16.10.2019

Označenie geometrickej progresie. Súčet nekonečnej geometrickej progresie at


Inštrukcia

10, 30, 90, 270...

Treba nájsť menovateľa geometrická progresia.
Riešenie:

1 možnosť. Zoberme si ľubovoľný člen postupu (napríklad 90) a vydeľme ho predchádzajúcim (30): 90/30=3.

Ak je známy súčet niekoľkých členov geometrickej postupnosti alebo súčet všetkých členov klesajúcej geometrickej postupnosti, potom na nájdenie menovateľa postupnosti použite príslušné vzorce:
Sn = b1*(1-q^n)/(1-q), kde Sn je súčet prvých n členov geometrickej postupnosti a
S = b1/(1-q), kde S je súčet nekonečne klesajúcej geometrickej postupnosti (súčet všetkých členov postupnosti s menovateľom menším ako jedna).
Príklad.

Prvý člen klesajúcej geometrickej postupnosti sa rovná jednej a súčet všetkých jej členov sa rovná dvom.

Je potrebné určiť menovateľa tohto postupu.
Riešenie:

Doplňte údaje z úlohy do vzorca. Získajte:
2=1/(1-q), odkiaľ – q=1/2.

Postupnosť je postupnosť čísel. V geometrickej postupnosti sa každý nasledujúci člen získa vynásobením predchádzajúceho určitým číslom q, ktoré sa nazýva menovateľ postupnosti.

Inštrukcia

Ak sú známe dva susedné členy geometrického b(n+1) a b(n), na získanie menovateľa je potrebné vydeliť číslo s veľkým číslom tým, ktoré mu predchádza: q=b(n +1)/b(n). Vyplýva to z definície progresie a jej menovateľa. Dôležitou podmienkou je, že prvý člen a menovateľ progresie sa nerovnajú nule, inak sa postup považuje za neurčitý.

Medzi členmi postupnosti sú teda vytvorené nasledujúce vzťahy: b2=b1 q, b3=b2 q, … , b(n)=b(n-1) q. Vzorcom b(n)=b1 q^(n-1) možno vypočítať ľubovoľný člen geometrickej postupnosti, v ktorom je známy menovateľ q a člen b1. Každý modul progresie sa tiež rovná priemeru jeho susedných členov: |b(n)|=√, takže progresia má svoje .

Najjednoduchší je analóg geometrického postupu exponenciálna funkcia y=a^x, kde x je v exponente, a je nejaké číslo. V tomto prípade je menovateľ progresie rovnaký ako prvý člen a sa rovná číslu a. Hodnotu funkcie y možno chápať ako n-tý termín postupnosti, ak sa argument x berie ako prirodzené číslo n (počítadlo).

Existuje pre súčet prvých n členov geometrickej postupnosti: S(n)=b1 (1-q^n)/(1-q). Tento vzorec platí pre q≠1. Ak q=1, tak súčet prvých n členov sa vypočíta podľa vzorca S(n)=n b1. Mimochodom, progresia sa bude nazývať rastúca pre q väčšie ako jedna a kladné b1. Keď menovateľ progresie, modulo, nepresahuje jednu, progresia sa nazýva klesajúca.

špeciálny prípad geometrická progresia - nekonečne klesajúca geometrická progresia (b.u.g.p.). Faktom je, že členovia klesajúcej geometrickej progresie budú znova a znova klesať, ale nikdy nedosiahnu nulu. Napriek tomu je možné nájsť súčet všetkých termínov takejto progresie. Určuje sa podľa vzorca S=b1/(1-q). Celkom n členov je nekonečných.

Aby ste si predstavili, ako môžete pridať nekonečný počet čísel a nezískať nekonečno, upečte koláč. Polovicu z nej odrežte. Potom odrežte 1/2 polovice a tak ďalej. Kúsky, ktoré získate, nie sú ničím iným ako členmi nekonečne klesajúceho geometrického postupu s menovateľom 1/2. Ak dáte všetky tieto kúsky dokopy, získate originálnu tortu.

Problémy s geometriou sú špeciálnym druhom cvičenia, ktoré si vyžaduje priestorové myslenie. Ak neviete vyriešiť geometrické úloha skúste dodržiavať nižšie uvedené pravidlá.

Inštrukcia

Veľmi pozorne si prečítajte stav problému, ak si niečo nepamätáte alebo nerozumiete, prečítajte si to znova.

Skúste určiť, o aké geometrické úlohy ide, napríklad: výpočtové, keď potrebujete zistiť nejakú hodnotu, úlohy vyžadujúce logický reťazec uvažovania, úlohy na stavbu pomocou kružidla a pravítka. Viac úloh zmiešaný typ. Keď zistíte typ problému, skúste uvažovať logicky.

Použite potrebnú vetu pre tento problém, ak existujú pochybnosti alebo neexistujú žiadne možnosti, skúste si spomenúť na teóriu, ktorú ste študovali na príslušnú tému.

Urobte si aj návrh problému. Skúste použiť známe metódy na kontrolu správnosti vášho riešenia.

Dokončite riešenie problému úhľadne v notebooku, bez škvŕn a prečiarknutia, a čo je najdôležitejšie -. Možno to bude trvať čas a úsilie na vyriešenie prvých geometrických problémov. Keď sa však tomuto procesu osvojíte, začnete klikať na úlohy ako orechy a budete sa pri tom baviť!

Geometrická postupnosť je postupnosť čísel b1, b2, b3, ... , b(n-1), b(n) taká, že b2=b1*q, b3=b2*q, ... , b(n) ) =b(n-1)*q, b1≠0, q≠0. Inými slovami, každý člen progresie sa získa z predchádzajúceho vynásobením nejakým nenulovým menovateľom progresie q.

