12.10.2019

Pretože základy logaritmov sú rovnaké. Definícia logaritmu, základná logaritmická identita


Ako viete, pri násobení výrazov mocninami sa ich exponenty vždy sčítajú (a b *a c = a b+c). Tento matematický zákon odvodil Archimedes a neskôr, v 8. storočí, vytvoril matematik Virasen tabuľku celočíselných exponentov. Boli to oni, ktorí slúžili na ďalšie objavovanie logaritmov. Príklady využitia tejto funkcie nájdete takmer všade tam, kde si potrebujete zjednodušiť ťažkopádne násobenie jednoduchým sčítaním. Ak strávite 10 minút čítaním tohto článku, vysvetlíme vám, čo sú to logaritmy a ako s nimi pracovať. Jednoduchým a prístupným jazykom.

Definícia v matematike

Logaritmus je vyjadrením nasledujúceho tvaru: log a b=c, teda logaritmus ľubovoľného nezáporného čísla (teda akéhokoľvek kladného) „b“ k základu „a“ sa považuje za mocninu „c“. “, na ktorú musí byť základ „a“ zvýšený, aby sa nakoniec získala hodnota „b“. Analyzujme logaritmus na príkladoch, povedzme, že existuje výraz log 2 8. Ako nájsť odpoveď? Je to veľmi jednoduché, musíte nájsť výkon tak, aby od 2 po požadovaný výkon dostal 8. Po vykonaní niekoľkých výpočtov v hlave dostaneme číslo 3! A to je pravda, pretože 2 ku 3 dáva odpoveď ako 8.

Typy logaritmov

Pre mnohých žiakov a študentov sa táto téma zdá komplikovaná a nepochopiteľná, ale v skutočnosti logaritmy nie sú také strašidelné, hlavnou vecou je pochopiť ich všeobecný význam a zapamätať si ich vlastnosti a niektoré pravidlá. Sú tam tri jednotlivé druhy logaritmické výrazy:

  1. Prirodzený logaritmus ln a, kde základom je Eulerovo číslo (e = 2,7).
  2. Desatinné a, kde základ je 10.
  3. Logaritmus ľubovoľného čísla b na základ a>1.

Každá z nich je riešená štandardným spôsobom, vrátane zjednodušenia, redukcie a následnej redukcie na jeden logaritmus pomocou logaritmických viet. Aby ste získali správne hodnoty logaritmov, mali by ste si pamätať ich vlastnosti a postupnosť akcií pri ich riešení.

Pravidlá a určité obmedzenia

V matematike existuje niekoľko pravidiel-obmedzení, ktoré sú akceptované ako axióma, to znamená, že nie sú predmetom diskusie a sú pravdivé. Napríklad nie je možné deliť čísla nulou a tiež nie je možné z nich extrahovať párny koreň záporné čísla. Logaritmy majú tiež svoje pravidlá, podľa ktorých sa ľahko naučíte pracovať aj s dlhými a objemnými logaritmickými výrazmi:

  • Základ „a“ musí byť vždy väčší ako nula a nie rovný 1, inak výraz stratí svoj význam, pretože „1“ a „0“ sa v akomkoľvek stupni vždy rovnajú svojim hodnotám;
  • ak a > 0, potom a b > 0, ukáže sa, že „c“ musí byť tiež väčšie ako nula.

Ako vyriešiť logaritmy?

Úlohou je napríklad nájsť odpoveď na rovnicu 10 x = 100. Je to veľmi jednoduché, treba zvoliť mocninu zvýšením čísla desať, na ktoré sa dostaneme 100. To je samozrejme 10 2 = 100.

Teraz si predstavme tento výraz v logaritmickej forme. Dostaneme log 10 100 = 2. Pri riešení logaritmov sa všetky akcie prakticky zbiehajú, aby našli mocninu, do ktorej je potrebné zadať základ logaritmu, aby sme získali dané číslo.

Ak chcete presne určiť hodnotu neznámeho stupňa, musíte sa naučiť pracovať s tabuľkou stupňov. Vyzerá to takto:

Ako vidíte, niektoré exponenty sa dajú uhádnuť intuitívne, ak máte technické myslenie a znalosti násobilky. Avšak pre veľké hodnoty budete potrebovať tabuľku stupňov. Využiť ho môžu aj tí, ktorí o zložitých matematických témach nevedia vôbec nič. Ľavý stĺpec obsahuje čísla (základ a), horný riadok čísel je hodnota mocniny c, na ktorú je číslo a umocnené. Na priesečníku bunky obsahujú číselné hodnoty, ktoré sú odpoveďou (a c = b). Zoberme si napríklad úplne prvú bunku s číslom 10 a odmocnime ju, dostaneme hodnotu 100, ktorá je naznačená na priesečníku našich dvoch buniek. Všetko je také jednoduché a ľahké, že to pochopí aj ten najpravdivejší humanista!

