14.10.2019

Vlastnosti delenia logaritmov s rovným. Logaritmické vzorce. Logaritmické riešenia príkladov


Logaritmus čísla b (b > 0) na základ a (a > 0, a ≠ 1)– exponent, na ktorý treba zvýšiť číslo a, aby sme získali b.

Logaritmus základu 10 z b možno zapísať ako log(b) a logaritmus k základu e (prirodzený logaritmus) je ln(b).

Často sa používa pri riešení problémov s logaritmami:

Vlastnosti logaritmov

Existujú štyri hlavné vlastnosti logaritmov.

Nech a > 0, a ≠ 1, x > 0 a y > 0.

Vlastnosť 1. Logaritmus súčinu

Logaritmus produktu rovná súčtu logaritmy:

log a (x ⋅ y) = log a x + log a y

Vlastnosť 2. Logaritmus kvocientu

Logaritmus kvocientu rovná rozdielu logaritmy:

log a (x / y) = log a x – log a y

Vlastnosť 3. Logaritmus sily

Logaritmus stupňov rovná súčinu mocniny a logaritmu:

Ak je základ logaritmu v stupňoch, potom platí iný vzorec:

Vlastnosť 4. Logaritmus koreňa

Túto vlastnosť možno získať z vlastnosti logaritmu mocniny, pretože n-tá odmocnina sa rovná mocnine 1/n:

Vzorec na prevod z logaritmu v jednom základe na logaritmus v inom základe

Tento vzorec sa tiež často používa pri riešení rôznych úloh na logaritmoch:

Špeciálny prípad:

Porovnanie logaritmov (nerovnosti)

Majme 2 funkcie f(x) a g(x) pod logaritmami s z rovnakých dôvodov a medzi nimi je znak nerovnosti:

Ak ich chcete porovnať, musíte sa najprv pozrieť na základ logaritmov a:

  • Ak a > 0, potom f(x) > g(x) > 0
  • Ak 0< a < 1, то 0 < f(x) < g(x)

Ako riešiť problémy s logaritmami: príklady

Problémy s logaritmami zaradenej do Jednotnej štátnej skúšky z matematiky pre 11. ročník v úlohe 5 a úlohe 7, úlohy s riešením nájdete na našej stránke v príslušných sekciách. V banke matematických úloh sa nachádzajú aj úlohy s logaritmami. Všetky príklady nájdete na stránke.

Čo je logaritmus

Logaritmy boli vždy považované za zložitú tému v školských kurzoch matematiky. Je ich veľa rôzne definície logaritmus, ale z nejakého dôvodu väčšina učebníc používa najkomplexnejšie a neúspešné z nich.

Logaritmus definujeme jednoducho a jasne. Ak to chcete urobiť, vytvorte tabuľku:

Takže máme mocniny dvoch.

Logaritmy - vlastnosti, vzorce, ako riešiť

Ak vezmete číslo zo spodného riadku, ľahko nájdete moc, na ktorú budete musieť zvýšiť dvojku, aby ste toto číslo získali. Napríklad, ak chcete získať 16, musíte zvýšiť dve na štvrtú mocninu. A aby ste získali 64, musíte zvýšiť dve na šiestu mocninu. To je možné vidieť z tabuľky.

A teraz vlastne definícia logaritmu:

základ a argumentu x je mocnina, na ktorú sa číslo a musí zvýšiť, aby sa získalo číslo x.

Označenie: log a x = b, kde a je základ, x je argument, b je to, čomu sa v skutočnosti rovná logaritmus.

Napríklad 2 3 = 8 ⇒log 2 8 = 3 (základný 2 logaritmus čísla 8 je tri, pretože 2 3 = 8). S rovnakým úspechom log 2 64 = 6, pretože 2 6 = 64.

Zavolá sa operácia hľadania logaritmu čísla k danému základu. Pridajme teda do tabuľky nový riadok:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

Bohužiaľ, nie všetky logaritmy sa počítajú tak ľahko. Skúste napríklad nájsť log 2 5. Číslo 5 nie je v tabuľke, ale logika diktuje, že logaritmus bude ležať niekde na intervale. Pretože 22< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Takéto čísla sa nazývajú iracionálne: čísla za desatinnou čiarkou možno písať do nekonečna a nikdy sa neopakujú. Ak sa logaritmus ukáže ako iracionálny, je lepšie ho nechať tak: log 2 5, log 3 8, log 5 100.

Je dôležité pochopiť, že logaritmus je výraz s dvoma premennými (základ a argument). Mnoho ľudí si spočiatku mätie, kde je základ a kde argument. Aby ste predišli nepríjemným nedorozumeniam, pozrite sa na obrázok:

Pred nami nie je nič iné ako definícia logaritmu. Pamätajte: logaritmus je sila, do ktorého musí byť základňa zabudovaná, aby sa získal argument. Je to podstavec, ktorý je mocne vyvýšený - na obrázku je zvýraznený červenou farbou. Ukazuje sa, že základňa je vždy na dne! Hneď na prvej hodine poviem svojim študentom toto úžasné pravidlo – a nevznikne zmätok.

Ako počítať logaritmy

Definíciu sme si vymysleli – ostáva už len naučiť sa počítať logaritmy, t.j. zbavte sa znaku „log“. Na začiatok si všimneme, že z definície vyplývajú dve dôležité skutočnosti:

  1. Argument a základ musia byť vždy väčšie ako nula. Vyplýva to z definície stupňa racionálnym exponentom, na ktorý je redukovaná definícia logaritmu.
  2. Základ musí byť odlišný od jedného, ​​pretože jeden v akomkoľvek stupni stále zostáva jedným. Z tohto dôvodu je otázka „na akú silu treba pozdvihnúť, aby sme dostali dve“ nezmyselná. Taký stupeň neexistuje!

Takéto obmedzenia sú tzv regiónu prijateľné hodnoty (ODZ). Ukazuje sa, že ODZ logaritmu vyzerá takto: log a x = b ⇒x > 0, a > 0, a ≠ 1.

Všimnite si, že neexistujú žiadne obmedzenia na číslo b (hodnota logaritmu). Napríklad logaritmus môže byť záporný: log 2 0,5 = -1, pretože 0,5 = 2 -1.

Teraz však uvažujeme iba o číselných výrazoch, kde nie je potrebné poznať VA logaritmu. Všetky obmedzenia už autori úloh zohľadnili. Keď však do hry vstúpia logaritmické rovnice a nerovnosti, požiadavky DL sa stanú povinnými. Koniec koncov, základ a argument môže obsahovať veľmi silné konštrukcie, ktoré nemusia nevyhnutne zodpovedať vyššie uvedeným obmedzeniam.

Teraz uvažujme všeobecná schéma počítanie logaritmov. Pozostáva z troch krokov:

  1. Vyjadrite základ a a argument x ako mocninu s minimálnym možným základom väčším ako jedna. Po ceste je lepšie zbaviť sa desatinných miest;
  2. Riešte rovnicu pre premennú b: x = a b ;
  3. Výsledné číslo b bude odpoveďou.

To je všetko! Ak sa logaritmus ukáže ako iracionálny, bude to viditeľné už v prvom kroku. Požiadavka, aby bol základ väčší ako jedna, je veľmi dôležitá: znižuje sa tým pravdepodobnosť chyby a výrazne sa zjednodušujú výpočty. To isté s desatinné miesta: ak ich okamžite prevediete na bežné, bude oveľa menej chýb.