Inštrukcia

Problémy na progresii sa najčastejšie riešia zostavením a dodržaním systému vzhľadom na prvý člen progresie b1 a menovateľa progresie q. Na písanie rovníc je užitočné zapamätať si niektoré vzorce.

Ako vyjadriť n-tý člen postupnosti cez prvý člen postupnosti a menovateľ postupnosti: b(n)=b1*q^(n-1).

Zvážte samostatne prípad |q|<1. Если знаменатель прогрессии по модулю меньше единицы, имеем бесконечно убывающую геометрическую . Сумма первых n членов бесконечно убывающей геометрической прогрессии ищется так же, как и для неубывающей геометрической прогрессии. Однако в случае бесконечно убывающей геометрической прогрессии можно найти также сумму всех членов этой прогрессии, поскольку при бесконечном n будет бесконечно уменьшаться значение b(n), и сумма всех членов будет стремиться к определенному пределу. Итак, сумма всех членов бесконечно убывающей геометрической прогрессии

Lekcia a prezentácia na tému: "Číselné postupnosti. Geometrická postupnosť"

Dodatočné materiály
Vážení používatelia, nezabudnite zanechať svoje komentáre, spätnú väzbu, návrhy! Všetky materiály sú kontrolované antivírusovým programom.

Učebné pomôcky a simulátory v internetovom obchode "Integral" pre ročník 9
Funkcie a grafy mocnin a koreňov

Chlapci, dnes sa zoznámime s iným typom progresie.
Témou dnešnej hodiny je geometrický postup.

Geometrická progresia

Definícia. Číselná postupnosť, v ktorej sa každý člen, počnúc druhým, rovná súčinu predchádzajúceho a nejakého pevného čísla, sa nazýva geometrická postupnosť.
Definujme našu postupnosť rekurzívne: $b_(1)=b$, $b_(n)=b_(n-1)*q$,
kde b a q sú určité dané čísla. Číslo q sa nazýva menovateľ progresie.

Príklad. 1,2,4,8,16… Geometrická postupnosť, v ktorej sa prvý člen rovná jednej a $q=2$.

Príklad. 8,8,8,8… Geometrická postupnosť, ktorej prvý člen je osem,
a $q=1$.

Príklad. 3,-3,3,-3,3... Geometrická postupnosť, ktorej prvý člen je tri,
a $q=-1$.

Geometrický postup má vlastnosti monotónnosti.
Ak $b_(1)>0$, $q>1$,
potom sa postupnosť zvyšuje.
Ak $b_(1)>0$, $0 Postupnosť sa zvyčajne označuje ako: $b_(1), b_(2), b_(3), ..., b_(n), ...$.

Rovnako ako v aritmetickej postupnosti, ak je počet prvkov v geometrickej postupnosti konečný, potom sa postupnosť nazýva konečná geometrická postupnosť.

$b_(1), b_(2), b_(3), ..., b_(n-2), b_(n-1), b_(n)$.
Všimnite si, že ak je postupnosť geometrickou progresiou, potom postupnosť umocnených členov je tiež geometrická postupnosť. Druhá postupnosť má prvý člen $b_(1)^2$ a menovateľ $q^2$.

Vzorec n-tého člena geometrickej postupnosti

Geometrická postupnosť môže byť špecifikovaná aj v analytickej forme. Pozrime sa, ako na to:
$b_(1)=b_(1)$.
$b_(2)=b_(1)*q$.
$b_(3)=b_(2)*q=b_(1)*q*q=b_(1)*q^2$.
$b_(4)=b_(3)*q=b_(1)*q^3$.
$b_(5)=b_(4)*q=b_(1)*q^4$.
Môžeme ľahko vidieť vzor: $b_(n)=b_(1)*q^(n-1)$.
Náš vzorec sa nazýva "vzorec n-tého člena geometrickej postupnosti".

Vráťme sa k našim príkladom.

Príklad. 1,2,4,8,16… geometrická postupnosť, ktorej prvý člen sa rovná jednej,
a $q=2$.
$b_(n)=1*2^(n)=2^(n-1)$.

Príklad. 16,8,4,2,1,1/2… Geometrická postupnosť, ktorej prvý člen je šestnásť a $q=\frac(1)(2)$.
$b_(n)=16*(\frac(1)(2))^(n-1)$.

Príklad. 8,8,8,8… Geometrická postupnosť, kde prvý člen je osem a $q=1$.
$b_(n)=8*1^(n-1)=8$.

Príklad. 3,-3,3,-3,3… Geometrická postupnosť, ktorej prvý člen je tri a $q=-1$.
$b_(n)=3*(-1)^(n-1)$.

Príklad. Daná geometrická postupnosť $b_(1), b_(2), …, b_(n), … $.
a) Je známe, že $b_(1)=6, q=3$. Nájdite $b_(5)$.
b) Je známe, že $b_(1)=6, q=2, b_(n)=768$. Nájsť n.
c) Je známe, že $q=-2, b_(6)=96$. Nájdite $b_(1)$.
d) Je známe, že $b_(1)=-2, b_(12)=4096$. Nájdite q.

Riešenie.
a) $b_(5)=b_(1)*q^4=6*3^4=486$.
b) $b_n=b_1*q^(n-1)=6*2^(n-1)=768$.
$2^(n-1)=\frac(768)(6)=128$ keďže $2^7=128 => n-1=7; n = 8 $.
c) $b_(6)=b_(1)*q^5=b_(1)*(-2)^5=-32*b_(1)=96 => b_(1)=-3$.
d) $b_(12)=b_(1)*q^(11)=-2*q^(11)=4096 => q^(11)=-2048 => q=-2$.