Rovnice a nerovnice

Ukazuje sa, že za určitých podmienok je exponentom logaritmus. Preto akékoľvek matematické numerické výrazy možno zapísať ako logaritmickú rovnosť. Napríklad 3 4 = 81 možno zapísať ako základný 3 logaritmus 81 rovný štyrom (log 3 81 = 4). Pre negatívne sily pravidlá sú rovnaké: 2 -5 = 1/32 zapíšeme to ako logaritmus, dostaneme log 2 (1/32) = -5. Jednou z najfascinujúcejších častí matematiky je téma „logaritmov“. Na príklady a riešenia rovníc sa pozrieme nižšie, hneď po preštudovaní ich vlastností. Teraz sa pozrime, ako vyzerajú nerovnosti a ako ich odlíšiť od rovníc.

Je daný výraz v nasledujúcom tvare: log 2 (x-1) > 3 - je logaritmická nerovnosť, pretože neznáma hodnota "x" je pod znamienkom logaritmu. A tiež vo výraze sa porovnávajú dve veličiny: logaritmus požadovaného čísla so základom dva je väčší ako číslo tri.

Najdôležitejší rozdiel medzi logaritmickými rovnicami a nerovnosťami je v tom, že rovnice s logaritmami (príklad - logaritmus 2 x = √9) zahŕňajú jednu alebo viac konkrétnych číselných hodnôt v odpovedi, zatiaľ čo pri riešení nerovností sú definované ako oblasť prijateľné hodnoty a body prerušenia tejto funkcie. V dôsledku toho odpoveď nie je jednoduchá množina jednotlivých čísel ako v odpovedi na rovnicu, ale súvislý rad alebo množina čísel.

Základné vety o logaritmoch

Pri riešení primitívnych úloh hľadania hodnôt logaritmu nemusia byť jeho vlastnosti známe. Pokiaľ však ide o logaritmické rovnice alebo nerovnice, v prvom rade je potrebné jasne pochopiť a prakticky aplikovať všetky základné vlastnosti logaritmov. Na príklady rovníc sa pozrieme neskôr, najprv sa pozrime na každú vlastnosť podrobnejšie.

  1. Hlavná identita vyzerá takto: a logaB =B. Platí len vtedy, keď a je väčšie ako 0, nerovná sa jednej a B je väčšie ako nula.
  2. Logaritmus súčinu môže byť vyjadrený v nasledujúcom vzorci: log d (s 1 * s 2) = log d s 1 + log d s 2. V tomto prípade je povinná podmienka: d, s 1 a s 2 > 0; a≠1. Tento logaritmický vzorec môžete dokázať príkladmi a riešením. Nech log a s 1 = f 1 a log a s 2 = f 2, potom a f1 = s 1, a f2 = s 2. Dostaneme, že s 1 * s 2 = a f1 *a f2 = a f1+f2 (vlastnosti stupne ), a potom podľa definície: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, čo bolo potrebné dokázať.
  3. Logaritmus kvocientu vyzerá takto: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Veta vo forme vzorca má tento tvar: log a q b n = n/q log a b.

Tento vzorec sa nazýva „vlastnosť stupňa logaritmu“. Pripomína vlastnosti bežných stupňov a nie je to prekvapujúce, pretože celá matematika je založená na prirodzených postulátoch. Pozrime sa na dôkaz.

Nech log a b = t, ukáže sa a t =b. Ak obe časti zdvihneme na mocninu m: a tn = b n ;

ale keďže a tn = (a q) nt/q = b n, preto log a q b n = (n*t)/t, potom log a q b n = n/q log a b. Veta bola dokázaná.

Príklady problémov a nerovností

Najbežnejšími typmi problémov na logaritmoch sú príklady rovníc a nerovníc. Nachádzajú sa takmer vo všetkých problémových knihách a sú tiež povinnou súčasťou skúšok z matematiky. Ak chcete vstúpiť na univerzitu alebo zložiť prijímacie skúšky z matematiky, musíte vedieť, ako správne riešiť takéto úlohy.