Pozrime sa, ako táto schéma funguje na konkrétnych príkladoch:

Úloha. Vypočítajte logaritmus: log 5 25

  1. Predstavme si základ a argument ako mocninu päťky: 5 = 5 1 ; 25 = 52;
  2. Poďme vytvoriť a vyriešiť rovnicu:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Dostali sme odpoveď: 2.

Úloha. Vypočítajte logaritmus:

Úloha. Vypočítajte logaritmus: log 4 64

  1. Predstavme si základ a argument ako mocninu dvoch: 4 = 2 2 ; 64 = 26;
  2. Poďme vytvoriť a vyriešiť rovnicu:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Dostali sme odpoveď: 3.

Úloha. Vypočítajte logaritmus: log 16 1

  1. Predstavme si základ a argument ako mocninu dvoch: 16 = 2 4 ; 1 = 20;
  2. Poďme vytvoriť a vyriešiť rovnicu:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Dostali sme odpoveď: 0.

Úloha. Vypočítajte logaritmus: log 7 14

  1. Predstavme si základ a argument ako mocninu siedmich: 7 = 7 1 ; 14 nemôže byť vyjadrené ako mocnina siedmich, pretože 7 1< 14 < 7 2 ;
  2. Z predchádzajúceho odseku vyplýva, že logaritmus sa nepočíta;
  3. Odpoveď je žiadna zmena: log 7 14.

Malá poznámka k poslednému príkladu. Ako si môžete byť istý, že číslo nie je presnou mocninou iného čísla? Je to veľmi jednoduché – stačí to započítať do hlavných faktorov. Ak má expanzia aspoň dva rôzne faktory, číslo nie je presnou mocninou.

Úloha. Zistite, či sú čísla presné mocniny: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - presný stupeň, pretože existuje len jeden multiplikátor;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - nie je presná mocnina, pretože existujú dva faktory: 3 a 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - presný stupeň;
35 = 7 · 5 - opäť nie presná mocnina;
14 = 7 · 2 - opäť nie presný stupeň;

Všimnime si tiež, že my sami základné čísla sú vždy presné stupne samých seba.

Desatinný logaritmus

Niektoré logaritmy sú také bežné, že majú špeciálny názov a symbol.

argumentu x je logaritmus so základom 10, t.j. Mocnina, na ktorú treba zvýšiť číslo 10, aby sme získali číslo x. Označenie: lg x.

Napríklad log 10 = 1; lg100 = 2; lg 1000 = 3 - atď.

Keď sa odteraz v učebnici objaví fráza ako „Nájsť lg 0,01“, vedzte, že to nie je preklep. Toto je desiatkový logaritmus. Ak však tento zápis nepoznáte, vždy ho môžete prepísať:
log x = log 10 x

Všetko, čo platí pre bežné logaritmy, platí aj pre desiatkové logaritmy.

Prirodzený logaritmus

Existuje ďalší logaritmus, ktorý má svoje vlastné označenie. V niektorých ohľadoch je to ešte dôležitejšie ako desatinné číslo. Je to o o prirodzenom logaritme.

argumentu x je logaritmus so základom e, t.j. mocnina, na ktorú treba zvýšiť číslo e, aby sme získali číslo x. Označenie: ln x.

Mnoho ľudí sa bude pýtať: aké je číslo e? Toto je iracionálne číslo presná hodnota nemožno nájsť a zaznamenať. Uvediem len prvé čísla:
e = 2,718281828459…

Nebudeme sa podrobne zaoberať tým, čo je toto číslo a prečo je potrebné. Pamätajte, že e je základom prirodzeného logaritmu:
ln x = log e x

Teda ln e = 1; lne2 = 2; ln e 16 = 16 - atď. Na druhej strane, ln 2 je iracionálne číslo. Vo všeobecnosti prirodzený logaritmus akéhokoľvek racionálne číslo iracionálny. Samozrejme okrem jedného: ln 1 = 0.

Pre prirodzené logaritmy platia všetky pravidlá, ktoré platia pre bežné logaritmy.

Pozri tiež:

Logaritmus. Vlastnosti logaritmu (mocnosť logaritmu).

Ako znázorniť číslo ako logaritmus?

Používame definíciu logaritmu.

Logaritmus je exponent, na ktorý sa musí základ zvýšiť, aby sa získalo číslo pod znamienkom logaritmu.

Ak teda chcete reprezentovať určité číslo c ako logaritmus k základu a, musíte pod znamienko logaritmu vložiť mocninu s rovnakým základom ako základ logaritmu a zapísať toto číslo c ako exponent:

Absolútne akékoľvek číslo môže byť reprezentované ako logaritmus - kladné, záporné, celé číslo, zlomkové, racionálne, iracionálne:

Aby ste si nezamieňali a a c v stresujúcich podmienkach testu alebo skúšky, môžete použiť nasledujúce pravidlo zapamätania:

čo je dole, ide dole, čo je hore, ide hore.

Napríklad musíte reprezentovať číslo 2 ako logaritmus k základu 3.

Máme dve čísla - 2 a 3. Tieto čísla sú základ a exponent, ktoré zapíšeme pod znamienko logaritmu. Zostáva určiť, ktoré z týchto čísel sa má zapísať do základu stupňa a ktoré – až do exponentu.

Základ 3 v zápise logaritmu je dole, čo znamená, že keď zadáme dvojku ako logaritmus k základu 3, zapíšeme aj 3 k základu.

2 je vyšší ako tri. A v zápise stupňa dva píšeme nad tri, teda ako exponent:

Logaritmy. Prvá úroveň.

Logaritmy

Logaritmus kladné číslo b založené na a, Kde a > 0, a ≠ 1, sa nazýva exponent, na ktorý sa musí číslo zvýšiť a, Získať b.

Definícia logaritmu dá sa to stručne napísať takto:

Táto rovnosť platí pre b > 0, a > 0, a ≠ 1. Zvyčajne sa to nazýva logaritmická identita.
Volá sa akcia nájdenia logaritmu čísla pomocou logaritmu.

Vlastnosti logaritmov:

Logaritmus produktu:

Logaritmus kvocientu:

Výmena logaritmickej základne:

Logaritmus stupňov:

Logaritmus koreňa:

Logaritmus s výkonovou základňou:





Desatinné a prirodzené logaritmy.

Desatinný logaritmusčísla volajú logaritmus tohto čísla so základom 10 a píšu   lg b
Prirodzený logaritmusčísla sa nazývajú logaritmus tohto čísla so základom e, Kde e- iracionálne číslo približne rovné 2,7. Zároveň píšu ln b.

Ďalšie poznámky o algebre a geometrii

Základné vlastnosti logaritmov

Základné vlastnosti logaritmov

Logaritmy, ako všetky čísla, sa dajú sčítať, odčítať a transformovať všetkými spôsobmi. Ale keďže logaritmy nie sú úplne obyčajné čísla, existujú tu pravidlá, ktoré sa nazývajú hlavné vlastnosti.

Tieto pravidlá určite musíte poznať – bez nich sa nedá vyriešiť ani jeden vážny logaritmický problém. Navyše je ich veľmi málo – všetko sa dá naučiť za jeden deň. Tak poďme na to.