Príklad. Rozdiel medzi siedmym a piatym členom geometrickej postupnosti je 192, súčet piateho a šiesteho člena geometrickej postupnosti je 192. Nájdite desiaty člen tejto postupnosti.

Riešenie.
Vieme, že: $b_(7)-b_(5)=192$ a $b_(5)+b_(6)=192$.
Tiež vieme: $b_(5)=b_(1)*q^4$; $b_(6)=b_(1)*q^5$; $b_(7)=b_(1)*q^6$.
potom:
$b_(1)*q^6-b_(1)*q^4=192 $.
$b_(1)*q^4+b_(1)*q^5=192$.
Dostali sme systém rovníc:
$\začiatok(prípady)b_(1)*q^4(q^2-1)=192\\b_(1)*q^4(1+q)=192\koniec (prípady)$.
Ak dávame rovnítko, naše rovnice dostanú:
$b_(1)*q^4(q^2-1)=b_(1)*q^4(1+q)$.
$q^2-1=q+1$.
$q^2-q-2=0$.
Máme dve riešenia q: $q_(1)=2, q_(2)=-1$.
Dosadzujte postupne do druhej rovnice:
$b_(1)*2^4*3=192 => b_(1)=4$.
$b_(1)*(-1)^4*0=192 =>$ žiadne riešenia.
Máme toto: $b_(1)=4, q=2$.
Nájdeme desiaty člen: $b_(10)=b_(1)*q^9=4*2^9=2048$.

Súčet konečnej geometrickej postupnosti

Predpokladajme, že máme konečnú geometrickú postupnosť. Vypočítajme, rovnako ako pre aritmetickú postupnosť, súčet jej členov.

Nech je daná konečná geometrická postupnosť: $b_(1),b_(2),…,b_(n-1),b_(n)$.
Uveďme si zápis súčtu jeho členov: $S_(n)=b_(1)+b_(2)+⋯+b_(n-1)+b_(n)$.
V prípade, keď $q=1$. Všetky členy geometrickej postupnosti sú rovné prvému členu, potom je zrejmé, že $S_(n)=n*b_(1)$.
Zvážte teraz prípad $q≠1$.
Vynásobte vyššie uvedené množstvo q.
$S_(n)*q=(b_(1)+b_(2)+⋯+b_(n-1)+b_(n))*q=b_(1)*q+b_(2)*q+⋯ +b_(n-1)*q+b_(n)*q=b_(2)+b_(3)+⋯+b_(n)+b_(n)*q$.
Poznámka:
$S_(n)=b_(1)+(b_(2)+⋯+b_(n-1)+b_(n))$.
$S_(n)*q=(b_(2)+⋯+b_(n-1)+b_(n))+b_(n)*q$.

$S_(n)*q-S_(n)=(b_(2)+⋯+b_(n-1)+b_(n))+b_(n)*q-b_(1)-(b_(2) )+⋯+b_(n-1)+b_(n))=b_(n)*q-b_(1)$.

$S_(n)(q-1)=b_(n)*q-b_(1)$.

$S_(n)=\frac(b_(n)*q-b_(1))(q-1)=\frac(b_(1)*q^(n-1)*q-b_(1)) (q-1)=\frac(b_(1)(q^(n)-1))(q-1)$.

$S_(n)=\frac(b_(1)(q^(n)-1))(q-1)$.

Získali sme vzorec pre súčet konečnej geometrickej postupnosti.


Príklad.
Nájdite súčet prvých siedmich členov geometrickej postupnosti, ktorej prvý člen je 4 a menovateľ je 3.

Riešenie.
$S_(7)=\frac(4*(3^(7)-1))(3-1)=2*(3^(7)-1)=4372$.

Príklad.
Nájdite piaty člen geometrickej postupnosti, ktorý je známy: $b_(1)=-3$; $b_(n)=-3072$; $S_(n)=-4095$.

Riešenie.
$b_(n)=(-3)*q^(n-1)=-3072$.
$q^(n-1)=1024 $.
$q^(n)=1024q$.

$S_(n)=\frac(-3*(q^(n)-1))(q-1)=-4095$.
$-4095(q-1)=-3*(q^(n)-1)$.
$-4095(q-1)=-3*(1024q-1)$.
$1365q-1365=1024q-1$.
341 $ q=1 364 $.
$q=4$.
$b_5=b_1*q^4=-3*4^4=-3*256=-768$.

Charakteristická vlastnosť geometrickej postupnosti

Chlapci, vzhľadom na geometrický postup. Zoberme si jeho tri po sebe idúce členy: $b_(n-1),b_(n),b_(n+1)$.
My to vieme:
$\frac(b_(n))(q)=b_(n-1)$.
$b_(n)*q=b_(n+1)$.
potom:
$\frac(b_(n))(q)*b_(n)*q=b_(n)^(2)=b_(n-1)*b_(n+1)$.
$b_(n)^(2)=b_(n-1)*b_(n+1)$.
Ak je postupnosť konečná, potom táto rovnosť platí pre všetky členy okrem prvého a posledného.
Ak nie je vopred známe, aký druh postupnosti sekvencia má, ale je známe, že: $b_(n)^(2)=b_(n-1)*b_(n+1)$.
Potom môžeme s istotou povedať, že ide o geometrickú progresiu.

Číselná postupnosť je geometrická postupnosť iba vtedy, keď sa druhá mocnina každého z jej členov rovná súčinu dvoch susedných členov postupnosti. Nezabudnite, že pre konečný postup nie je táto podmienka splnená pre prvý a posledný termín.