Bohužiaľ neexistuje jednotný plán alebo schéma na riešenie a určenie neznámej hodnoty logaritmu, dá sa však použiť na každú matematickú nerovnosť alebo logaritmickú rovnicu. určité pravidlá. V prvom rade by ste si mali zistiť, či sa výraz dá zjednodušiť alebo naviesť celkový vzhľad. Zjednodušte dlhé logaritmické výrazy možné, ak správne používate ich vlastnosti. Poďme sa s nimi rýchlo zoznámiť.

Pri rozhodovaní logaritmické rovnice, mali by sme určiť, aký typ logaritmu máme: príklad výrazu môže obsahovať prirodzený logaritmus alebo desiatkový.

Tu sú príklady ln100, ln1026. Ich riešenie sa scvrkáva na skutočnosť, že potrebujú určiť výkon, s ktorým bude základňa 10 rovná 100 a 1026. Ak chcete vyriešiť prirodzené logaritmy, musíte použiť logaritmické identity alebo ich vlastnosti. Pozrime sa na príklady riešenia logaritmických problémov rôznych typov.

Ako používať logaritmické vzorce: s príkladmi a riešeniami

Pozrime sa teda na príklady použitia základných teorémov o logaritmoch.

  1. Vlastnosť logaritmu súčinu môže byť použitá v úlohách, kde je potrebné expandovať veľký významčísla b do jednoduchších faktorov. Napríklad log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Odpoveď je 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - ako vidíte, pomocou štvrtej vlastnosti logaritmickej mocniny sa nám podarilo vyriešiť zdanlivo zložitý a neriešiteľný výraz. Stačí vypočítať základ a potom odobrať hodnoty exponentov zo znamienka logaritmu.

Úlohy z jednotnej štátnej skúšky

Logaritmy sa často vyskytujú pri prijímacích skúškach, najmä veľa logaritmických problémov pri Jednotnej štátnej skúške (štátna skúška pre všetkých absolventov škôl). Zvyčajne sú tieto úlohy prítomné nielen v časti A (najľahšie testovacia časť skúška), ale aj v časti C (najzložitejšie a najobjemnejšie úlohy). Skúška vyžaduje presnú a dokonalú znalosť témy „Prirodzené logaritmy“.

Príklady a riešenia problémov sú prevzaté z oficiálnych Možnosti jednotnej štátnej skúšky. Pozrime sa, ako sa takéto úlohy riešia.

Daný log 2 (2x-1) = 4. Riešenie:
prepíšme výraz, trochu ho zjednodušíme log 2 (2x-1) = 2 2, podľa definície logaritmu dostaneme, že 2x-1 = 2 4, teda 2x = 17; x = 8,5.

  • Najlepšie je zredukovať všetky logaritmy na rovnaký základ, aby riešenie nebolo ťažkopádne a mätúce.
  • Všetky výrazy pod logaritmickým znamienkom sú označené ako kladné, preto keď exponent výrazu, ktorý je pod logaritmickým znamienkom a jeho základ sa vyberie ako násobiteľ, výraz zostávajúci pod logaritmom musí byť kladný.

Logaritmus čísla N založené na A nazývaný exponent X , ku ktorému je potrebné postaviť A získať číslo N

Za predpokladu, že
,
,

Z definície logaritmu to vyplýva
, t.j.
- táto rovnosť je základnou logaritmickou identitou.

Logaritmy so základom 10 sa nazývajú desiatkové logaritmy. Namiesto
písať
.

Logaritmy na základňu e sa nazývajú prirodzené a sú určené
.

Základné vlastnosti logaritmov.

    Logaritmus jedna sa rovná nule pre akúkoľvek základňu.

    Logaritmus produktu rovná súčtu logaritmy faktorov.

3) Logaritmus podielu rovná rozdielu logaritmy


Faktor
nazývaný modul prechodu z logaritmu na základ a na logaritmy na základni b .

Pomocou vlastností 2-5 je často možné zredukovať logaritmus zložitého výrazu na výsledok jednoduchých aritmetických operácií na logaritmoch.

Napríklad,

Takéto transformácie logaritmu sa nazývajú logaritmy. Transformácie inverzné k logaritmom sa nazývajú potenciácia.

Kapitola 2. Prvky vyššej matematiky.

1. Limity

Limit funkcie
je konečné číslo A, ak, as xx 0 pre každú vopred určenú
, existuje také číslo
že hneď ako
, To
.

Funkcia, ktorá má limitu, sa od nej líši o nekonečne malé množstvo:
, kde- b.m.v., t.j.
.