Sčítanie a odčítanie logaritmov

Uvažujme dva logaritmy s rovnakými základňami: log a x a log a y. Potom ich možno sčítať a odčítať a:

  1. log a x + log a y = log a (x y);
  2. log a x − log a y = log a (x: y).

Súčet logaritmov sa teda rovná logaritmu súčinu a rozdiel sa rovná logaritmu kvocientu. Poznámka: kľúčový moment Tu - rovnaké dôvody. Ak sú dôvody iné, tieto pravidlá nefungujú!

Tieto vzorce vám pomôžu vypočítať logaritmický výraz aj keď sa jeho jednotlivé časti nepočítajú (pozri lekciu „Čo je to logaritmus“). Pozrite sa na príklady a uvidíte:

Denník 6 4 + denník 6 9.

Keďže logaritmy majú rovnaké základy, použijeme súčtový vzorec:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Úloha. Nájdite hodnotu výrazu: log 2 48 − log 2 3.

Základy sú rovnaké, používame rozdielový vzorec:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Úloha. Nájdite hodnotu výrazu: log 3 135 − log 3 5.

Základy sú opäť rovnaké, takže máme:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Ako vidíte, pôvodné výrazy sa skladajú zo „zlých“ logaritmov, ktoré nie sú vypočítané samostatne. Ale po transformáciách sa získajú úplne normálne čísla. Mnohé sú postavené na tejto skutočnosti testovacie papiere. Áno, na Jednotnej štátnej skúške sa so všetkou vážnosťou (niekedy prakticky bez zmien) ponúkajú výrazy podobné testom.

Extrahovanie exponentu z logaritmu

Teraz si úlohu trochu skomplikujeme. Čo ak je základom alebo argumentom logaritmu mocnina? Potom môže byť exponent tohto stupňa vyňatý zo znamienka logaritmu podľa nasledujúcich pravidiel:

Je ľahké vidieť, že posledné pravidlo nasleduje prvé dve. Je však lepšie si to zapamätať - v niektorých prípadoch to výrazne zníži množstvo výpočtov.

Samozrejme, všetky tieto pravidlá dávajú zmysel, ak je dodržaná ODZ logaritmu: a > 0, a ≠ 1, x > 0. A ešte niečo: naučte sa aplikovať všetky vzorce nielen zľava doprava, ale aj naopak , t.j. Čísla pred znamienkom logaritmu môžete zadať do samotného logaritmu.

Ako riešiť logaritmy

To je to, čo sa najčastejšie vyžaduje.

Úloha. Nájdite hodnotu výrazu: log 7 49 6 .

Zbavme sa stupňa v argumente pomocou prvého vzorca:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Úloha. Nájdite význam výrazu:

Všimnite si, že menovateľ obsahuje logaritmus, ktorého základom a argumentom sú presné mocniny: 16 = 2 4 ; 49 = 7 2. Máme:

Myslím, že posledný príklad si vyžaduje určité objasnenie. Kam zmizli logaritmy? Do poslednej chvíle pracujeme len s menovateľom. Uviedli sme základ a argument tam stojaceho logaritmu vo forme mocničiek a vyňali sme exponenty - dostali sme „trojposchodový“ zlomok.

Teraz sa pozrime na hlavný zlomok. Čitateľ a menovateľ obsahujú rovnaké číslo: log 2 7. Keďže log 2 7 ≠ 0, zlomok môžeme zmenšiť - 2/4 zostanú v menovateli. Podľa pravidiel aritmetiky môžu byť štyri prenesené do čitateľa, čo sa aj stalo. Výsledkom bola odpoveď: 2.

Prechod na nový základ

Keď už hovoríme o pravidlách sčítania a odčítania logaritmov, osobitne som zdôraznil, že fungujú iba s rovnakými základmi. Čo ak sú dôvody iné? Čo ak to nie sú presné mocniny rovnakého čísla?

Na pomoc prichádzajú vzorce pre prechod na nový základ. Sformulujme ich vo forme vety:

Nech je to dané logaritmus logaritmu sekera. Potom pre akékoľvek číslo c také, že c > 0 a c ≠ 1, platí rovnosť:

Konkrétne, ak nastavíme c = x, dostaneme:

Z druhého vzorca vyplýva, že základ a argument logaritmu možno zameniť, ale v tomto prípade je celý výraz „prevrátený“, t.j. logaritmus sa objaví v menovateli.

Tieto vzorce sa zriedka vyskytujú v konvenčných číselné výrazy. To, aké pohodlné sú, je možné vyhodnotiť iba rozhodnutím logaritmické rovnice a nerovnosti.

Sú však problémy, ktoré sa nedajú vyriešiť vôbec inak ako presťahovaním sa do novej nadácie. Pozrime sa na pár z nich:

Úloha. Nájdite hodnotu výrazu: log 5 16 log 2 25.

Všimnite si, že argumenty oboch logaritmov obsahujú presné mocniny. Vyberme ukazovatele: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2 log 2 5;

Teraz „otočme“ druhý logaritmus:

Keďže sa súčin pri preskupovaní faktorov nemení, pokojne sme vynásobili štyri a dva a potom sme sa zaoberali logaritmami.

Úloha. Nájdite hodnotu výrazu: log 9 100 lg 3.

Základom a argumentom prvého logaritmu sú presné mocniny. Poďme si to zapísať a zbaviť sa indikátorov:

Teraz sa zbavme desiatkového logaritmu prechodom na nový základ:

Základná logaritmická identita

V procese riešenia je často potrebné reprezentovať číslo ako logaritmus k danému základu.

V tomto prípade nám pomôžu nasledujúce vzorce:

V prvom prípade sa číslo n stane exponentom v argumente. Číslo n môže byť úplne čokoľvek, pretože je to len logaritmická hodnota.

Druhý vzorec je vlastne parafrázovaná definícia. Tak sa to volá: .

Čo sa vlastne stane, ak sa číslo b zvýši na takú mocninu, že číslo b s touto mocninou dáva číslo a? Správne: výsledkom je rovnaké číslo a. Ešte raz si pozorne prečítajte tento odsek – veľa ľudí sa na ňom zasekne.

Rovnako ako vzorce pre prechod na novú základňu, hlavné logaritmická identita niekedy je to jediné možné riešenie.

Úloha. Nájdite význam výrazu:

Všimnite si, že log 25 64 = log 5 8 - jednoducho vzal druhú mocninu zo základu a argumentu logaritmu. Ak vezmeme do úvahy pravidlá pre násobenie právomocí s rovnakým základom, dostaneme:

Ak niekto nevie, toto bola skutočná úloha z Jednotnej štátnej skúšky :)

Logaritmická jednotka a logaritmická nula

Na záver uvediem dve identity, ktoré možno len ťažko nazvať vlastnosťami – sú skôr dôsledkom definície logaritmu. Neustále sa objavujú v problémoch a prekvapivo robia problémy aj „pokročilým“ žiakom.

  1. log a a = 1 je. Pamätajte si raz a navždy: logaritmus k ľubovoľnej základni a tejto samotnej základne sa rovná jednej.
  2. log a 1 = 0 je. Základom a môže byť čokoľvek, ale ak argument obsahuje jednotku, logaritmus sa rovná nule! Pretože a 0 = 1 je priamym dôsledkom definície.

To sú všetky vlastnosti. Určite si ich nacvičte v praxi! Stiahnite si cheat sheet na začiatku lekcie, vytlačte si ho a vyriešte problémy.