Pozrime sa na túto identitu: $\sqrt(b_(n)^(2))=\sqrt(b_(n-1)*b_(n+1))$.
$|b_(n)|=\sqrt(b_(n-1)*b_(n+1))$.
$\sqrt(a*b)$ sa nazýva geometrický priemer a a b.

Modul ktoréhokoľvek člena geometrickej progresie sa rovná geometrickému priemeru dvoch susedných členov.


Príklad.
Nájdite x také, že $x+2; 2x+2; 3x+3$ boli tri po sebe idúce členy geometrickej progresie.

Riešenie.
Využime charakteristickú vlastnosť:
$(2x+2)^2=(x+2)(3x+3)$.
$4x^2+8x+4=3x^2+3x+6x+6$.
$x^2-x-2=0$.
$x_(1)=2$ a $x_(2)=-1$.
Postupne nahraďte v pôvodnom výraze naše riešenia:
S $x=2$ sme dostali postupnosť: 4;6;9 je geometrická progresia s $q=1,5$.
S $x=-1$ sme dostali postupnosť: 1;0;0.
Odpoveď: $x=2.$

Úlohy na samostatné riešenie

1. Nájdite ôsmy prvý člen geometrickej postupnosti 16; -8; 4; -2 ....
2. Nájdite desiaty člen geometrickej postupnosti 11,22,44….
3. Je známe, že $b_(1)=5, q=3$. Nájdite $b_(7)$.
4. Je známe, že $b_(1)=8, q=-2, b_(n)=512$. Nájsť n.
5. Nájdite súčet prvých 11 členov geometrickej postupnosti 3;12;48….
6. Nájdite x také, že $3x+4; 2x+4; x+5$ sú tri po sebe idúce členy geometrickej postupnosti.

Geometrická postupnosť je spolu s aritmetikou dôležitým číselným radom, ktorý sa študuje v kurze školskej algebry v 9. ročníku. V tomto článku sa budeme zaoberať menovateľom geometrickej progresie a tým, ako jej hodnota ovplyvňuje jej vlastnosti.

Definícia geometrickej progresie

Na začiatok uvádzame definíciu tohto číselného radu. Geometrická postupnosť je séria racionálne čísla, ktorý vzniká postupným násobením jeho prvého prvku konštantným číslom nazývaným menovateľ.

Napríklad čísla v rade 3, 6, 12, 24, ... sú geometrickou postupnosťou, pretože ak vynásobíme 3 (prvý prvok) 2, dostaneme 6. Ak 6 vynásobíme 2, dostaneme 12 a tak ďalej.

Členy uvažovanej postupnosti sa zvyčajne označujú symbolom ai, kde i je celé číslo označujúce číslo prvku v rade.

Vyššie uvedená definícia progresie môže byť napísaná v jazyku matematiky takto: an = bn-1 * a1, kde b je menovateľ. Je ľahké skontrolovať tento vzorec: ak n = 1, potom b1-1 = 1 a dostaneme a1 = a1. Ak n = 2, potom an = b * a1 a opäť sa dostávame k definícii uvažovaného radu čísel. V podobných úvahách možno pokračovať veľké hodnoty n.

Menovateľ geometrickej progresie


Číslo b úplne určuje, aký charakter bude mať celý číselný rad. Menovateľ b môže byť kladný, záporný a môže mať aj hodnotu väčšiu ako jedna alebo menej. Všetky vyššie uvedené možnosti vedú k rôznym sekvenciám:

  • b > 1. Existuje rastúci rad racionálnych čísel. Napríklad 1, 2, 4, 8, ... Ak je prvok a1 záporný, potom sa celá postupnosť zvýši iba modulo, ale zníži sa s prihliadnutím na znamienko čísel.
  • b = 1. Takýto prípad sa často nenazýva progresia, pretože existuje obyčajný rad rovnakých racionálnych čísel. Napríklad -4, -4, -4.

Vzorec pre sumu

Predtým, ako pristúpime k zváženiu konkrétnych problémov pomocou menovateľa typu uvažovanej progresie, je potrebné uviesť dôležitý vzorec pre súčet jeho prvých n prvkov. Vzorec je: Sn = (bn - 1) * a1 / (b - 1).

Tento výraz môžete získať sami, ak vezmete do úvahy rekurzívnu postupnosť členov progresie. Všimnite si tiež, že vo vyššie uvedenom vzorci stačí poznať iba prvý prvok a menovateľ, aby ste našli súčet ľubovoľného počtu členov.

Nekonečne klesajúca sekvencia


Vyššie bolo vysvetlenie, čo to je. Teraz, keď poznáme vzorec pre Sn, aplikujme ho na tento číselný rad. Pretože každé číslo, ktorého modul nepresahuje 1, má sklon k nule, keď sa zvýši na veľké mocniny, to znamená, že b∞ => 0, ak -1

Keďže rozdiel (1 - b) bude vždy kladný, bez ohľadu na hodnotu menovateľa, znamienko súčtu nekonečne klesajúcej geometrickej postupnosti S∞ je jednoznačne určené znamienkom jej prvého prvku a1.

Teraz zvážime niekoľko problémov, kde si ukážeme, ako aplikovať získané poznatky na konkrétne čísla.

Úloha číslo 1. Výpočet neznámych prvkov postupu a súčtu

Pri geometrickej postupnosti je menovateľ postupnosti 2 a jej prvý prvok je 3. Aký bude jej 7. a 10. člen a aký je súčet jej siedmich počiatočných prvkov?