Príklad. Zvážte funkciu
.

Pri snažení
, funkcia r má tendenciu k nule:

1.1. Základné teorémy o limitách.

    Hranica konštantnej hodnoty sa rovná tejto konštantnej hodnote

.

    Limita súčtu (rozdielu) konečného počtu funkcií sa rovná súčtu (rozdielu) limitov týchto funkcií.

    Limita súčinu konečného počtu funkcií sa rovná súčinu limitov týchto funkcií.

    Limita podielu dvoch funkcií sa rovná podielu limitov týchto funkcií, ak limita menovateľa nie je nula.

Úžasné limity

,
, Kde

1.2. Príklady výpočtu limitov

Nie všetky limity sa však vypočítajú tak jednoducho. Výpočet limitu častejšie vedie k odhaleniu neistoty typu: alebo .

.

2. Derivácia funkcie

Dajme si funkciu
, kontinuálne na segmente
.

Argumentovať dostal nejaký nárast
. Potom funkcia dostane prírastok
.

Hodnota argumentu zodpovedá hodnote funkcie
.

Hodnota argumentu
zodpovedá hodnote funkcie.

Preto, .

Nájdite hranicu tohto pomeru na
. Ak táto limita existuje, potom sa nazýva derivácia danej funkcie.

Definícia 3 Derivácia danej funkcie
argumentom sa nazýva limita pomeru prírastku funkcie k prírastku argumentu, keď prírastok argumentu svojvoľne smeruje k nule.

Derivácia funkcie
možno označiť takto:

; ; ; .

Definícia 4Operácia nájdenia derivácie funkcie sa volá diferenciácia.

2.1. Mechanický význam derivátu.

Uvažujme priamočiary pohyb nejakého tuhého telesa alebo hmotného bodu.

Nech v určitom okamihu pohyblivý bod
bol na diaľku z východiskovej pozície
.

Po určitom čase
posunula sa na diaľku
. Postoj =- priemerná rýchlosť hmotný bod
. Nájdime hranicu tohto pomeru, ak to vezmeme do úvahy
.

V dôsledku toho sa určenie okamžitej rýchlosti pohybu hmotného bodu redukuje na nájdenie derivácie dráhy vzhľadom na čas.

2.2. Geometrická hodnota derivátu

Majme graficky definovanú funkciu
.

Ryža. 1. Geometrický význam derivácie

Ak
, potom bod
, sa bude pohybovať pozdĺž krivky a bude sa približovať k bodu
.

Preto
, t.j. hodnota derivácie pre danú hodnotu argumentu číselne sa rovná dotyčnici uhla, ktorý zviera dotyčnica v danom bode s kladným smerom osi
.

2.3. Tabuľka základných diferenciačných vzorcov.

Funkcia napájania

Exponenciálna funkcia

Logaritmická funkcia

Goniometrická funkcia

Inverzná goniometrická funkcia

2.4. Pravidlá diferenciácie.

Derivát z

Derivácia súčtu (rozdielu) funkcií


Derivácia súčinu dvoch funkcií


Derivácia podielu dvoch funkcií


2.5. Derivát z komplexná funkcia.

Nech je funkcia daná
tak, aby mohol byť zastúpený vo forme

A
, kde je premenná je teda prechodný argument

Derivácia komplexnej funkcie sa rovná súčinu derivácie danej funkcie vzhľadom na stredný argument a derivácie stredného argumentu vzhľadom na x.

Príklad 1

Príklad 2

3. Diferenciálna funkcia.

Nech je tam
, diferencovateľné na nejakom intervale
nechaj to tak pri táto funkcia má deriváciu

,

potom môžeme písať

(1),

Kde - nekonečne malé množstvo,

odkedy

Vynásobením všetkých podmienok rovnosti (1) o
máme:

Kde
- b.m.v. vyššia moc.

Rozsah
nazývaný diferenciál funkcie
a je určený

.

3.1. Geometrická hodnota diferenciálu.

Nech je funkcia daná
.

Obr.2. Geometrický význam diferenciálu.

.

Je zrejmé, že diferenciál funkcie
sa rovná prírastku súradnice dotyčnice v danom bode.

3.2. Deriváty a diferenciály rôznych rádov.

Ak tu
, Potom
sa nazýva prvý derivát.

Derivácia prvej derivácie sa nazýva derivácia druhého rádu a píše sa
.

Derivácia n-tého rádu funkcie
sa nazýva derivácia (n-1) rádu a píše sa:

.