Inštrukcie

Napíšte daný logaritmický výraz. Ak výraz používa logaritmus 10, potom sa jeho zápis skráti a vyzerá takto: lg b je desiatkový logaritmus. Ak má logaritmus ako základ číslo e, napíšte výraz: ln b – prirodzený logaritmus. Rozumie sa, že výsledkom akéhokoľvek je mocnina, na ktorú sa musí zvýšiť základné číslo, aby sa získalo číslo b.

Pri hľadaní súčtu dvoch funkcií ich jednoducho musíte odlíšiť jednu po druhej a pridať výsledky: (u+v)" = u"+v";

Pri hľadaní derivácie súčinu dvoch funkcií je potrebné vynásobiť deriváciu prvej funkcie druhou a pridať deriváciu druhej funkcie vynásobenú prvou funkciou: (u*v)" = u"*v +v"*u;

Aby sme našli deriváciu kvocientu dvoch funkcií, je potrebné od súčinu derivácie deliteľa vynásobeného funkciou deliteľa odpočítať súčin derivácie deliteľa vynásobeného funkciou deliteľa a rozdeliť to všetko pomocou funkcie deliteľa na druhú. (u/v)" = (u"*v-v"*u)/v^2;

Ak je daný komplexná funkcia, potom je potrebné vynásobiť deriváciu z vnútorná funkcia a derivát vonkajšieho. Nech y=u(v(x)), potom y"(x)=y"(u)*v"(x).

Pomocou vyššie získaných výsledkov môžete rozlíšiť takmer akúkoľvek funkciu. Pozrime sa teda na niekoľko príkladov:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2 *X));
Existujú aj problémy týkajúce sa výpočtu derivácie v bode. Nech je daná funkcia y=e^(x^2+6x+5), musíte nájsť hodnotu funkcie v bode x=1.
1) Nájdite deriváciu funkcie: y"=e^(x^2-6x+5)*(2*x +6).

2) Vypočítajte hodnotu funkcie v daný bod y"(1)=8*e^0=8

Video k téme

Užitočné rady

Naučte sa tabuľku základných derivácií. To výrazne ušetrí čas.

Zdroje:

  • derivácia konštanty

Takže, aký je rozdiel? ir racionálna rovnica z racionálneho? Ak je neznáma premenná pod znamienkom odmocnina, potom sa rovnica považuje za iracionálnu.

Inštrukcie

Hlavnou metódou riešenia takýchto rovníc je metóda konštrukcie oboch strán rovníc do štvorca. Avšak. je to prirodzené, prvá vec, ktorú musíte urobiť, je zbaviť sa znamienka. Táto metóda nie je technicky náročná, ale niekedy môže viesť k problémom. Napríklad rovnica je v(2x-5)=v(4x-7). Umocnením oboch strán získate 2x-5=4x-7. Riešenie takejto rovnice nie je ťažké; x=1. Ale číslo 1 nebude dané rovníc. prečo? Namiesto hodnoty x dosaďte do rovnice 1. A pravá a ľavá strana budú obsahovať výrazy, ktoré nedávajú zmysel, tzn. Táto hodnota neplatí pre druhú odmocninu. Preto je 1 cudzí koreň, a preto táto rovnica nemá korene.

Iracionálna rovnica sa teda rieši metódou kvadratúry oboch jej strán. A po vyriešení rovnice je potrebné odrezať cudzie korene. Za týmto účelom nahraďte nájdené korene do pôvodnej rovnice.

Zvážte inú.
2х+vх-3=0
Samozrejme, že táto rovnica môže byť vyriešená pomocou rovnakej rovnice ako predchádzajúca. Presuňte zlúčeniny rovníc, ktoré nemajú druhú odmocninu, v pravá strana a potom použite metódu kvadratúry. vyriešiť výslednú racionálnu rovnicu a korene. Ale aj inú, elegantnejšiu. Zadajte novú premennú; vх=y. Podľa toho dostanete rovnicu v tvare 2y2+y-3=0. Teda bežné kvadratická rovnica. Nájdite jeho korene; y1 = 1 a y2 = -3/2. Ďalej vyriešte dve rovníc vх=1; vх=-3/2. Druhá rovnica nemá korene, z prvej zistíme, že x=1. Nezabudnite skontrolovať korene.

Riešenie identít je celkom jednoduché. K tomu je potrebné vykonávať identické transformácie, kým sa nedosiahne stanovený cieľ. S pomocou jednoduchých aritmetických operácií sa teda daný problém vyrieši.

Budete potrebovať

  • - papier;
  • - pero.

Inštrukcie

Najjednoduchšou z takýchto transformácií sú algebraické skrátené násobenia (napríklad druhá mocnina súčtu (rozdiel), rozdiel druhých mocnín, súčet (rozdiel), druhá mocnina súčtu (rozdiel)). Okrem toho existuje veľa a trigonometrické vzorce, čo sú v podstate rovnaké identity.

Druhá mocnina súčtu dvoch členov sa skutočne rovná štvorcu prvého plus dvojnásobku súčinu prvého a druhého a plus druhej mocniny druhého, teda (a+b)^2= (a+ b)(a+b)=a^2+ab +ba+b ^2=a^2+2ab+b^2.

Zjednodušte oboje

Všeobecné princípy riešenia

Zopakujte si učebnicu o matematickej analýze resp vyššia matematika, čo je určitý integrál. Ako je známe, riešením určitého integrálu je funkcia, ktorej derivácia poskytne integrand. Táto funkcia sa nazýva primitívna. Na základe tohto princípu sú konštruované hlavné integrály.
Určte podľa typu integrandu, ktorý z tabuľkových integrálov je v tomto prípade vhodný. Nie vždy sa to dá okamžite určiť. Často sa tabuľková forma stane viditeľnou až po niekoľkých transformáciách, aby sa integrand zjednodušil.

Variabilná metóda výmeny

Ak funkcia integrand je goniometrická funkcia, ktorého argument obsahuje nejaký polynóm, potom skúste použiť metódu nahradenia premenných. Aby ste to dosiahli, nahraďte polynóm v argumente integrandu nejakou novou premennou. Na základe vzťahu medzi novými a starými premennými určte nové limity integrácie. Odlíšením tohto výrazu nájdite nový diferenciál v . Takže dostanete nový druh predchádzajúceho integrálu, blízkeho alebo dokonca zodpovedajúceho ktorémukoľvek tabuľkovému integrálu.

Riešenie integrálov druhého druhu

Ak je integrál integrálom druhého druhu, vektorovou formou integrandu, potom budete musieť použiť pravidlá na prechod z týchto integrálov na skalárne. Jedným z takýchto pravidiel je Ostrogradského-Gaussov vzťah. Tento zákon nám umožňuje prejsť od rotorového toku určitej vektorovej funkcie k trojnému integrálu cez divergenciu daného vektorového poľa.