Podmienka problému je pomerne jednoduchá a zahŕňa priame použitie vyššie uvedených vzorcov. Na výpočet prvku s číslom n teda použijeme výraz an = bn-1 * a1. Pre 7. prvok máme: a7 = b6 * a1, dosadením známych údajov dostaneme: a7 = 26 * 3 = 192. To isté urobíme pre 10. člen: a10 = 29 * 3 = 1536.

Pre súčet použijeme známy vzorec a určíme túto hodnotu pre prvých 7 prvkov série. Máme: S7 = (27 - 1) * 3 / (2 - 1) = 381.

Úloha číslo 2. Určenie súčtu ľubovoľných prvkov postupu

Nech -2 je menovateľ exponenciálnej postupnosti bn-1 * 4, kde n je celé číslo. Je potrebné určiť súčet od 5. do 10. prvku tohto radu vrátane.

Nastolený problém nemožno vyriešiť priamo pomocou známych vzorcov. Môžete to vyriešiť pomocou 2 rôzne metódy. Pre úplnosť uvádzame oboje.

Metóda 1. Jej myšlienka je jednoduchá: musíte vypočítať dva zodpovedajúce súčty prvých členov a potom od jedného odpočítať druhý. Vypočítajte menší súčet: S10 = ((-2)10 - 1) * 4 / (-2 - 1) = -1364. Teraz vypočítame veľkú sumu: S4 = ((-2)4 - 1) * 4 / (-2 - 1) = -20. Všimnite si, že v poslednom výraze boli sčítané iba 4 výrazy, keďže 5. je už zahrnutý v súčte, ktorý je potrebné vypočítať podľa stavu problému. Nakoniec vezmeme rozdiel: S510 = S10 - S4 = -1364 - (-20) = -1344.

Metóda 2. Pred dosadením čísel a počítaním môžete získať vzorec pre súčet medzi členmi m a n príslušného radu. Postupujeme presne tak, ako pri metóde 1, len najprv pracujeme so symbolickým znázornením súčtu. Máme: Snm = (bn - 1) * a1 / (b - 1) - (bm-1 - 1) * a1 / (b - 1) = a1 * (bn - bm-1) / (b - 1) . Do výsledného výrazu môžete dosadiť známe čísla a vypočítať konečný výsledok: S105 = 4 * ((-2)10 - (-2)4) / (-2 - 1) = -1344.

Úloha číslo 3. Aký je menovateľ?


Nech a1 = 2, nájdite menovateľa geometrickej postupnosti za predpokladu, že jeho nekonečná suma je 3 a je známe, že ide o klesajúci rad čísel.

Podľa stavu problému nie je ťažké uhádnuť, ktorý vzorec by sa mal použiť na jeho vyriešenie. Samozrejme, za súčet nekonečne klesajúcej progresie. Máme: S∞ = a1 / (1 - b). Odkiaľ vyjadrujeme menovateľ: b = 1 - a1 / S∞. Zostáva nahradiť známe hodnoty a získajte požadované číslo: b = 1 - 2 / 3 = -1 / 3 alebo -0,333(3). Tento výsledok môžeme kvalitatívne skontrolovať, ak si zapamätáme, že pre tento typ sekvencie modul b nesmie prekročiť hodnotu 1. Ako vidíte, |-1 / 3|

Úloha číslo 4. Obnovenie série čísel

Nech sú dané 2 prvky číselného radu, napríklad 5. sa rovná 30 a 10. sa rovná 60. Z týchto údajov je potrebné obnoviť celý rad s vedomím, že spĺňa vlastnosti geometrickej postupnosti.

Ak chcete problém vyriešiť, musíte si najprv zapísať zodpovedajúci výraz pre každý známy člen. Máme: a5 = b4 * a1 a a10 = b9 * a1. Teraz vydelíme druhý výraz prvým, dostaneme: a10 / a5 = b9 * a1 / (b4 * a1) = b5. Odtiaľ určíme menovateľa tak, že odmocninu piateho stupňa z podielu členov známych z podmienky úlohy, b = 1,148698. Výsledné číslo dosadíme do jedného z výrazov pre známy prvok, dostaneme: a1 = a5 / b4 = 30 / (1,148698)4 = 17,2304966.

Zistili sme teda, čo je menovateľom progresie bn a geometrickej postupnosti bn-1 * 17,2304966 = an, kde b = 1,148698.

Kde sa používajú geometrické postupnosti?


Ak by neexistovala aplikácia tohto číselného radu v praxi, potom by sa jeho štúdium zredukovalo na čisto teoretický záujem. Ale existuje taká aplikácia.


Nižšie sú uvedené 3 najznámejšie príklady:

  • Zenónov paradox, v ktorom agilný Achilles nestíha pomalú korytnačku, je riešený konceptom nekonečne klesajúcej postupnosti čísel.
  • Ak pre každú bunku šachovnica pšeničné zrná vložte tak, že 1 zrno umiestnite na 1. bunku, 2 - na 2., 3 - na 3. atď., potom na vyplnenie všetkých buniek dosky budete potrebovať 18446744073709551615 zŕn!
  • V hre „Hanojská veža“ je na preskupenie diskov z jednej tyče na druhú potrebné vykonať 2n - 1 operácií, to znamená, že ich počet rastie exponenciálne od počtu použitých diskov n.

Ak každé prirodzené číslo n zodpovedať skutočnému číslu a n , potom hovoria, že daný číselná postupnosť :

a 1 , a 2 , a 3 , . . . , a n , . . . .

Takže číselná postupnosť je funkciou prirodzeného argumentu.

