikujeme pravidlo diferenciácie súčtu:
.

Opäť aplikujeme pravidlo diferenciácie komplexnej funkcie.

.
Tu .

Odpoveď

Príklad 5

Nájdite deriváciu funkcie
.

Riešenie

Vyberieme najjednoduchšiu časť vzorca a z tabuľky derivácií nájdeme jeho deriváciu. .

Uplatňujeme pravidlo diferenciácie komplexnej funkcie.
.
Tu
.