Substitúcia integračných limitov

Po nájdení primitívneho prvku je potrebné dosadiť hranice integrácie. Najprv dosaďte do výrazu pre primitívnu hodnotu hodnotu hornej hranice. Dostanete nejaké číslo. Potom od výsledného čísla odčítajte ďalšie číslo získané zo spodnej hranice do primitívnej hodnoty. Ak je jednou z hraníc integrácie nekonečno, tak pri jej dosadení do primitívna funkcia treba ísť na doraz a nájsť to, o čo sa výraz snaží.
Ak je integrál dvojrozmerný alebo trojrozmerný, potom budete musieť geometricky reprezentovať hranice integrácie, aby ste pochopili, ako integrál vyhodnotiť. V skutočnosti v prípade, povedzme, trojrozmerného integrálu, limity integrácie môžu byť celé roviny, ktoré obmedzujú objem, ktorý sa integruje.
  1. Skontrolujte, či sú pod znamienkom logaritmu záporné čísla alebo jedno. Táto metóda použiteľné na vyjadrenia formulára log b ⁡ (x) log b ⁡ (a) (\displaystyle (\frac (\log _(b)(x))(\log _(b)(a)))). Nie je však vhodný pre niektoré špeciálne prípady:

    • Logaritmus záporné číslo nie je určená na žiadnom základe (napr. log ⁡ (− 3) (\displaystyle \log(-3)) alebo log 4 ⁡ (− 5) (\displaystyle \log _(4)(-5))). V tomto prípade napíšte „žiadne riešenie“.
    • Logaritmus nuly na akúkoľvek základňu tiež nie je definovaný. Ak ťa chytia ln ⁡ (0) (\displaystyle \ln(0)), napíšte „žiadne riešenie“.
    • Logaritmus jednej na ľubovoľnú základňu ( log ⁡ (1) (\displaystyle \log(1))) je vždy nula, pretože x 0 = 1 (\displaystyle x^(0)=1) pre všetky hodnoty X. Napíšte 1 namiesto tohto logaritmu a nepoužívajte nižšie uvedenú metódu.
    • Ak majú logaritmy rôzne dôvody, Napríklad l o g 3 (x) l o g 4 (a) (\displaystyle (\frac (log_(3)(x))(log_(4)(a)))) a nie sú redukované na celé čísla, hodnotu výrazu nemožno nájsť ručne.
  2. Preveďte výraz na jeden logaritmus. Ak výraz nie je jedným z vyššie uvedených špeciálne príležitosti, môže byť reprezentovaný ako jeden logaritmus. Použite na to nasledujúci vzorec: log b ⁡ (x) log b ⁡ (a) = log a ⁡ (x) (\displaystyle (\frac (\log _(b)(x))(\log _(b)(a)))=\ log_(a)(x)).

    • Príklad 1: Zvážte výraz log ⁡ 16 log ⁡ 2 (\displaystyle (\frac (\log (16))(\log (2)))).
      Najprv predstavme výraz ako jeden logaritmus pomocou vyššie uvedeného vzorca: log ⁡ 16 log ⁡ 2 = log 2 ⁡ (16) (\displaystyle (\frac (\log (16))(\log (2)))=\log _(2)(16)).
    • Tento vzorec na „nahradenie základne“ logaritmu je odvodený od základných vlastností logaritmov.
  3. Ak je to možné, vyhodnoťte hodnotu výrazu manuálne. Nájsť log a ⁡ (x) (\displaystyle \log _(a)(x)) predstavte si výraz " a? = x (\displaystyle a^(?)=x)“, teda opýtajte sa sami seba ďalšia otázka: „Na akú moc by sme sa mali povzniesť a, Získať X Odpoveď na túto otázku môže vyžadovať kalkulačku, ale ak budete mať šťastie, možno ju budete vedieť nájsť manuálne.

    • Príklad 1 (pokračovanie): Prepíšte ako 2? = 16 (\displaystyle 2^(?)=16). Musíte zistiť, aké číslo by malo stáť namiesto znaku „?“. Dá sa to urobiť pokusom a omylom:
      2 2 = 2 ∗ 2 = 4 (\displaystyle 2^(2)=2*2=4)
      2 3 = 4 ∗ 2 = 8 (\displaystyle 2^(3)=4*2=8)
      2 4 = 8 ∗ 2 = 16 (\displaystyle 2^(4)=8*2=16)
      Takže číslo, ktoré hľadáme, je 4: log 2 ⁡ (16) (\displaystyle \log _(2)(16)) = 4 .
  4. Nechajte svoju odpoveď v logaritmickej forme, ak ju nemôžete zjednodušiť. Mnoho logaritmov je veľmi ťažké vypočítať ručne. V tomto prípade, aby ste získali presnú odpoveď, budete potrebovať kalkulačku. Ak však na hodine riešite problém, učiteľ sa s najväčšou pravdepodobnosťou uspokojí s odpoveďou v logaritmickej forme. Nižšie uvedená metóda sa používa na riešenie zložitejšieho príkladu:

    • príklad 2: čo sa rovná log 3 ⁡ (58) log 3 ⁡ (7) (\displaystyle (\frac (\log _(3)(58))(\log _(3)(7))))?
    • Skonvertujme tento výraz na jeden logaritmus: log 3 ⁡ (58) log 3 ⁡ (7) = log 7 ⁡ (58) (\displaystyle (\frac (\log _(3)(58))(\log _(3)(7)))=\ log_(7)(58)). Všimnite si, že základ 3 spoločný pre oba logaritmy zmizne; je to pravda z akéhokoľvek dôvodu.
    • Prepíšme výraz vo forme 7? = 58 (\displaystyle 7^(?)=58) a skúsime nájsť hodnotu?:
      7 2 = 7 ∗ 7 = 49 (\displaystyle 7^(2)=7*7=49)
      7 3 = 49 ∗ 7 = 343 (\displaystyle 7^(3)=49*7=343)
      Pretože 58 je medzi týmito dvoma číslami, nie je vyjadrené ako celé číslo.
    • Odpoveď ponecháme v logaritmickej forme: log 7 ⁡ (58) (\displaystyle \log _(7)(58)).

hlavné vlastnosti.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

rovnaké dôvody

Log6 4 + Log6 9.

Teraz si úlohu trochu skomplikujeme.

Príklady riešenia logaritmov

Čo ak je základom alebo argumentom logaritmu mocnina? Potom môže byť exponent tohto stupňa vyňatý zo znamienka logaritmu podľa nasledujúcich pravidiel:

Samozrejme, všetky tieto pravidlá dávajú zmysel, ak je dodržaná ODZ logaritmu: a > 0, a ≠ 1, x >

Úloha. Nájdite význam výrazu:

Prechod na nový základ

Nech je daný logaritmus logax. Potom pre akékoľvek číslo c také, že c > 0 a c ≠ 1, platí rovnosť:

Úloha. Nájdite význam výrazu:

Pozri tiež:


Základné vlastnosti logaritmu

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Exponent je 2,718281828…. Aby ste si zapamätali exponent, môžete si preštudovať pravidlo: exponent sa rovná 2,7 a dvojnásobku roku narodenia Leva Nikolajeviča Tolstého.

Základné vlastnosti logaritmov

Keď poznáte toto pravidlo, budete poznať presnú hodnotu exponenta aj dátum narodenia Leva Tolstého.


Príklady pre logaritmy

Logaritmické výrazy

Príklad 1
A). x=10ac^2 (a>0,c>0).

Pomocou vlastností 3.5 vypočítame

2.

3.

4. Kde .



Príklad 2. Nájdite x ak


Príklad 3. Nech je uvedená hodnota logaritmov

Vypočítajte log(x), ak




Základné vlastnosti logaritmov

Logaritmy, ako všetky čísla, sa dajú sčítať, odčítať a transformovať všetkými spôsobmi. Ale keďže logaritmy nie sú úplne obyčajné čísla, existujú tu pravidlá, ktoré sa nazývajú hlavné vlastnosti.