číslo a 1 volal prvý člen postupnosti , číslo a 2 druhý člen postupnosti , číslo a 3 tretí a tak ďalej. číslo a n volal n-tý člen sekvencie a prirodzené číslo njeho číslo .

Od dvoch susedných členov a n A a n +1 členské sekvencie a n +1 volal následné (smerom k a n ), A a n predchádzajúce (smerom k a n +1 ).

Ak chcete zadať sekvenciu, musíte zadať metódu, ktorá vám umožní nájsť člena sekvencie s ľubovoľným číslom.

Často sa postupnosť uvádza s vzorce n-tého členu , teda vzorec, ktorý umožňuje určiť člen sekvencie podľa jeho čísla.

Napríklad,

postupnosť kladných nepárnych čísel môže byť daná vzorcom

a n= 2n- 1,

a postupnosť striedania 1 A -1 - vzorec

b n = (-1)n +1 .

Poradie sa dá určiť opakujúci sa vzorec, teda vzorec, ktorý vyjadruje ľubovoľný člen postupnosti, počnúc niektorým, cez predchádzajúce (jeden alebo viacero) členov.

Napríklad,

Ak a 1 = 1 , A a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

Ak 1= 1, a 2 = 1, a n +2 = a n + a n +1 , potom prvých sedem termínov číselná postupnosť nastaviť nasledovne:

1 = 1,

a 2 = 1,

a 3 = 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Sekvencie môžu byť Konečný A nekonečné .

Sekvencia je tzv konečný ak má konečný počet členov. Sekvencia je tzv nekonečné ak má nekonečne veľa členov.

Napríklad,

postupnosť dvojciferných prirodzených čísel:

10, 11, 12, 13, . . . , 98, 99

Konečný.

Poradie prvočísel:

2, 3, 5, 7, 11, 13, . . .

nekonečné.

Sekvencia je tzv zvyšujúci sa , ak je každý z jeho členov, počnúc druhým, väčší ako predchádzajúci.

Sekvencia je tzv ubúdanie , ak je každý jeho člen, počnúc druhým, menší ako predchádzajúci.

Napríklad,

2, 4, 6, 8, . . . , 2n, . . . je vzostupná sekvencia;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 /n, . . . je zostupná postupnosť.

Postupnosť, ktorej prvky s rastúcim počtom neklesajú, alebo naopak nerastú, sa nazýva monotónna postupnosť .

Monotónne sekvencie sú najmä rastúce sekvencie a klesajúce sekvencie.

Aritmetický postup

Aritmetický postup volá sa postupnosť, ktorej každý člen od druhého sa rovná predchádzajúcemu, ku ktorému sa pridá rovnaké číslo.

a 1 , a 2 , a 3 , . . . , a n, . . .

je aritmetický postup, ak existuje prirodzené číslo n podmienka je splnená:

a n +1 = a n + d,

Kde d - nejaké číslo.

Rozdiel medzi nasledujúcim a predchádzajúcim členom danej aritmetickej progresie je teda vždy konštantný:

a 2 - a 1 = a 3 - a 2 = . . . = a n +1 - a n = d.

číslo d volal rozdiel aritmetického postupu.

Na nastavenie aritmetického postupu stačí zadať jeho prvý člen a rozdiel.

Napríklad,

Ak a 1 = 3, d = 4 , potom prvých päť členov postupnosti nájdete takto:

1 =3,

a 2 = 1 + d = 3 + 4 = 7,

a 3 = a 2 + d= 7 + 4 = 11,

a 4 = a 3 + d= 11 + 4 = 15,

a 5 = a 4 + d= 15 + 4 = 19.

Pre aritmetický postup s prvým členom a 1 a rozdiel d jej n

a n = 1 + (n- 1)d.

Napríklad,

nájsť tridsiaty člen aritmetického postupu

1, 4, 7, 10, . . .

1 =1, d = 3,

30 = 1 + (30 - 1)d= 1 + 29· 3 = 88.

a n-1 = 1 + (n- 2)d,

a n= 1 + (n- 1)d,

a n +1 = a 1 + nd,

potom samozrejme

a n=
a n-1 + a n+1
2

každý člen aritmetického postupu od druhého sa rovná aritmetickému priemeru predchádzajúceho a nasledujúceho člena.

čísla a, b a c sú po sebe idúcimi členmi nejakej aritmetickej postupnosti vtedy a len vtedy, ak sa jedno z nich rovná aritmetickému priemeru ostatných dvoch.

Napríklad,

a n = 2n- 7 , je aritmetický postup.

Využime vyššie uvedené tvrdenie. Máme:

a n = 2n- 7,

a n-1 = 2(n- 1) - 7 = 2n- 9,

a n+1 = 2(n+ 1) - 7 = 2n- 5.

teda

a n+1 + a n-1
=
2n- 5 + 2n- 9
= 2n- 7 = a n,
2
2

Poznač si to n -tý člen aritmetického postupu možno nájsť nielen cez a 1 , ale aj akékoľvek predchádzajúce a k

a n = a k + (n- k)d.

Napríklad,

Pre a 5 dá sa napísať

a 5 = 1 + 4d,

a 5 = a 2 + 3d,

a 5 = a 3 + 2d,

a 5 = a 4 + d.

a n = a n-k + kd,

a n = a n+k - kd,

potom samozrejme

a n=
a n-k + a n+k
2

ktorýkoľvek člen aritmetickej postupnosti, začínajúc od druhého, sa rovná polovici súčtu členov tejto aritmetickej postupnosti, ktoré sú od nej rovnako vzdialené.

Okrem toho pre akúkoľvek aritmetickú postupnosť platí rovnosť:

a m + a n = a k + a l,

m + n = k + l.