Diferenciál diferenciálu funkcie sa nazýva diferenciál druhého alebo druhého rádu.

.

.

3.3 Riešenie biologických problémov pomocou diferenciácie.

Úloha 1. Štúdie ukázali, že rast kolónie mikroorganizmov je v súlade so zákonom
, Kde N - počet mikroorganizmov (v tisícoch), t – čas (dni).

b) Bude sa populácia kolónie počas tohto obdobia zvyšovať alebo znižovať?

Odpoveď. Veľkosť kolónie sa zvýši.

Úloha 2. Voda v jazere sa pravidelne testuje na sledovanie obsahu patogénnych baktérií. Cez t dní po testovaní je koncentrácia baktérií určená pomerom

.

Kedy bude mať jazero minimálnu koncentráciu baktérií a bude sa v ňom dať kúpať?

Riešenie: Funkcia dosiahne maximum alebo minimum, keď je jej derivácia nula.

,

Stanovme si maximum alebo minimum za 6 dní. Aby sme to dosiahli, zoberme si druhú deriváciu.


Odpoveď: Po 6 dňoch bude minimálna koncentrácia baktérií.

Jedným z prvkov algebry primitívnych úrovní je logaritmus. Názov pochádza z gréckeho jazyka zo slova „číslo“ alebo „moc“ a znamená moc, na ktorú musí byť číslo v základe povýšené, aby sa zistilo konečné číslo.

Typy logaritmov

  • log a b – logaritmus čísla b so základom a (a > 0, a ≠ 1, b > 0);
  • log b – desiatkový logaritmus (logaritmus so základom 10, a = 10);
  • ln b – prirodzený logaritmus (logaritmus k základu e, a = e).

Ako vyriešiť logaritmy?

Logaritmus b na základ a je exponent, ktorý vyžaduje, aby sa b zvýšilo na základ a. Získaný výsledok sa vyslovuje takto: „logaritmus b na základ a“. Riešením logaritmických problémov je, že musíte zo zadaných čísel určiť danú mocninu v číslach. Existuje niekoľko základných pravidiel na určenie alebo riešenie logaritmu, ako aj na prevod samotného zápisu. Pomocou nich sa riešia logaritmické rovnice, nachádzajú sa derivácie, riešia sa integrály a vykonáva sa mnoho ďalších operácií. V zásade je riešením samotného logaritmu jeho zjednodušený zápis. Nižšie sú uvedené základné vzorce a vlastnosti:

Pre akékoľvek a ; a > 0; a ≠ 1 a pre ľubovoľné x; y > 0.

  • a log a b = b – zákl logaritmická identita
  • log a 1 = 0
  • loga a = 1
  • log a (x y) = log a x + log a y
  • log a x/ y = log a x – log a y
  • log a 1/x = -log a x
  • log a x p = p log a x
  • log a k x = 1/k log a x, pre k ≠ 0
  • log a x = log a c x c
  • log a x = log b x/ log b a – vzorec pre prechod na nový základ
  • log a x = 1/log x a


Ako riešiť logaritmy - pokyny na riešenie krok za krokom

  • Najprv si zapíšte požadovanú rovnicu.

Poznámka: ak je základný logaritmus 10, potom sa záznam skráti, čo vedie k desiatkovému logaritmu. Ak to stojí za to prirodzené číslo e, potom to zapíšeme a skrátime to na prirodzený logaritmus. To znamená, že výsledkom všetkých logaritmov je mocnina, na ktorú sa základné číslo zvýši, aby sa získalo číslo b.


Priamo riešenie spočíva vo výpočte tohto stupňa. Pred riešením výrazu s logaritmom je potrebné ho zjednodušiť podľa pravidla, teda pomocou vzorcov. Hlavné identity nájdete tak, že sa v článku vrátite trochu späť.

Sčítanie a odčítanie logaritmov s dvoma rôznymi číslami, ale s z rovnakých dôvodov, nahraďte jedným logaritmom súčin alebo delenie čísel b a c. V tomto prípade môžete použiť vzorec na prechod na inú základňu (pozri vyššie).

Ak používate výrazy na zjednodušenie logaritmu, je potrebné zvážiť určité obmedzenia. A to je: základ logaritmu a je iba kladné číslo, ale nie je rovné jednej. Číslo b, podobne ako a, musí byť väčšie ako nula.

Existujú prípady, keď zjednodušením výrazu nebudete môcť vypočítať logaritmus numericky. Stáva sa, že takýto výraz nedáva zmysel, pretože mnohé mocniny sú iracionálne čísla. Za tejto podmienky ponechajte mocninu čísla ako logaritmus.