Tieto pravidlá určite musíte poznať – bez nich sa nedá vyriešiť ani jeden vážny logaritmický problém. Navyše je ich veľmi málo – všetko sa dá naučiť za jeden deň. Tak poďme na to.

Sčítanie a odčítanie logaritmov

Zvážte dva logaritmy s rovnakými základňami: logax a logay. Potom ich možno sčítať a odčítať a:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Súčet logaritmov sa teda rovná logaritmu súčinu a rozdiel sa rovná logaritmu kvocientu. Poznámka: tu je kľúčový bod rovnaké dôvody. Ak sú dôvody iné, tieto pravidlá nefungujú!

Tieto vzorce vám pomôžu vypočítať logaritmický výraz, aj keď sa neberú do úvahy jeho jednotlivé časti (pozri lekciu „Čo je to logaritmus“). Pozrite sa na príklady a uvidíte:

Keďže logaritmy majú rovnaké základy, použijeme súčtový vzorec:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Úloha. Nájdite hodnotu výrazu: log2 48 − log2 3.

Základy sú rovnaké, používame rozdielový vzorec:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Úloha. Nájdite hodnotu výrazu: log3 135 − log3 5.

Základy sú opäť rovnaké, takže máme:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Ako vidíte, pôvodné výrazy sa skladajú zo „zlých“ logaritmov, ktoré nie sú vypočítané samostatne. Ale po transformáciách sa získajú úplne normálne čísla. Mnohé testy sú založené na tejto skutočnosti. Áno, na Jednotnej štátnej skúške sa so všetkou vážnosťou (niekedy prakticky bez zmien) ponúkajú výrazy podobné testom.

Extrahovanie exponentu z logaritmu

Je ľahké vidieť, že posledné pravidlo nasleduje prvé dve. Je však lepšie si to zapamätať - v niektorých prípadoch to výrazne zníži množstvo výpočtov.

Samozrejme, všetky tieto pravidlá dávajú zmysel, ak je dodržaná ODZ logaritmu: a > 0, a ≠ 1, x > 0. A ešte niečo: naučte sa aplikovať všetky vzorce nielen zľava doprava, ale aj naopak , t.j. Čísla pred znamienkom logaritmu môžete zadať do samotného logaritmu. To je to, čo sa najčastejšie vyžaduje.

Úloha. Nájdite hodnotu výrazu: log7 496.

Zbavme sa stupňa v argumente pomocou prvého vzorca:
log7 496 = 6 log7 49 = 6 2 = 12

Úloha. Nájdite význam výrazu:

Všimnite si, že menovateľ obsahuje logaritmus, ktorého základom a argumentom sú presné mocniny: 16 = 24; 49 = 72. Máme:

Myslím, že posledný príklad si vyžaduje určité objasnenie. Kam zmizli logaritmy? Do poslednej chvíle pracujeme len s menovateľom.

Logaritmické vzorce. Logaritmické riešenia príkladov.

Uviedli sme základ a argument tam stojaceho logaritmu vo forme mocničiek a vyňali sme exponenty - dostali sme „trojposchodový“ zlomok.

Teraz sa pozrime na hlavný zlomok. Čitateľ aj menovateľ obsahujú rovnaké číslo: log2 7. Keďže log2 7 ≠ 0, zlomok môžeme zmenšiť - 2/4 zostanú v menovateli. Podľa pravidiel aritmetiky môžu byť štyri prenesené do čitateľa, čo sa aj stalo. Výsledkom bola odpoveď: 2.

Prechod na nový základ

Keď už hovoríme o pravidlách sčítania a odčítania logaritmov, osobitne som zdôraznil, že fungujú iba s rovnakými základmi. Čo ak sú dôvody iné? Čo ak to nie sú presné mocniny rovnakého čísla?

Na pomoc prichádzajú vzorce pre prechod na nový základ. Sformulujme ich vo forme vety:

Nech je daný logaritmus logax. Potom pre akékoľvek číslo c také, že c > 0 a c ≠ 1, platí rovnosť:

Konkrétne, ak nastavíme c = x, dostaneme:

Z druhého vzorca vyplýva, že základ a argument logaritmu možno zameniť, ale v tomto prípade je celý výraz „prevrátený“, t.j. logaritmus sa objaví v menovateli.

Tieto vzorce sa zriedka nachádzajú v bežných číselných výrazoch. Ich vhodnosť je možné vyhodnotiť len pri riešení logaritmických rovníc a nerovníc.

Sú však problémy, ktoré sa nedajú vyriešiť vôbec inak ako presťahovaním sa do novej nadácie. Pozrime sa na pár z nich:

Úloha. Nájdite hodnotu výrazu: log5 16 log2 25.

Všimnite si, že argumenty oboch logaritmov obsahujú presné mocniny. Vyberme ukazovatele: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Teraz „otočme“ druhý logaritmus:

Keďže sa súčin pri preskupovaní faktorov nemení, pokojne sme vynásobili štyri a dva a potom sme sa zaoberali logaritmami.

Úloha. Nájdite hodnotu výrazu: log9 100 lg 3.

Základom a argumentom prvého logaritmu sú presné mocniny. Poďme si to zapísať a zbaviť sa indikátorov:

Teraz sa zbavme desiatkového logaritmu prechodom na nový základ:

Základná logaritmická identita

V procese riešenia je často potrebné reprezentovať číslo ako logaritmus k danému základu. V tomto prípade nám pomôžu nasledujúce vzorce:

V prvom prípade sa číslo n stane exponentom v argumente. Číslo n môže byť úplne čokoľvek, pretože je to len logaritmická hodnota.

Druhý vzorec je vlastne parafrázovaná definícia. Tak sa to volá: .

Čo sa vlastne stane, ak sa číslo b zvýši na takú mocninu, že číslo b s touto mocninou dáva číslo a? Správne: výsledkom je rovnaké číslo a. Ešte raz si pozorne prečítajte tento odsek – veľa ľudí sa na ňom zasekne.

Rovnako ako vzorce na prechod na novú základňu, základná logaritmická identita je niekedy jediným možným riešením.

Úloha. Nájdite význam výrazu:

Všimnite si, že log25 64 = log5 8 - jednoducho vzal druhú mocninu zo základu a argumentu logaritmu. Ak vezmeme do úvahy pravidlá pre násobenie právomocí s rovnakým základom, dostaneme:

Ak niekto nevie, toto bola skutočná úloha z Jednotnej štátnej skúšky :)

Logaritmická jednotka a logaritmická nula

Na záver uvediem dve identity, ktoré možno len ťažko nazvať vlastnosťami – sú skôr dôsledkom definície logaritmu. Neustále sa objavujú v problémoch a prekvapivo robia problémy aj „pokročilým“ žiakom.

  1. logaa = 1 je. Pamätajte si raz a navždy: logaritmus k ľubovoľnej základni a tejto samotnej základne sa rovná jednej.
  2. loga 1 = 0 je. Základom a môže byť čokoľvek, ale ak argument obsahuje jednotku, logaritmus sa rovná nule! Pretože a0 = 1 je priamym dôsledkom definície.