Napríklad,

v aritmetickej progresii

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = 10 = a 3 + 7d= 7 + 7 3 = 7 + 21 = 28;

3) 10= 28 = (19 + 37)/2 = (7 + 13)/2;

4) a 2 + a 12 = a 5 + a 9, pretože

a 2 + a 12= 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n= a 1 + a 2 + a 3 + . . .+ a n,

najprv n členov aritmetickej progresie sa rovná súčinu polovice súčtu extrémnych členov počtom členov:

Z toho najmä vyplýva, že ak je potrebné sčítať termíny

a k, a k +1 , . . . , a n,

potom si predchádzajúci vzorec zachová svoju štruktúru:

Napríklad,

v aritmetickej progresii 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Ak je daný aritmetická progresia, potom množstvá a 1 , a n, d, n AS n spojené dvoma vzorcami:

Preto, ak sú uvedené hodnoty troch z týchto veličín, potom zodpovedajúce hodnoty ďalších dvoch veličín sú určené z týchto vzorcov kombinovaných do systému dvoch rovníc s dvoma neznámymi.

Aritmetický postup je monotónna postupnosť. kde:

  • Ak d > 0 , potom sa zvyšuje;
  • Ak d < 0 , potom sa znižuje;
  • Ak d = 0 , potom bude sekvencia nehybná.

Geometrická progresia

geometrická progresia volá sa postupnosť, ktorej každý člen od druhého sa rovná predchádzajúcemu, vynásobený rovnakým číslom.

b 1 , b 2 , b 3 , . . . , b n, . . .

je geometrická postupnosť pre akékoľvek prirodzené číslo n podmienka je splnená:

b n +1 = b n · q,

Kde q ≠ 0 - nejaké číslo.

Pomer nasledujúceho člena tejto geometrickej postupnosti k predchádzajúcemu je teda konštantné číslo:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q.

číslo q volal menovateľ geometrickej postupnosti.

Na stanovenie geometrickej progresie stačí zadať jej prvý člen a menovateľa.

Napríklad,

Ak b 1 = 1, q = -3 , potom prvých päť členov postupnosti nájdete takto:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q= -3 · (-3) = 9,

b 4 = b 3 · q= 9 · (-3) = -27,

b 5 = b 4 · q= -27 · (-3) = 81.

b 1 a menovateľ q jej n -tý člen možno nájsť podľa vzorca:

b n = b 1 · q n -1 .

Napríklad,

nájdite siedmy člen geometrickej postupnosti 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 2 6 = 64.

bn-1 = b 1 · q n -2 ,

b n = b 1 · q n -1 ,

b n +1 = b 1 · q n,

potom samozrejme

b n 2 = b n -1 · b n +1 ,

každý člen geometrickej postupnosti, začínajúc od druhého, sa rovná geometrickému priemeru (proporcionálnemu) predchádzajúceho a nasledujúceho člena.

Keďže platí aj opak, platí nasledujúce tvrdenie:

čísla a, b a c sú po sebe idúce členy nejakej geometrickej postupnosti vtedy a len vtedy, ak sa druhá mocnina jedného z nich rovná súčinu ostatných dvoch, to znamená, že jedno z čísel je geometrickým priemerom ostatných dvoch.

Napríklad,

dokážme, že postupnosť daná vzorcom b n= -3 2 n , je geometrický postup. Využime vyššie uvedené tvrdenie. Máme:

b n= -3 2 n,

b n -1 = -3 2 n -1 ,

b n +1 = -3 2 n +1 .

teda

b n 2 = (-3 2 n) 2 = (-3 2 n -1 ) (-32 n +1 ) = b n -1 · b n +1 ,

ktorý dokazuje požadované tvrdenie.

Poznač si to n člen geometrickej progresie možno nájsť nielen cez b 1 , ale aj akékoľvek predchádzajúce obdobie b k , na čo stačí použiť vzorec

b n = b k · q n - k.

Napríklad,

Pre b 5 dá sa napísať

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3,

b 5 = b 3 · q2,

b 5 = b 4 · q.

b n = b k · q n - k,

b n = b n - k · q k,

potom samozrejme

b n 2 = b n - k· b n + k

druhá mocnina ktoréhokoľvek člena geometrickej postupnosti, počínajúc druhým, sa rovná súčinu členov tejto postupnosti, ktoré sú od nej rovnako vzdialené.

Okrem toho pre akúkoľvek geometrickú progresiu platí rovnosť:

b m· b n= b k· b l,

m+ n= k+ l.

Napríklad,

exponenciálne

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , pretože

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n= b 1 + b 2 + b 3 + . . . + b n

najprv n termíny geometrickej postupnosti s menovateľom q 0 vypočítané podľa vzorca:

A kedy q = 1 - podľa vzorca

S n= n.b. 1

Všimnite si, že ak potrebujeme sčítať podmienky

b k, b k +1 , . . . , b n,

potom sa použije vzorec:

S n- S k -1 = b k + b k +1 + . . . + b n = b k · 1 - q n - k +1
.
1 - q

Napríklad,

exponenciálne 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Ak je daná geometrická postupnosť, potom množstvá b 1 , b n, q, n A S n spojené dvoma vzorcami:

Preto, ak sú uvedené hodnoty akýchkoľvek troch z týchto veličín, potom zodpovedajúce hodnoty ďalších dvoch veličín sú určené z týchto vzorcov kombinovaných do systému dvoch rovníc s dvoma neznámymi.