Vyplýva to z jeho definície. A teda logaritmus čísla b založené na A je definovaný ako exponent, na ktorý sa musí číslo zvýšiť a získať číslo b(logaritmus existuje len pre kladné čísla).

Z tejto formulácie vyplýva, že výpočet x=log a b, je ekvivalentné riešeniu rovnice a x = b. Napríklad, log 2 8 = 3 pretože 8 = 2 3 . Formulácia logaritmu umožňuje zdôvodniť, že ak b = a c, potom logaritmus čísla b založené na a rovná sa s. Je tiež zrejmé, že téma logaritmov úzko súvisí s témou mocniny čísla.

S logaritmami, ako s akýmikoľvek číslami, môžete operácie sčítania, odčítania a transformovať všetkými možnými spôsobmi. Ale vzhľadom na to, že logaritmy nie sú úplne obyčajné čísla, platia tu ich vlastné špeciálne pravidlá, ktoré sa nazývajú hlavné vlastnosti.

Sčítanie a odčítanie logaritmov.

Zoberme si dva logaritmy s rovnakými základňami: prihlásiť sa x A prihlásiť sa y. Potom je možné vykonávať operácie sčítania a odčítania:

log a x+ log a y= log a (x·y);

log a x - log a y = log a (x:y).

log a(X 1 . X 2 . X 3 ... x k) = prihlásiť sa x 1 + prihlásiť sa x 2 + prihlásiť sa x 3 + ... + log a x k.

Od logaritmická kvocientová veta Je možné získať ešte jednu vlastnosť logaritmu. Je všeobecne známe, že log a 1 = 0 teda

log a 1 /b=log a 1 - log a b= -log a b.

To znamená, že existuje rovnosť:

log a 1 / b = - log a b.

Logaritmy dvoch recipročných čísel z rovnakého dôvodu sa budú navzájom líšiť výlučne znakom. Takže:

Log 3 9= - log 3 1/9 ; log 5 1/125 = -log 5 125.

Logaritmické výrazy, riešenie príkladov. V tomto článku sa pozrieme na problémy súvisiace s riešením logaritmov. Úlohy kladú otázku hľadania významu výrazu. Treba poznamenať, že koncept logaritmu sa používa v mnohých úlohách a pochopenie jeho významu je mimoriadne dôležité. Pokiaľ ide o jednotnú štátnu skúšku, logaritmus sa používa pri riešení rovníc, v aplikovaných problémoch a tiež v úlohách súvisiacich so štúdiom funkcií.

Uveďme príklady, aby sme pochopili samotný význam logaritmu:


Základná logaritmická identita:

Vlastnosti logaritmov, ktoré si treba vždy zapamätať:

*Logaritmus súčinu sa rovná súčtu logaritmov faktorov.

* * *

*Logaritmus kvocientu (zlomku) sa rovná rozdielu medzi logaritmami faktorov.

* * *

*Logaritmus exponentu sa rovná súčinu exponentu a logaritmu jeho základu.

* * *

*Prechod na nový základ

* * *

Ďalšie vlastnosti:

* * *

Výpočet logaritmov úzko súvisí s využitím vlastností exponentov.

Uveďme si niektoré z nich:

Podstatou tejto vlastnosti je, že pri prenesení čitateľa do menovateľa a naopak sa znamienko exponentu zmení na opačné. Napríklad:

Dôsledok tejto vlastnosti:

* * *

Pri zvýšení mocniny na mocninu zostáva základ rovnaký, ale exponenty sa násobia.

* * *

Ako ste videli, samotný koncept logaritmu je jednoduchý. Hlavná vec je, že potrebujete dobrú prax, ktorá vám dáva určitú zručnosť. Samozrejme je potrebná znalosť vzorcov. Ak zručnosť v prevode elementárnych logaritmov nebola vyvinutá, potom pri riešení jednoduchých úloh môžete ľahko urobiť chybu.

Cvičte, riešte najskôr najjednoduchšie príklady z kurzu matematiky, potom prejdite na zložitejšie. V budúcnosti určite ukážem, ako sa riešia „strašidelné“ logaritmy; neobjavia sa na Jednotnej štátnej skúške, ale sú zaujímavé, nenechajte si ich ujsť!

To je všetko! Veľa šťastia!

S pozdravom Alexander Krutitskikh

P.S: Bol by som vďačný, keby ste mi o stránke povedali na sociálnych sieťach.