To sú všetky vlastnosti. Určite si ich nacvičte v praxi! Stiahnite si cheat sheet na začiatku lekcie, vytlačte si ho a vyriešte problémy.

Pozri tiež:

Logaritmus b na základ a označuje výraz. Vypočítať logaritmus znamená nájsť mocninu x (), pri ktorej je splnená rovnosť

Základné vlastnosti logaritmu

Je potrebné poznať vyššie uvedené vlastnosti, pretože takmer všetky problémy a príklady súvisiace s logaritmami sú riešené na ich základe. Zvyšok exotických vlastností možno odvodiť matematickými manipuláciami s týmito vzorcami

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Pri výpočte vzorca pre súčet a rozdiel logaritmov (3.4) narazíte pomerne často. Ostatné sú trochu zložité, ale v mnohých úlohách sú nevyhnutné na zjednodušenie zložitých výrazov a výpočet ich hodnôt.

Bežné prípady logaritmov

Niektoré z bežných logaritmov sú tie, v ktorých je základ dokonca desať, exponenciálny alebo dva.
Logaritmus na základ desať sa zvyčajne nazýva desiatkový logaritmus a jednoducho sa označuje lg(x).

Z nahrávky je zrejmé, že základy nie sú napísané v nahrávke. Napríklad

Prirodzený logaritmus je logaritmus s exponentom ako základom (označený ln(x)).

Exponent je 2,718281828…. Aby ste si zapamätali exponent, môžete si preštudovať pravidlo: exponent sa rovná 2,7 a dvojnásobku roku narodenia Leva Nikolajeviča Tolstého. Keď poznáte toto pravidlo, budete poznať presnú hodnotu exponenta aj dátum narodenia Leva Tolstého.

A ďalší dôležitý logaritmus k základu dva je označený

Derivácia logaritmu funkcie sa rovná jednej delenej premennou

Integrálny alebo primitívny logaritmus je určený vzťahom

Daný materiál vám postačí na riešenie širokej triedy problémov súvisiacich s logaritmami a logaritmami. Aby som vám pomohol pochopiť materiál, uvediem len niekoľko bežných príkladov z školské osnovy a univerzity.

Príklady pre logaritmy

Logaritmické výrazy

Príklad 1
A). x=10ac^2 (a>0,c>0).

Pomocou vlastností 3.5 vypočítame

2.
Vlastnosťou rozdielu logaritmov máme

3.
Pomocou vlastností 3.5 nájdeme

4. Kde .

Podľa výzoru komplexný prejav pomocou množstva pravidiel je zjednodušená forma

Hľadanie logaritmických hodnôt

Príklad 2. Nájdite x ak

Riešenie. Pre výpočet použijeme na posledný termín 5 a 13 nehnuteľností

Dáme to na záznam a smútime

Keďže základy sú rovnaké, dávame rovnítko medzi výrazy

Logaritmy. Prvá úroveň.

Nech je uvedená hodnota logaritmov

Vypočítajte log(x), ak

Riešenie: Zoberme si logaritmus premennej na zápis logaritmu cez súčet jej členov


Toto je len začiatok nášho oboznámenia sa s logaritmami a ich vlastnosťami. Precvičte si výpočty, obohaťte svoje praktické zručnosti – vedomosti, ktoré získate, budete čoskoro potrebovať na riešenie logaritmických rovníc. Po preštudovaní základných metód riešenia takýchto rovníc rozšírime vaše vedomosti o ďalšiu rovnako dôležitú tému - logaritmické nerovnosti...

Základné vlastnosti logaritmov

Logaritmy, ako všetky čísla, sa dajú sčítať, odčítať a transformovať všetkými spôsobmi. Ale keďže logaritmy nie sú úplne obyčajné čísla, existujú tu pravidlá, ktoré sa nazývajú hlavné vlastnosti.

Tieto pravidlá určite musíte poznať – bez nich sa nedá vyriešiť ani jeden vážny logaritmický problém. Navyše je ich veľmi málo – všetko sa dá naučiť za jeden deň. Tak poďme na to.

Sčítanie a odčítanie logaritmov

Zvážte dva logaritmy s rovnakými základňami: logax a logay. Potom ich možno sčítať a odčítať a:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Súčet logaritmov sa teda rovná logaritmu súčinu a rozdiel sa rovná logaritmu kvocientu. Poznámka: tu je kľúčový bod rovnaké dôvody. Ak sú dôvody iné, tieto pravidlá nefungujú!

Tieto vzorce vám pomôžu vypočítať logaritmický výraz, aj keď sa neberú do úvahy jeho jednotlivé časti (pozri lekciu „Čo je to logaritmus“). Pozrite sa na príklady a uvidíte:

Úloha. Nájdite hodnotu výrazu: log6 4 + log6 9.

Keďže logaritmy majú rovnaké základy, použijeme súčtový vzorec:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Úloha. Nájdite hodnotu výrazu: log2 48 − log2 3.

Základy sú rovnaké, používame rozdielový vzorec:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Úloha. Nájdite hodnotu výrazu: log3 135 − log3 5.

Základy sú opäť rovnaké, takže máme:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Ako vidíte, pôvodné výrazy sa skladajú zo „zlých“ logaritmov, ktoré nie sú vypočítané samostatne. Ale po transformáciách sa získajú úplne normálne čísla. Mnohé testy sú založené na tejto skutočnosti. Áno, na Jednotnej štátnej skúške sa so všetkou vážnosťou (niekedy prakticky bez zmien) ponúkajú výrazy podobné testom.

Extrahovanie exponentu z logaritmu

Teraz si úlohu trochu skomplikujeme. Čo ak je základom alebo argumentom logaritmu mocnina? Potom môže byť exponent tohto stupňa vyňatý zo znamienka logaritmu podľa nasledujúcich pravidiel:

Je ľahké vidieť, že posledné pravidlo nasleduje prvé dve. Je však lepšie si to zapamätať - v niektorých prípadoch to výrazne zníži množstvo výpočtov.

Samozrejme, všetky tieto pravidlá dávajú zmysel, ak je dodržaná ODZ logaritmu: a > 0, a ≠ 1, x > 0. A ešte niečo: naučte sa aplikovať všetky vzorce nielen zľava doprava, ale aj naopak , t.j. Čísla pred znamienkom logaritmu môžete zadať do samotného logaritmu.

Ako riešiť logaritmy

To je to, čo sa najčastejšie vyžaduje.

Úloha. Nájdite hodnotu výrazu: log7 496.

Zbavme sa stupňa v argumente pomocou prvého vzorca:
log7 496 = 6 log7 49 = 6 2 = 12

Úloha. Nájdite význam výrazu:

Všimnite si, že menovateľ obsahuje logaritmus, ktorého základom a argumentom sú presné mocniny: 16 = 24; 49 = 72. Máme:

Myslím, že posledný príklad si vyžaduje určité objasnenie. Kam zmizli logaritmy? Do poslednej chvíle pracujeme len s menovateľom. Uviedli sme základ a argument tam stojaceho logaritmu vo forme mocničiek a vyňali sme exponenty - dostali sme „trojposchodový“ zlomok.

Teraz sa pozrime na hlavný zlomok. Čitateľ aj menovateľ obsahujú rovnaké číslo: log2 7. Keďže log2 7 ≠ 0, zlomok môžeme zmenšiť - 2/4 zostanú v menovateli. Podľa pravidiel aritmetiky môžu byť štyri prenesené do čitateľa, čo sa aj stalo. Výsledkom bola odpoveď: 2.