Pre geometrický postup s prvým členom b 1 a menovateľ q prebieha nasledovné vlastnosti monotónnosti :

  • progresia sa zvyšuje, ak je splnená jedna z nasledujúcich podmienok:

b 1 > 0 A q> 1;

b 1 < 0 A 0 < q< 1;

  • Progresia sa znižuje, ak je splnená jedna z nasledujúcich podmienok:

b 1 > 0 A 0 < q< 1;

b 1 < 0 A q> 1.

Ak q< 0 , potom je geometrická postupnosť znamienkovo ​​striedavá: jej nepárne členy majú rovnaké znamienko ako jej prvý člen a párne členy majú opačné znamienko. Je jasné, že striedavý geometrický postup nie je monotónny.

Produkt prvého n členy geometrickej progresie možno vypočítať podľa vzorca:

P n= b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n) n / 2 .

Napríklad,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Nekonečne klesajúca geometrická progresia

Nekonečne klesajúca geometrická progresia sa nazýva nekonečná geometrická postupnosť, ktorej modul menovateľa je menší ako 1 , teda

|q| < 1 .

Všimnite si, že nekonečne klesajúca geometrická progresia nemusí byť klesajúca postupnosť. Toto sa hodí na prípad

1 < q< 0 .

S takýmto menovateľom je postupnosť znamienkovo ​​striedavá. Napríklad,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Súčet nekonečne klesajúcej geometrickej progresie pomenujte číslo, ku ktorému je súčet prvého n podmienky postupu s neobmedzeným nárastom počtu n . Toto číslo je vždy konečné a je vyjadrené vzorcom

S= b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

Napríklad,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Vzťah medzi aritmetickými a geometrickými postupnosťami

Aritmetické a geometrické postupnosti spolu úzko súvisia. Uvažujme len o dvoch príkladoch.

a 1 , a 2 , a 3 , . . . d , To

b a 1 , b a 2 , b a 3 , . . . b d .

Napríklad,

1, 3, 5, . . . — aritmetický postup s rozdielom 2 A

7 1 , 7 3 , 7 5 , . . . je geometrická postupnosť s menovateľom 7 2 .

b 1 , b 2 , b 3 , . . . je geometrická postupnosť s menovateľom q , To

log a b 1, log a b 2, log a b 3, . . . — aritmetický postup s rozdielom log aq .

Napríklad,

2, 12, 72, . . . je geometrická postupnosť s menovateľom 6 A

lg 2, lg 12, lg 72, . . . — aritmetický postup s rozdielom lg 6 .

Geometrická progresia nemenej dôležité v matematike ako v aritmetike. Geometrická postupnosť je taká postupnosť čísel b1, b2,..., b[n], ktorej každý ďalší člen sa získa vynásobením predchádzajúceho konštantným číslom. Toto číslo, ktoré tiež charakterizuje rýchlosť rastu alebo poklesu progresie, sa nazýva menovateľ geometrickej postupnosti a označujú

Pre úplné priradenie geometrickej postupnosti je okrem menovateľa potrebné poznať alebo určiť jej prvý člen. Pre kladnú hodnotu menovateľa je postupnosť monotónna postupnosť, a ak táto postupnosť čísel monotónne klesá a kedy monotónne rastie. Prípad, keď sa menovateľ rovná jednej, sa v praxi neuvažuje, pretože máme postupnosť rovnakých čísel a ich súčet nie je praktický.

Všeobecný pojem geometrickej postupnosti vypočítané podľa vzorca

Súčet prvých n členov geometrickej postupnosti určený vzorcom

Uvažujme o riešeniach klasických úloh geometrickej postupnosti. Začnime tým najjednoduchším na pochopenie.

Príklad 1. Prvý člen geometrickej postupnosti je 27 a jej menovateľ je 1/3. Nájdite prvých šesť členov geometrickej postupnosti.

Riešenie: Do formulára napíšeme podmienku úlohy

Na výpočty používame vzorec pre n-tý člen geometrickej postupnosti

Na základe nej nachádzame neznámych členov progresie

Ako vidíte, výpočet podmienok geometrickej progresie nie je zložitý. Samotný postup bude vyzerať takto

Príklad 2. Prvé tri členy geometrickej postupnosti sú dané: 6; -12; 24. Nájdite menovateľa a siedmy člen.

Riešenie: Menovateľa geometrickej postupnosti vypočítame na základe jej definície

Dostali sme striedavý geometrický postup, ktorého menovateľ je -2. Siedmy člen sa vypočíta podľa vzorca

Na tejto úlohe je vyriešená.

Príklad 3. Geometrická postupnosť je daná dvoma jej členmi . Nájdite desiaty termín postupu.

Riešenie:

Napíšme dané hodnoty cez vzorce

Podľa pravidiel by bolo potrebné nájsť menovateľa a potom hľadať požadovanú hodnotu, ale pre desiaty člen máme

Rovnaký vzorec možno získať na základe jednoduchých manipulácií so vstupnými údajmi. Šiesty termín série delíme ďalším, v dôsledku čoho dostaneme

Ak sa výsledná hodnota vynásobí šiestym členom, dostaneme desiaty

Teda na takéto problémy pomocou jednoduchých premien do rýchly spôsob môžete nájsť správne riešenie.

Príklad 4. Geometrická postupnosť je daná opakujúcimi sa vzorcami

Nájdite menovateľa geometrickej postupnosti a súčet prvých šiestich členov.

Riešenie:

Dané údaje zapisujeme vo forme sústavy rovníc

Vyjadrite menovateľ tak, že druhú rovnicu vydelíte prvou

Nájdite prvý člen postupu z prvej rovnice

Vypočítajte nasledujúcich päť členov, aby ste našli súčet geometrickej postupnosti