Prechod na nový základ

Keď už hovoríme o pravidlách sčítania a odčítania logaritmov, osobitne som zdôraznil, že fungujú iba s rovnakými základmi. Čo ak sú dôvody iné? Čo ak to nie sú presné mocniny rovnakého čísla?

Na pomoc prichádzajú vzorce pre prechod na nový základ. Sformulujme ich vo forme vety:

Nech je daný logaritmus logax. Potom pre akékoľvek číslo c také, že c > 0 a c ≠ 1, platí rovnosť:

Konkrétne, ak nastavíme c = x, dostaneme:

Z druhého vzorca vyplýva, že základ a argument logaritmu možno zameniť, ale v tomto prípade je celý výraz „prevrátený“, t.j. logaritmus sa objaví v menovateli.

Tieto vzorce sa zriedka nachádzajú v bežných číselných výrazoch. Ich vhodnosť je možné vyhodnotiť len pri riešení logaritmických rovníc a nerovníc.

Sú však problémy, ktoré sa nedajú vyriešiť vôbec inak ako presťahovaním sa do novej nadácie. Pozrime sa na pár z nich:

Úloha. Nájdite hodnotu výrazu: log5 16 log2 25.

Všimnite si, že argumenty oboch logaritmov obsahujú presné mocniny. Vyberme ukazovatele: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Teraz „otočme“ druhý logaritmus:

Keďže sa súčin pri preskupovaní faktorov nemení, pokojne sme vynásobili štyri a dva a potom sme sa zaoberali logaritmami.

Úloha. Nájdite hodnotu výrazu: log9 100 lg 3.

Základom a argumentom prvého logaritmu sú presné mocniny. Poďme si to zapísať a zbaviť sa indikátorov:

Teraz sa zbavme desiatkového logaritmu prechodom na nový základ:

Základná logaritmická identita

V procese riešenia je často potrebné reprezentovať číslo ako logaritmus k danému základu. V tomto prípade nám pomôžu nasledujúce vzorce:

V prvom prípade sa číslo n stane exponentom v argumente. Číslo n môže byť úplne čokoľvek, pretože je to len logaritmická hodnota.

Druhý vzorec je vlastne parafrázovaná definícia. Tak sa to volá: .

Čo sa vlastne stane, ak sa číslo b zvýši na takú mocninu, že číslo b s touto mocninou dáva číslo a? Správne: výsledkom je rovnaké číslo a. Ešte raz si pozorne prečítajte tento odsek – veľa ľudí sa na ňom zasekne.

Rovnako ako vzorce na prechod na novú základňu, základná logaritmická identita je niekedy jediným možným riešením.

Úloha. Nájdite význam výrazu:

Všimnite si, že log25 64 = log5 8 - jednoducho vzal druhú mocninu zo základu a argumentu logaritmu. Ak vezmeme do úvahy pravidlá pre násobenie právomocí s rovnakým základom, dostaneme:

Ak niekto nevie, toto bola skutočná úloha z Jednotnej štátnej skúšky :)

Logaritmická jednotka a logaritmická nula

Na záver uvediem dve identity, ktoré možno len ťažko nazvať vlastnosťami – sú skôr dôsledkom definície logaritmu. Neustále sa objavujú v problémoch a prekvapivo robia problémy aj „pokročilým“ žiakom.

  1. logaa = 1 je. Pamätajte si raz a navždy: logaritmus k ľubovoľnej základni a tejto samotnej základne sa rovná jednej.
  2. loga 1 = 0 je. Základom a môže byť čokoľvek, ale ak argument obsahuje jednotku, logaritmus sa rovná nule! Pretože a0 = 1 je priamym dôsledkom definície.

To sú všetky vlastnosti. Určite si ich nacvičte v praxi! Stiahnite si cheat sheet na začiatku lekcie, vytlačte si ho a vyriešte problémy.

Jedným z prvkov algebry primitívnych úrovní je logaritmus. Názov pochádza z gréckeho jazyka zo slova „číslo“ alebo „moc“ a znamená moc, na ktorú musí byť číslo v základe povýšené, aby sa zistilo konečné číslo.

Typy logaritmov

  • log a b – logaritmus čísla b so základom a (a > 0, a ≠ 1, b > 0);
  • log b – desiatkový logaritmus (logaritmus so základom 10, a = 10);
  • ln b – prirodzený logaritmus (logaritmus k základu e, a = e).

Ako vyriešiť logaritmy?

Logaritmus b na základ a je exponent, ktorý vyžaduje, aby sa b zvýšilo na základ a. Získaný výsledok sa vyslovuje takto: „logaritmus b na základ a“. Riešením logaritmických problémov je, že musíte zo zadaných čísel určiť danú mocninu v číslach. Existuje niekoľko základných pravidiel na určenie alebo riešenie logaritmu, ako aj na prevod samotného zápisu. Pomocou nich sa riešia logaritmické rovnice, nachádzajú sa derivácie, riešia sa integrály a vykonáva sa mnoho ďalších operácií. V zásade je riešením samotného logaritmu jeho zjednodušený zápis. Nižšie sú uvedené základné vzorce a vlastnosti:

Pre akékoľvek a ; a > 0; a ≠ 1 a pre ľubovoľné x; y > 0.

  • a log a b = b – základná logaritmická identita
  • log a 1 = 0
  • loga a = 1
  • log a (x y) = log a x + log a y
  • log a x/ y = log a x – log a y
  • log a 1/x = -log a x
  • log a x p = p log a x
  • log a k x = 1/k log a x, pre k ≠ 0
  • log a x = log a c x c
  • log a x = log b x/ log b a – vzorec pre prechod na nový základ
  • log a x = 1/log x a


Ako riešiť logaritmy - pokyny na riešenie krok za krokom

  • Najprv si zapíšte požadovanú rovnicu.

Poznámka: ak je základný logaritmus 10, potom sa záznam skráti, čo vedie k desiatkovému logaritmu. Ak to stojí za to prirodzené číslo e, potom to zapíšeme a zredukujeme na prirodzený logaritmus. To znamená, že výsledkom všetkých logaritmov je mocnina, na ktorú sa základné číslo zvýši, aby sa získalo číslo b.


Priamo riešenie spočíva vo výpočte tohto stupňa. Pred riešením výrazu s logaritmom je potrebné ho zjednodušiť podľa pravidla, teda pomocou vzorcov. Hlavné identity nájdete tak, že sa v článku vrátite trochu späť.

Pri sčítaní a odčítaní logaritmov s dvoma rôznymi číslami, ale s rovnakými základmi, nahraďte jedným logaritmom súčin alebo delenie čísel b a c. V tomto prípade môžete použiť vzorec na prechod na inú základňu (pozri vyššie).

Ak používate výrazy na zjednodušenie logaritmu, je potrebné zvážiť určité obmedzenia. A to je: základ logaritmu a je iba kladné číslo, ale nie je rovné jednej. Číslo b, podobne ako a, musí byť väčšie ako nula.

Existujú prípady, keď zjednodušením výrazu nebudete môcť vypočítať logaritmus numericky. Stáva sa, že takýto výraz nedáva zmysel, pretože mnohé mocniny sú iracionálne čísla. Za tejto podmienky ponechajte mocninu čísla ako logaritmus.